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Summary

‣ Who are we?

‣ Phylogeny Problem

‣ Image Phylogeny

‣ Video Phylogeny

‣ Current Challenges



What is this talk about?
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What is this talk about?

‣ An important problem that has been mostly 
overlooked by the community.

‣ Has immediate applications in many areas.

‣ It is hard to solve.

‣ There is room for elegant math and different 
solutions.

Video Phylogeny: Recovering Near-Duplicate Video 
Relationships
Z. Dias,  A. Rocha, and S. Goldenstein. IEEE Workshop on Information 
Forensics and Security (WIFS), 2011

Image Phylogeny by Minimal Spanning Trees 
Z. Dias, A. Rocha, and S Goldenstein. IEEE Transactions of 
Information Forensics and Security, April 2012.
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How it started

8

‣ In 2009, the current Brazilian president was the president’s chief of 
staff, and the government pre-candidate for the 2010 presidential 
election.

‣ Folha de SP, a major Brazilian newspaper (think of NYT) ran an 
interview and article about her. They printed a “scan of her 
criminal records” as a political activist in the military dictatorship 
period (1964-1985), suggesting it as a record she engaged in 
violent armed activities (which she denies to this day).
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High-Profile Analysis

9
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High-Profile Analysis
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Criminal 
Records?

A “scan” of her personal files 
maintained by the military internal 
security during the Brazilian 
military regime.  

The Public Archive of SP actually 
hosts such a collection.

11
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Searching the Web...

12
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Criminal Records?

‣ This image was already going around the net for 
about six months – it is a clear fake. 

‣ She hired us, as consultants, to provide a forensic 
analysis of file’s authenticity that could hold on 
court.

‣ There were several versions of the image (near 
duplicates)

• Which one was the original? 

• Where should we perform the analysis?

13
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How to find the original?

‣ The images are “copied” around...

- resized;

- cropped;

- color corrected;

- recompressed;

- and possibly other transformations.

14
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Media Phylogeny

‣ Identify, among a set of near duplications, which 
element is the original, and the structure of 
generation of each near duplication. 

‣ Tells the history of the transformations created 
the duplications. 

16
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Media Phylogeny

D

D1 D2

DDB2

D3

D4 D5

D6

Watermarking & Fingerprinting Enabled

Content-Based Copy
Detection & Recognition

Referenced copy

DDB

DDB1

T i
(D
) T

j (D
)

T k
(D

1
) T

l (D
2 )

T r
(D 3

) T
t (D

3 )

T i
(D

5
)

T a
(D

D
B
) T

b (D
D
B )

17



Image Phylogeny Trees 
IPT
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Image Phylogeny Trees:  IPT

‣ Security.

‣ Forensics.

‣ Copyright enforcement.

‣ News tracking services.

‣ Indexing.

19
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Image Phylogeny Trees:  IPT

‣ Security: the modification graph provides information 
of suspects’ behavior, and points out flow of content 
distribution.

‣ Forensics.

‣ Copyright enforcement.

‣ News tracking services.

‣ Indexing.

20
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Image Phylogeny Trees:  IPT

‣ Security.

‣ Forensics: analysis in the original document (root of the 
tree) instead of in a near duplicate.

‣ Copyright enforcement.

‣ News tracking services.

‣ Indexing.

21
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Image Phylogeny Trees:  IPT

‣ Security.

‣ Forensics.

‣ Copyright enforcement: traitor tracing without the 
need of source control techniques (watermarking or 
fingerprinting).

‣ News tracking services.

‣ Indexing.

22
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Image Phylogeny Trees:  IPT

‣ Security.

‣ Forensics.

‣ Copyright enforcement.

‣ News tracking services: the ND relationships can 
feed news tracking services with key elements for 
determining the opinion forming process across time and 
space.

‣ Indexing.

23
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Image Phylogeny Trees:  IPT

‣ Security.

‣ Forensics.

‣ Copyright enforcement.

‣ News tracking services.

‣ Indexing: tree root can give us an image from an ND 
set as a representative to index, store, or even further 
refine the ND search.   
Tree structure might help indexing and retrieving.

24
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Two Subproblems

1.Define good dissimilarity functions 
between images.  

2.Develop algorithms that construct the Image 
Phylogeny Tree given a dissimilarity matrix of 
the images.

26
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Dissimilarity
The dissimilarity is not a metric - we want to 
estimate how likely A→B and B→A.  
 
 
 
 
 
 

Think about cropping, or resizing an image - these 
are not two-way operations.

Jeffrey Pine, Sentinel Dome, Yosemite National Park, Ansel Adams.

28
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Dissimilarity

‣ Define a family of image transformations 
        parameterized by 

‣ Let    
find         that minimizes 
 
 

d�(i, j) = |Ij � T�(Ii)|2

�min d�(i, j)

d(i, j) = d�min(i, j)

T�(I) �.

29
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Dissimilarity

‣We use a composition of three simple steps.

‣ In the general case, finding the optimum 
parameters of a general transformation 
might be a complicated optimization. 

30
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Dissimilarity

‣ Spatial

• Affine Transformation

• Cropping

‣ Color

• Channel Brightness and Contrast.

‣ JPEG Compression

• Quantization tables.

31



A. Rocha, 2017 – Multimedia Phylogeny Concepts for Media Provenance Analytics

Spatial Transformation for 
the Dissimilarity

Correspondences.

Robust Estimation 
of Affine Transf.

