Introduction

Primitives Extraction

Problems

Conclusion

Recovering Primitives in 3D CAD meshes

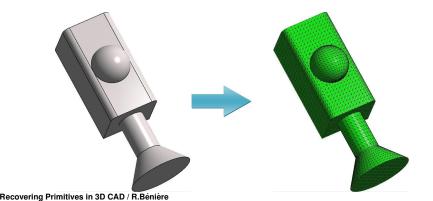
Roseline Bénière

G. Subsol, G. Gesquière, F. Le Breton and W. Puech

LIRMM, Montpellier, France C4W, Montpellier, France LSIS, Arles, France

> 14 octobre 2010 Réunion ICAR

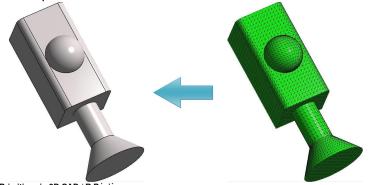
Introduction ●○○○○	Primitives Extraction	Problems	Conclusion
Objective			


In CAD an object is usually modeled by a structured combination of primitives

Recovering Primitives in 3D CAD / R.Bénière


Introduction ●○○○○	Primitives Extraction	Problems	Conclusion
Objective			

In CAD an object is usually modeled by a structured combination of primitives But to use, we often need to discretized it into a 3D mesh


Introduction ●○○○○	Primitives Extraction	Problems	Conclusion
Obiective			

In CAD an object is usually modeled by a structured combination of primitives But to use, we often need to discretized it into a 3D mesh And the initial model can be lost or not correspond anymore

Introduction ●○○○○	Primitives Extraction	Problems	Conclusion
Ohiective			

In CAD an object is usually modeled by a structured combination of primitives But to use, we often need to discretized it into a 3D mesh And the initial model can be lost or not correspond anymore So a primitive extraction algorithm is needed to reconstruct the initial representation

Introduction ○●○○○	Primitives Extraction	Problems	Conclusion
Previews			

Bohm et al.

Curvature based range image classification for object PROC SPIE INT SOC OPT ENG 4197 : 211-220 2000

Introduction ○●○○○	Primitives Extraction	Problems 000	Conclusion
Previews			

Bohm *et al*.

Curvature based range image classification for object PROC SPIE INT SOC OPT ENG 4197 : 211-220 2000

Same Process :

Introduction ○●○○○	Primitives Extraction	Problems 000	Conclusion
Previews			

Bohm *et al*.

Curvature based range image classification for object PROC SPIE INT SOC OPT ENG 4197 : 211-220 2000

Same Process :

Introduction ○●○○○	Primitives Extraction	Problems 000	Conclusion
Previews			

Bohm *et al*.

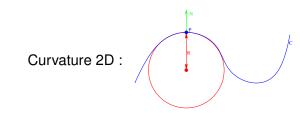
Curvature based range image classification for object PROC SPIE INT SOC OPT ENG 4197 : 211-220 2000

Same Process :

- Segmentation
- Classification

Introduction ○●○○○	Primitives Extraction	Problems 000	Conclusion
Previews			

Bohm et al.

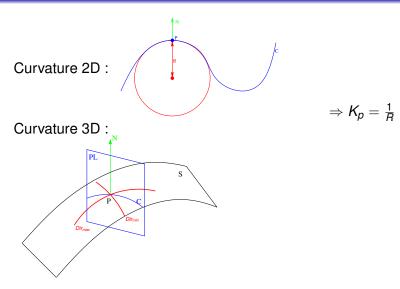

Curvature based range image classification for object PROC SPIE INT SOC OPT ENG 4197 : 211-220 2000

Same Process :

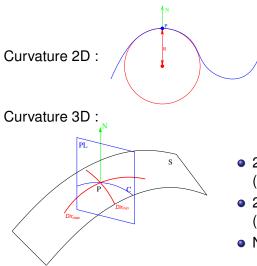
- Segmentation
- Classification

Fitting

Introduction ○○●○○	Primitives Extraction	Problems	Conclusion
Curvature 2	D and 3D		



Introduction	Primitives Extraction	Problems	Conclusion
Curvature	2D and 3D		

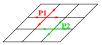

Curvature 2D :

 $\Rightarrow K_p = \frac{1}{R}$

Introduction ○○●○○	Primitives Extraction	Problems	Conclusion
Curvature 2D a	and 3D		

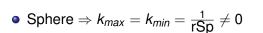
Introduction ○○●○○	Primitives Extraction	Problems	Conclusion
Curvature 2D a	and 3D		

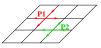
 $\Rightarrow K_p = \frac{1}{B}$


- 2 Principal Curvatures (*k_{max}* et *k_{min}*)
- 2 Principal Directions (*Dir_{max}* et *Dir_{min}*)

Normal

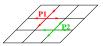
Introduction 00000	Primitives Extraction	Problems	Conclusion
Primitive curvat	ture features		

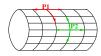

Introduction	Primitives Extraction	Problems	Conclusion
Drimitivo ourv	aturo fosturos		


• Plane
$$\Rightarrow k_{max} = k_{min} = 0$$

Introduction ○○○●○	Primitives Extraction	Problems	Conclusion
Deliveritiere			

• Plane
$$\Rightarrow k_{max} = k_{min} = 0$$




Introduction	Primitives Extraction	Problems	Conclusion 00
Dutantition			

• Plane
$$\Rightarrow k_{max} = k_{min} = 0$$

• Sphere
$$\Rightarrow k_{max} = k_{min} = \frac{1}{rSp} \neq 0$$

• Cylinder
$$\Rightarrow k_{min} = 0$$
 et $k_{max} = \frac{1}{rCy}$
 $Dir_{min} =$ Generating line