Key Points.
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Afghanistan-Pakistan border, Steve McCurry.
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Dissimilarity: Compression

‣ Use the quantization table of the jpeg of B to 
compress T(A).

33
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Tree Construction

‣ Local decisions of direction on pairs of images is 
not a good idea...

‣ Proposition: we want a MST.

...but we have a complete directed graph.

35
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MST of directed graphs in 
the Literature

The Optimum Branching problem finds the 
MST of a directed graph for a given root.

In our context, it would have to be applied 
to each vertex as a root, and the final 
complexity in our scenario would be O(n3). 

It also uses a Fibonacci Heap.

36
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Oriented Kruskal

37
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Oriented Kruskal

Our method runs once, and finds both the 
root and structure simultaneously.

It has an                   complexity − we need 
to sort all      edges of the complete graph.

It requires the Union-Find data structure.

38
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Construction Example



Evaluation
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Evaluation: comparing Trees

41
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IPT Experiments

‣ Experimental Setup.

‣ Complete Trees.

‣ Missing Nodes.

• Missing Root.

• Missing Internal Nodes.

‣ Real ND sets from the Web.

‣ A first look at Forests.

42
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Experimental Setup

‣ 50 raw images from UCID.

‣ Trees with 10, 20, 30, 40, and 50 nodes.

‣ For every size, 50 random tree topologies, each with 10 different 
random parameters.

‣ ND set created with affine transformation, crop, brightness-
contrast-gamma on each channel and compression.  We use 
ImageMagick.

‣ Dissimilarity construction with OpenCV and libjpg: affine 
transformation, brightness-contrast by channel, and compression.
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Complete Trees
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If the correct root is at depth zero, we identified the root of the tree. Here, regardless of the 
tree size, the average depth at which our solution finds the correct root is lower than 0.03.
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Missing Links

‣ On the wild, it is unrealistic to expect to have 
all the nodes of the tree.

‣ How to handle missing links?   
How do we evaluate the algorithm?

45
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Missing Nodes

12

65

1
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Missing only 
Internal Nodes
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Missing Root and 
Internal Nodes
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Real ND sets from Web

49
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How to Evaluate results?
‣ Since we do not know the ground truths, we 

evaluate the stability of reconstruction.
[ 6 ,  5 ,  6 ,  4 ,  4 ,  4 ]Initial Tree

4

5 6

1 3

4

5

2

6

1

3

5

7

I7 = T~�(I5)

Select one Node and  Artificially
Generate a Direct Descendant

[ 7 ,  5 ,  6 ,  4 ,  4 ,  4 ,  6 ]

Tree After Inserting Node 7 

2

7

Reconstruction ErrorsReconstruction Errors

Er1 1

Er2 1

Er3 1

Er4 0
SuccessSuccess

P 0

Er1:  one if the new node IB is not a child of its 
generating node IA. 

Er2: one if the structure of the tree relating the nodes 
in the original set changes with the insertion of the 
new node IB in the set. 

Er3: one if the new node IB appears as a father of 
another node on the original tree. 

Er4: is one if the root of the reconstructed tree of the 
original set is different from the root of the 
reconstructed tree of the set augmented with IB.

P: one if the reconstructed tree is perfect compared 
to the original tree (Er1 = Er2 = 0).
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Real ND sets
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Table III

ORIENTED KRUSKAL IPT ALGORITHM RESULTS FOR THE UNCONSTRAINED SCENARIO.

Description # of Cases %Er1 %Er2 %Er3 %Er4 %P

TG1 Iranian Missiles 90 40.0% 11.1% 11.1% 0.0% 55.6%

TG2 Bush Reading 95 17.9% 3.2% 3.2% 0.0% 81.1%

TG3 WTC Tourist 95 25.3% 6.3% 6.3% 1.1% 71.6%

TG4 BP Oil Spill 100 25.0% 0.0% 0.0% 0.0% 75.0%

TG5 Israeli-Palestinian Peace Talks 95 21.1% 7.4% 7.4% 0.0% 75.8%

TG6 Criminal Record 90 41.1% 13.3% 13.3% 0.0% 54.4%

TG7 Palin and Rifle 100 17.0% 2.0% 2.0% 0.0% 81.0%

TG8 Beatles Rubber 100 8.0% 9.0% 9.0% 1.0% 85.0%

TG9 Kerry and Fonda 80 21.3% 13.8% 13.8% 0.0% 68.8%

TG10 OJ Simpson 90 18.9% 2.2% 2.2% 0.0% 78.9%

Average 93.5 23.5% 6.8% 6.8% 0.2% 72.7%

a perfect reconstruction rate of P = 72.7% with no further change to the original tree. The best result is achieved

with the target groups TGi2{2,7,8} while the target groups TGi2{1,6} presented the worse results. Even for the more

difficult target groups, the solution achieves a reconstruction rate of P � 54%.

In only 0.2% of the cases the introduced approach changes the original root after the insertion of an artificial

created node – an important achievement for forensics. This means the introduced IPT algorithm is stable when

analyzing sets of related images. In addition, in only 6.8% of the tests, the solution changes the original tree

structure (Er2) or inserts the artificial created node not as a leaf of the tree (Er3). Finally, the approach finds the

correct parent of the artificial node for about 76.5% of the test cases (Er1=23.5%).

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we tackled the problem of identifying the image relationships within a set of near-duplicate images,

which we named Image Phylogeny Tree.

We presented a principled way to calculate a dissimilarity matrix which measures the relationship between every

pair of images in a set of near-duplicate images. For that, we accounted for the most probable transformations

an image undergoes when generating an offspring, namely compression, resampling after affine warping and crop,

and channel-wise pixel normalization. We also proposed an algorithm to reconstruct image phylogeny trees named

Oriented Kruskal.

We validated our approach on both controlled and uncontrolled environments with more than 625,000 test cases. In

this sense, this paper presents a significant improvement over our previous work [3] not only in the experimentation

but also in the proposed solutions.

There are several immediate applications for our work. In a forensic scenario in which the task is to trace back

the original document of a chain of possible modifications, our approach might be of vital importance since it
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What’s up with this 
near duplicate set?
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What’s up with this 
near duplicate set?

53



Close-up

54



Close-up
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First peek at Forests

• Forests (multiple co-existing trees) are a 
real case in real applications.

• Can our method be modified to find 
multiple trees?

56



Video Phylogeny Tree: 
VPT
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Video Phylogeny Tree

‣We ignore the sound track.

‣We use only static image content.

Why not get one frame, and  
use the IPT as the VPT? 

The IPTs of frames are 
different along the video!!!

But why?

58
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Different IPTs

‣ Different quality over time, for example:

- black frames,

- blur,

- compression artifacts,

- dynamic range.

‣Which (if any) is the right one?

60
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A Few Approaches

‣ Expected result from a single frame IPT (baseline).

‣ Minimum dissimilarity matrix followed by IPT.

‣ Average dissimilarity matrix followed by IPT.

‣ Reconciliation Tree.
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Single-Frame Expectation

‣ Calculate IPT on each frame.

‣ Calculate Expectation of metrics, but does not 
reconstruct a VPT (Video Phylogeny Tree).
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Min / Average

‣ Sample frames.

‣ Calculate Dissimilarity Matrix on each synchronized 
frames.

‣ Create a new Dissimilarity Matrix using the frame’s 
Dissimilarities
- min, 

- average,

- normalized min, 

- normalized average.

‣ Construct VPT using oriented Kruskal on this new 
Matrix.
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Reconciliation Approach

‣ Sample frames.

‣ Calculate IPT on each frame.

‣ Reconcile the frame’s IPTs into the VPT.

- Build Reconciliation Matrix.

- Apply Tree Reconciliation Algorithm
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Reconciliation Matrix

[ 6 ,  5 ,  6 ,  4 ,  4 ,  4 ]Reconstructed Tree
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M 1 2 3 4 5 6

1 - 31 57 37 45 49

2 31 - 33 23 29 32

3 51 41 - 42 37 38

4 16 36 28 - 15 27

5 35 18 54 30 - 54

6 12 40 22 60 19 -

Dissimilarity Matrix Algorithm Steps

1 M[6,1] = 12 ✔ Select Edge (1, 6)

2 M[4,5] = 15 ✔ Select Edge (5, 4)

3 M[4,1] = 16 ✕ Test II: Root(1) = 6

4 M[5,2] = 18 ✔ Select Edge (2, 5)

5 M[6,5] = 19 ✕ Test II: Root(5) = 4

6 M[6,3] = 22 ✔ Select Edge (3, 6)

7 M[2,4] = 23 ✕ Test I: Root(2) = Root(4)

8 M[4,6] = 27 ✔ Select Edge (6, 4)

Figure 1. Simulation of the Oriented Kruskal algorithm to construct an Image Phylogeny Tree from a Dissimilarity Matrix as presented in [5].

Algorithm 1 Reconciliation Matrix.
Require: number of near-duplicate videos, n
Require: number of selected frames, f
Require: 2-d vector, t, with the f phylogeny trees previously calculated
1: for i 2 [1..n] do . Initialization
2: for j 2 [1..n] do

3: P [i, j] 0
4: end for

5: end for

6: for i 2 [1..f ] do . Creating the matrix P
7: for j 2 [1..n] do

8: P [j, t[i][j]] = P [j, t[i][j]] + 1
9: end for

10: end for

11: return P . Returning the parenthood matrix P

two parameters as input: the number of near-duplicate videos
n and the n⇥ n matrix P computed using the Algorithm 1.

Lines 1–3 initialize the final VPT. Line 4 sorts the entries
(edges) in P from the most to the least common. Line 5–6
initialize the root and the number of edges counter. Lines 7–22
tests each edge (i, j) in order to insert it into the tree.

The running time depends on how we implement the Root
function whose role is to determine the root of a given tree or
sub-tree. If we use a disjoint-set-forest with the union-by-rank

and path-compression heuristics, we can implement such a
function efficiently [13]. Using such implementation, the final
complexity of the algorithm is O(n2 log n).

Running Example. The VPT algorithms min, avg,
min-norm, and avg-norm perform operations over the
n ⇥ n f dissimilarity matrices available for n near-duplicate
video and, in the end, construct the VPT using the Oriented
Kruskal algorithm as illustrated in Fig. 1. On the other hand,
the tree reconciliation algorithm constructs the final
VPT based on the f frame phylogeny trees.

Fig. 2 shows a toy example example for n = 6 near-
duplicate videos and f = 6 selected frames for each video.
Using Oriental Kruskal algorithm as introduced in [5] and
illustrated in Fig. 1, we create one tree per selected frame.
Using Algorithm 1, we create the parenthood matrix P for
the six trees. Recall that the entries in P represent the number
of times a node i appears as a child in all trees. For instance,
M [1, 1] = 4 because the node 1 appears four times as a child
of itself (root of the tree) in P . M [5, 3] = 2 because node 5
appears as a child of node 3 twice.

Using the parenthood matrix P , we use Algorithm 2 to
create the final VPT. The first step consists of sorting the edges

Algorithm 2 Tree Reconciliation.
Require: number of near-duplicate videos, n
Require: matrix, P , from Algorithm 1
1: for i 2 [1..n] do . Tree initialization
2: tree[i] i
3: end for

4: sorted sort positions (i, j) of P into nonincreasing order
. List of edges sorted from the most to the least common

5: r  0 . Initially, the final root r is not defined
6: nedges  0
7: for each position (i, j) 2 sorted do . Testing each edge in order
8: if r = 0 and i = j then . Defining the root of the tree
9: r  i

10: end if

11: if i 6= r then . If i is not the root of the tree
12: if Root(i) 6= Root(j) then

13: if Root(j) = j then

14: tree[j] i
15: nedges  nedges + 1
16: if nedges = n� 1 then . If the tree is complete
17: return tree . Returning the final VPT
18: end if

19: end if

20: end if

21: end if

22: end for

in P in non-increasing order. Then the algorithm proceeds
selecting one edge at a time and testing whether or not it is
safe to put it into the final VPT. We first select entry P [1, 1]
as it is the one with the highest value. As this entry means
an edge of node 1 to itself, it is the root of the VPT. In the
second step, we select edge (2,1) which means node 2 is now
a child of node 1. The procedure continues until we select the
edge (1,4) which is discarded since it would create a loop in
the tree. The next edges (2,4), (3,2), (4,1), and (5,3) are reject
as well. Finally, we select the edge (6,1) which completes the
tree (n� 1 edges).

V. EXPERIMENTS AND METHODS

To validate the techniques we propose in this paper for
reconstructing the video phylogeny tree from n near-duplicate
videos, we create a data set comprising several transformations
that a video can undergo to generate a near-duplicate. We
analyze the results using several quantitative measures of
success as introduced to the image phylogeny case in [5].

A. Evaluation Metrics

We use four quantitative metrics (Root, Edges, Leaves, and
Ancestry) to evaluate a reconstructed tree in scenarios where
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Tree Reconciliation Alg.

[ 6 ,  5 ,  6 ,  4 ,  4 ,  4 ]Reconstructed Tree

4

5

2

6

1 3

1

2

4

8

6

M 1 2 3 4 5 6

1 - 31 57 37 45 49

2 31 - 33 23 29 32

3 51 41 - 42 37 38

4 16 36 28 - 15 27

5 35 18 54 30 - 54

6 12 40 22 60 19 -

Dissimilarity Matrix Algorithm Steps

1 M[6,1] = 12 ✔ Select Edge (1, 6)

2 M[4,5] = 15 ✔ Select Edge (5, 4)

3 M[4,1] = 16 ✕ Test II: Root(1) = 6

4 M[5,2] = 18 ✔ Select Edge (2, 5)

5 M[6,5] = 19 ✕ Test II: Root(5) = 4

6 M[6,3] = 22 ✔ Select Edge (3, 6)

7 M[2,4] = 23 ✕ Test I: Root(2) = Root(4)

8 M[4,6] = 27 ✔ Select Edge (6, 4)

Figure 1. Simulation of the Oriented Kruskal algorithm to construct an Image Phylogeny Tree from a Dissimilarity Matrix as presented in [5].

Algorithm 1 Reconciliation Matrix.
Require: number of near-duplicate videos, n
Require: number of selected frames, f
Require: 2-d vector, t, with the f phylogeny trees previously calculated
1: for i 2 [1..n] do . Initialization
2: for j 2 [1..n] do

3: P [i, j] 0
4: end for

5: end for

6: for i 2 [1..f ] do . Creating the matrix P
7: for j 2 [1..n] do

8: P [j, t[i][j]] = P [j, t[i][j]] + 1
9: end for

10: end for

11: return P . Returning the parenthood matrix P

two parameters as input: the number of near-duplicate videos
n and the n⇥ n matrix P computed using the Algorithm 1.

Lines 1–3 initialize the final VPT. Line 4 sorts the entries
(edges) in P from the most to the least common. Line 5–6
initialize the root and the number of edges counter. Lines 7–22
tests each edge (i, j) in order to insert it into the tree.

The running time depends on how we implement the Root
function whose role is to determine the root of a given tree or
sub-tree. If we use a disjoint-set-forest with the union-by-rank

and path-compression heuristics, we can implement such a
function efficiently [13]. Using such implementation, the final
complexity of the algorithm is O(n2 log n).

Running Example. The VPT algorithms min, avg,
min-norm, and avg-norm perform operations over the
n ⇥ n f dissimilarity matrices available for n near-duplicate
video and, in the end, construct the VPT using the Oriented
Kruskal algorithm as illustrated in Fig. 1. On the other hand,
the tree reconciliation algorithm constructs the final
VPT based on the f frame phylogeny trees.

Fig. 2 shows a toy example example for n = 6 near-
duplicate videos and f = 6 selected frames for each video.
Using Oriental Kruskal algorithm as introduced in [5] and
illustrated in Fig. 1, we create one tree per selected frame.
Using Algorithm 1, we create the parenthood matrix P for
the six trees. Recall that the entries in P represent the number
of times a node i appears as a child in all trees. For instance,
M [1, 1] = 4 because the node 1 appears four times as a child
of itself (root of the tree) in P . M [5, 3] = 2 because node 5
appears as a child of node 3 twice.

Using the parenthood matrix P , we use Algorithm 2 to
create the final VPT. The first step consists of sorting the edges

Algorithm 2 Tree Reconciliation.
Require: number of near-duplicate videos, n
Require: matrix, P , from Algorithm 1
1: for i 2 [1..n] do . Tree initialization
2: tree[i] i
3: end for

4: sorted sort positions (i, j) of P into nonincreasing order
. List of edges sorted from the most to the least common

5: r  0 . Initially, the final root r is not defined
6: nedges  0
7: for each position (i, j) 2 sorted do . Testing each edge in order
8: if r = 0 and i = j then . Defining the root of the tree
9: r  i

10: end if

11: if i 6= r then . If i is not the root of the tree
12: if Root(i) 6= Root(j) then

13: if Root(j) = j then

14: tree[j] i
15: nedges  nedges + 1
16: if nedges = n� 1 then . If the tree is complete
17: return tree . Returning the final VPT
18: end if

19: end if

20: end if

21: end if

22: end for

in P in non-increasing order. Then the algorithm proceeds
selecting one edge at a time and testing whether or not it is
safe to put it into the final VPT. We first select entry P [1, 1]
as it is the one with the highest value. As this entry means
an edge of node 1 to itself, it is the root of the VPT. In the
second step, we select edge (2,1) which means node 2 is now
a child of node 1. The procedure continues until we select the
edge (1,4) which is discarded since it would create a loop in
the tree. The next edges (2,4), (3,2), (4,1), and (5,3) are reject
as well. Finally, we select the edge (6,1) which completes the
tree (n� 1 edges).

V. EXPERIMENTS AND METHODS

To validate the techniques we propose in this paper for
reconstructing the video phylogeny tree from n near-duplicate
videos, we create a data set comprising several transformations
that a video can undergo to generate a near-duplicate. We
analyze the results using several quantitative measures of
success as introduced to the image phylogeny case in [5].

A. Evaluation Metrics

We use four quantitative metrics (Root, Edges, Leaves, and
Ancestry) to evaluate a reconstructed tree in scenarios where
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Reconciliation Approach

‣ Sample frames.

‣ Calculate IPT on each frame.

‣ Reconcile the frame’s IPTs into the VPT.

‣ Is this enough to achieve good results?

‣What are the limitations of this approach?
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Experimental results
‣ Limited experiments in this paper:

- Ignored temporal cropping,

- Ignored video compression on dissimilarities,

- 16 Videos (Super Bowl Commercials 2011),

- 16 trees,

- 10 near-duplicates per tree.

‣ Transformations using mencoder.

‣ Sampling frames and sync by ffmpeg.

‣ Dissimilarities using OpenCV.
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Transformations
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Figure 2. Simulation of the Tree Reconciliation algorithm (TR) to construct a Video Phylogeny Tree from f = 6 image (or frame) phylogeny trees.

we have Ground Truth as introduced in [5]. In this case, we
want to compare a reconstructed VPT with its ground truth
tree. For this intent, we use the metrics from [5]:

Root: R(VPT1,VPT2) =

⇢
1, If Root(VPT1) = Root(VPT2)
0, Otherwise

Edges: E(VPT1,VPT2) =
|E1\E2|

n�1

Leaves: L(VPT1,VPT2) =
|L1\L2|
|L1[L2|

Ancestry: A(VPT1,VPT2) =
|A1\A2|
|A1[A2|

The Root metric evaluates if we find the correct root of
the VPT while the Edges metric evaluates the amount of
correct connections (edges) we find in the VPT. The Leaves
metric accounts for the number of correct leaves we find and
the Ancestry metric accounts for the portion of correctly
identified ancestry information across the tree. Ei, Li, and
Ai mean the sets of edges, leaves, and ancestry in a tree i,
respectively.

Another form of evaluating the effectiveness of a VPT
reconstruction approach is to assess the average Depth of the
tree in which it finds the correct root (the lower the average
depth the better). If an algorithm finds the correct root at depth
zero, it means it correctly identified the root of the tree.

As in any designed experiment, we can only calculate the
metrics if we do have the real Ground Truth to compare
the estimated result. Section V-B shows the methodological
approach used for obtaining this set of controlled experiments.

B. Data Set

To generate a near-duplicate a video can undergo several
possible transformations. However, these transformation must
not destroy the overall meaning of the video otherwise it would
not be considered a near-duplicate. In this paper, we select
typical transformations a video can undergo such as: different
scales for horizontal and vertical axis resampling, contrast
and brightness adjustment, non-linear gamma correction, and
cropping. Here, we do not consider temporal cropping. Tab. I

shows the transformations and their operational ranges for
creating the data set.

Table I
TRANSFORMATIONS AND THEIR OPERATIONAL RANGES FOR CREATING

THE CONTROLLED DATA SET.
Transformation Oper. Range

(1) Global Resampling/Scaling (Up/Down) [90%, 110%]
(2) Scaling by axis [90%, 110%]
(3) Cropping [0%, 5%]
(4) Brightness Adjustment [�10%, 10%]
(5) Contrast Adjustment [�10%, 10%]
(6) Gamma Correction [0.9, 1.1]

The transformations can be combined in any form to create
a near-duplicate. In addition, the color transformations can be
performed either linearly or non-linearly across the color chan-
nels. All the near-duplicate generation process is performed
using the algorithms implemented in MEncoder library3.

To create the data set, we selected 16 of the most watched
video commercials for the 2011 Super Bowl4. All the videos
were originally in HD resolution and each video contains, at
least, 30 seconds of content.

For each video, we have created 16 near-duplicate trees of
size 10 (the original and nine near-duplicate videos). The final
data set contains 256 test cases. In all the experiments, we
selected one frame per second to create the VPT. We also
considered two and three frames per second but one frame per
second represents the best efficiency/effectiveness tradeoff.

C. Experiments

In this section, we show the experiments for the different
methods we introduce for reconstructing a video phylogeny
tree from n near-duplicate videos.

Tab. II first shows the results for the minimum expec-
tation we have when building the video phylogeny trees.

3http://www.mplayerhq.hu/
4http://www.ic.unicamp.br/⇠rocha/pub/wifs-2011-super-bowl-videos.html

We used mencoder to generate the Near-Duplicates, 
with these transformations and ranges:
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Comparing Trees
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Results of Approaches

For that, we calculate an image phylogeny tree for each of
the f selected frames using Oriental Kruskal [5]. We then
compute the metrics as discussed in Section V-A. The table
also shows the results of the proposed methods based on
operations over dissimilarity matrices min, avg, min-norm,
and avg-norm. Finally, the table shows the results for the
tree reconciliation method which creates the final
VPT by reconciling f phylogeny trees.

At first, we notice the min-based methods are indeed
worse than the general expectation for the reconstruction. The
metrics show that single frame expectation results
generally are better than min and min-norm results. The
avg-based methods perform better than the single frame
expectation and finds the correct root of the tree in about 85%
of the cases and have an average root depth of 0.203. The
avg-based methods find 62-64% of the correct ancestry in-
formation. As expected, the normalization plays an important
role in the VPT reconstruction improving the quality of the
results for the min and avg methods.

The tree reconciliation algorithm obtains the best-
performing results. It finds the correct root in 91.0% of the test
cases which is an improvement of 18.9% over the single-frame
expectation or 5.9% over the avg-norm method. However,
the average root depth for the tree reconciliation
algorithm is only 0.098 or 74.3% more accurate than the
single frame expectation. This result means that if
the method does not correctly find the root it only misses it by
a small fraction. Creating the final VPT from reconciling the
actual phylogeny trees is more advantageous than performing
operations of the dissimilarity matrices.

Tab. III presents the breakdown results for the tree
reconciliation algorithm per video. Each row represents
the average result of 16 different trees over near-duplicate sets
with the considered video in that row. We see that some videos
are more difficult than others. However, the low standard
deviations suggest that the method is reasonably stable across
different videos.

Table II
AVERAGE RESULTS FOR THE 16⇥ 16 TEST CASES UNDER CONSIDERATION

FOR THE PROPOSED VPT METHODS.
Method Root Depth Edges Leaves Ancestry

(E) Single Frame 76.5% 0.382 54.2% 67.7% 58.6%
(1) Min 59.0% 0.926 49.6% 64.1% 50.8%
(2) Min-Norm 68.0% 0.605 51.3% 66.4% 54.2%
(3) Avg 85.6% 0.215 56.6% 70.3% 62.0%
(4) Avg-Norm 85.9% 0.203 58.0% 72.4% 64.5%
(5) Reconc. Tree 91.0% 0.098 65.8% 77.7% 70.4%
(5)/(E) Boost 18.9% 74.3% 21.4% 14.7% 20.1%

VI. CONCLUSIONS

In this paper, we tackled the problem of identifying the
video relationships within a set of near-duplicate videos. The
solution extends our prior work for image phylogeny [5].

We presented five different ways of calculating final video
phylogeny from a set of selected frames for the n near-
duplicate videos of interest. The methods differ in their nature
of calculating the final VPT. Four of them are based on
operations on the available dissimilarity matrices while the
fifth and best-performing one builds the final VPT based on
reconciling the actual frame phylogeny trees available.

Table III
RESULTS FOR THE TREE RECONCILIATION APPROACH USING 16

DIFFERENT TREES.
Video Root Depth Edges Leaves Ancestry

V01 100.0% 0.000 68.1% 77.9% 73.4%
V02 87.5% 0.125 66.9% 76.0% 68.8%
V03 75.0% 0.312 56.9% 73.7% 57.8%
V04 81.2% 0.188 57.5% 68.2% 60.7%
V05 93.8% 0.062 69.4% 81.3% 73.9%
V06 93.8% 0.125 66.2% 77.7% 72.7%
V07 100.0% 0.000 73.1% 83.2% 79.5%
V08 93.8% 0.062 59.4% 75.0% 66.1%
V09 100.0% 0.000 70.6% 80.2% 73.1%
V10 100.0% 0.000 65.6% 75.9% 72.3%
V11 81.2% 0.188 64.4% 80.0% 69.8%
V12 100.0% 0.000 68.7% 80.2% 76.4%
V13 87.5% 0.125 75.0% 82.5% 77.7%
V14 100.0% 0.000 69.4% 78.1% 72.5%
V15 81.2% 0.188 56.9% 72.8% 64.2%
V16 81.2% 0.188 65.0% 80.2% 67.2%
Average 91.0% 0.098 65.8% 77.7% 70.4%
Std Dev 8.8% 0.097 5.6% 4.0% 6.0%

To create a realistic set of experiments, we accounted for
common transformations a video undergoes when generating
an offspring, namely resampling, cropping, and channel-wise
pixel normalization. We validated the approaches on a con-
trolled environment with 16 videos from the 2011 Super Bowl
commercials.

Our future work includes the research for approaches to deal
with temporal cropping, missing links [5] as well as multiple
trees in the set of n near-duplicate videos.
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[9] A. Joly, O. Buisson, and C. Frélicot, “Content-Based Copy Retrieval

Using Distortion-Based Probabilistic Similarity Search,” IEEE TMM,
vol. 9, no. 2, pp. 293–306, 2007.

[10] S. Goldenstein and A. Rocha, “High-Profile Forensic Analysis of Im-
ages,” in ICDP, 2009, pp. 1–6.

[11] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features (SURF),” Elsevier CVIU, vol. 110, no. 3, pp. 346–359, 2008.

[12] M. Fischler and R. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” in Comm. of the ACM, vol. 24(6), 1981, pp. 381–395.

[13] R. E. Tarjan, “Efficiency of a good but not linear set union algorithm,”
ACM JACM, vol. 22, no. 2, pp. 215–225, 1975.

73



A. Rocha, 2017 – Multimedia Phylogeny Concepts for Media Provenance Analytics

Experimental Results
For that, we calculate an image phylogeny tree for each of
the f selected frames using Oriental Kruskal [5]. We then
compute the metrics as discussed in Section V-A. The table
also shows the results of the proposed methods based on
operations over dissimilarity matrices min, avg, min-norm,
and avg-norm. Finally, the table shows the results for the
tree reconciliation method which creates the final
VPT by reconciling f phylogeny trees.

At first, we notice the min-based methods are indeed
worse than the general expectation for the reconstruction. The
metrics show that single frame expectation results
generally are better than min and min-norm results. The
avg-based methods perform better than the single frame
expectation and finds the correct root of the tree in about 85%
of the cases and have an average root depth of 0.203. The
avg-based methods find 62-64% of the correct ancestry in-
formation. As expected, the normalization plays an important
role in the VPT reconstruction improving the quality of the
results for the min and avg methods.

The tree reconciliation algorithm obtains the best-
performing results. It finds the correct root in 91.0% of the test
cases which is an improvement of 18.9% over the single-frame
expectation or 5.9% over the avg-norm method. However,
the average root depth for the tree reconciliation
algorithm is only 0.098 or 74.3% more accurate than the
single frame expectation. This result means that if
the method does not correctly find the root it only misses it by
a small fraction. Creating the final VPT from reconciling the
actual phylogeny trees is more advantageous than performing
operations of the dissimilarity matrices.

Tab. III presents the breakdown results for the tree
reconciliation algorithm per video. Each row represents
the average result of 16 different trees over near-duplicate sets
with the considered video in that row. We see that some videos
are more difficult than others. However, the low standard
deviations suggest that the method is reasonably stable across
different videos.

Table II
AVERAGE RESULTS FOR THE 16⇥ 16 TEST CASES UNDER CONSIDERATION

FOR THE PROPOSED VPT METHODS.
Method Root Depth Edges Leaves Ancestry
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(1) Min 59.0% 0.926 49.6% 64.1% 50.8%
(2) Min-Norm 68.0% 0.605 51.3% 66.4% 54.2%
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(5) Reconc. Tree 91.0% 0.098 65.8% 77.7% 70.4%
(5)/(E) Boost 18.9% 74.3% 21.4% 14.7% 20.1%

VI. CONCLUSIONS

In this paper, we tackled the problem of identifying the
video relationships within a set of near-duplicate videos. The
solution extends our prior work for image phylogeny [5].

We presented five different ways of calculating final video
phylogeny from a set of selected frames for the n near-
duplicate videos of interest. The methods differ in their nature
of calculating the final VPT. Four of them are based on
operations on the available dissimilarity matrices while the
fifth and best-performing one builds the final VPT based on
reconciling the actual frame phylogeny trees available.

Table III
RESULTS FOR THE TREE RECONCILIATION APPROACH USING 16

DIFFERENT TREES.
Video Root Depth Edges Leaves Ancestry

V01 100.0% 0.000 68.1% 77.9% 73.4%
V02 87.5% 0.125 66.9% 76.0% 68.8%
V03 75.0% 0.312 56.9% 73.7% 57.8%
V04 81.2% 0.188 57.5% 68.2% 60.7%
V05 93.8% 0.062 69.4% 81.3% 73.9%
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To create a realistic set of experiments, we accounted for
common transformations a video undergoes when generating
an offspring, namely resampling, cropping, and channel-wise
pixel normalization. We validated the approaches on a con-
trolled environment with 16 videos from the 2011 Super Bowl
commercials.

Our future work includes the research for approaches to deal
with temporal cropping, missing links [5] as well as multiple
trees in the set of n near-duplicate videos.
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Limitations of frame-based VPT

‣ Does not use sound.

‣ Ignores temporal information of the visual content.

‣ Requires sync frames!

• This is actually a very complicated issue in Video, and 
some codecs are finickier than others.

• If we allow change in FPS + temporal crop, it might 
be impossible to fulfill this requisite.
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Multiple Parenting Phylogeny
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● Content from multiple images combined
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Composition examples
Blending

Montage
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Composition examples

Splicing
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Methodology
● In this work, we focus on splicing compositions;

● Three steps method
1. Group separation

• Image Phylogeny Forests

2. Group classification
• Finding shared content with keypoint matches

3. Finding the parents
• Local dissimilarity
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Group separation
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Group separation
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Group classification
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Group classification

Composition

Source - HostSource - Alien
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Finding the parents

Composition

Source - Alien Source - Host
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Final Graph
Host ParentAlien Parent

Original Compositon
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Results

● The method was tested with two types of splicing 
compositions:
• Easy case: Direct pasting
• Hard case: Poisson blending

● 300 hundred test cases of each type with phylogeny trees 
having 25 nodes

  Original Composition Host Parent Alien Parent

Direct Pasting
73.0% 76.0% 69.3%

Poisson Blending
66.3% 73.0% 42.0%
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Contributions & Future Work
● We achieved good identification of the original 

composition and its host parent

● The alien parent identification still needs improvement, 
specially for poisson blending

● Future work:
• Handmade and professional compositions
• Enhanced validation
• Generalization of the method



What can we do with these 
approaches? 
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The Brazilian President Criminal Record
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The Situation Room

The Situation Room 
(The White House version)

Balotelli (ID a*) Text Overlay (ID b*)

Watermarking (ID c*) Face Swapping (ID d*) Splicing Objects (ID e*)

Splicing People (ID f*) Splicing Objects and  
Changing Content (ID g*)

Cropping/Zoom (ID h*)
93



First Steps into Forests
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Video Phylogeny Part II :-)    
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Motivation

  shot 1   shot 2   shot 3

Video 1

Video 2 Video 3
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Video Phylogeny - Example
Observed sequences

Parent sequence
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Parent sequence 



A. Rocha, 2017 – Multimedia Phylogeny Concepts for Media Provenance Analytics

Sequences comparison
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Results
● Dataset:

• 12 standard sequences at CIF resolution

● Transformations
• Blurr ing, br ightness adjustment , contrast 

enhancement, spatial cropping, AVC/H.264 coding, 
logo insertion, rotation

● Results
• Perfect parent reconstruction: 85%
• Parent reconstruction (missing one shot): > 90%



Media Forensics and Integrity Analytics

What’s next?
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Overview

‣ We are working on three general areas:

• TA1.1: Source identification, manipulation detection and 
localization, adversarial setups, editing suite identification, 
video analyses

• TA1.2: electrical network frequency (ENF)-based video 
authentication

• TA1.3: Multimedia Phylogeny and Joint Analysis

5
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TA1.3 Goals

‣ Main goal: semantic analysis of media collections using the 
principles of media phylogeny to characterize media content 
and relationships 

‣ What is in the scenes, their spatial coherence, and the timeline 
of relationships among the media objects in the pool 

‣ X-coherence: space, time, and digital relationships

7
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TA1.3 Approaches

‣ Two main lines of action

• Phylogenetic representations from media corpora 
(determination of provenance, spatial and temporal 
correlation among objects)

• Semantic-level manipulation detection

‣ Pinpoint possible links among the objects and their processing 
history rather than producing an integrity indicator (e.g., TA1.1 
& TA1.2)

8
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Semantic Integrity Context

query

Provenance Filtering

Provenance Graph Construction

9
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Provenance Filtering
Filtering the gallery and selecting donor candidates for a query

ICIP Paper #1
https://arxiv.org/abs/1706.00447

10
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Provenance Filtering
Filtering the gallery and selecting donor candidates for a query

First- and second-tier results in 
terms of Recall@k.

The context incorporation is 
important regardless of the  
used indexing technique.

11

ICIP Paper #1
https://arxiv.org/abs/1706.00447
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Context Incorporation
Context retrieval and analysis for improved forgery detection and localization

‣ Collaboration with Polimi/Italy 

‣ Robust tampering detection on large-scale datasets

‣ Focus on the difference between query and its donor 
candidates

12

ICIP Paper #2
https://arxiv.org/abs/1705.00604
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Context Incorporation
Context retrieval and analysis for improved forgery detection and localization

‣ THM – Tampering heat maps

13

* Comparison with 13 forgery detectors in the literature

ICIP Paper #2
https://arxiv.org/abs/1705.00604
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U-Phylogeny
Undirected provenance graph construction in the wild

‣ Discovering how query and
donor candidates are
connected in terms of
provenance

‣ Multiple parenting phylogeny
without literature’s strong 
assumptions

‣ Geometrical Consistency
Check

14

ICIP Paper #3
https://arxiv.org/abs/1705.11187
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U-Phylogeny
Undirected provenance graph construction in the wild

15

Up to 25 nodes

Small: up to 12 nodes – Medium: from 13 up to 20 nodes – Large: more than 20 nodes

ICIP Paper #3
https://arxiv.org/abs/1705.11187
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Phylogeny
Directed provenance graph construction in the wild

16

Results

Dry Run

Directed Graphs
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Refinements

17

Traditional Keypoint Detector
Important regions might go missing

Refined detection with Collision Avoidance
Better balance of distinctive areas
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Refinements
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Refinements

to 92% in R@200

From 67% 
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Refinements

‣ Forgery detectors

‣ Context analysis

Used Detectors
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Significant Changes Ahead

‣ Scalability with GPU feature extraction & indexing 

‣ Directionality inference from multiple cues (color, 
compression, illumination, mutual info, matching, etc.)

‣ Context incorporation

• Side info (geo-tagging, date, etc.)

• Editing/manipulation info

• Manipulation detectors

21



Thank you
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