Introduction	Primitives Extraction	Problems	Conclusion
Delectric			

The points contained in Plane, Sphere, Cone or Cylinder have specific features on curvature :

• Plane
$$\Rightarrow k_{max} = k_{min} = 0$$

• Cylinder
$$\Rightarrow k_{min} = 0$$
 et $k_{max} = \frac{1}{rCy}$
 $Dir_{min} =$ Generating line

• Sphere $\Rightarrow k_{max} = k_{min} = \frac{1}{rSp} \neq 0$

• Cone \Rightarrow idem Cylinder but with a variable radius

Introduction ○○○○●	Primitives Extraction	Problems	Conclusion
Discrete Cur	vature		

In a mesh, we compute a discrete curvature for each point.

Introduction ○○○○●	Primitives Extraction	Problems	Conclusion
Discrete Curv	atura		

In a mesh, we compute a discrete curvature for each point.

We use the Euler formula

$$k_n = k_{max} \cos^2(\theta) + k_{min} \sin^2(\theta)$$

With θ the angle between *n* and *Dir_{max}*.

The neighbors are studied to approximate k_{max} , k_{min} and θ .

Introduction ○○○○●	Primitives Extraction	Problems	Conclusion 00
Discrete C	urvature		

In a mesh, we compute a discrete curvature for each point.

We use the Euler formula

$$k_n = k_{max} \cos^2(\theta) + k_{min} \sin^2(\theta)$$

With θ the angle between *n* and *Dir_{max}*.

The neighbors are studied to approximate k_{max} , k_{min} and θ .

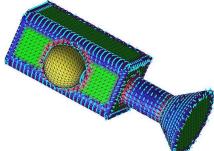
To determine the point which will be used, we fix a *k*-neighborhood.

Introduction ○○○○●	Primitives Extraction	Problems	Conclusion
Discrata C	urvature		

Discrete Curvature

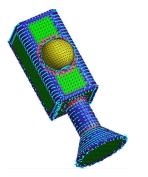
In a mesh, we compute a discrete curvature for each point.

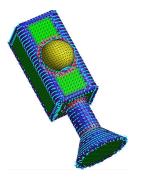
We use the Euler formula


$$k_n = k_{max} \cos^2(\theta) + k_{min} \sin^2(\theta)$$

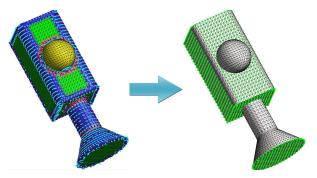
With θ the angle between *n* and *Dir_{max}*. The neighbors are studied to approximate k_{max} , k_{min} and θ .

To determine the point which will be used, we fix a

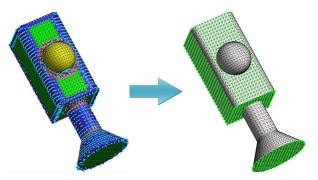

k-neighborhood.


Introduction	Primitives Extraction ●○○○○○	Problems	Conclusion
Planes Extrac	tion		

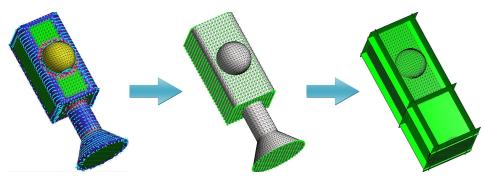
• From Curvatures


Introduction	Primitives Extraction ●○○○○○	Problems	Conclusion 00
Planes Ext	raction		

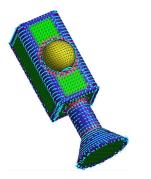
- From Curvatures
- Group all adjacent points with $k_{max} = k_{min} = 0$


Introduction	Primitives Extraction ●○○○○○	Problems	Conclusion
Planes Extr	action		

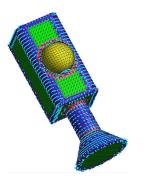
- From Curvatures
- Group all adjacent points with $k_{max} = k_{min} = 0$


Introduction	Primitives Extraction ●○○○○○	Problems	Conclusion
Planes Extract	ion		

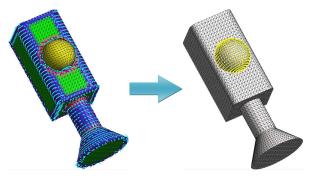
- From Curvatures
- Group all adjacent points with $k_{max} = k_{min} = 0$
- Equation Coefficients : ax + by + cz + d = 0 are approximated by a least square regression


Introduction	Primitives Extraction ●○○○○○	Problems	Conclusion
Planes Ext	traction		

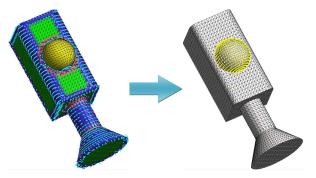
- From Curvatures
- Group all adjacent points with $k_{max} = k_{min} = 0$
- Equation Coefficients : ax + by + cz + d = 0 are approximated by a least square regression


Introduction	Primitives Extraction ○●○○○○	Problems	Conclusion
Spheres Ex	ktraction		

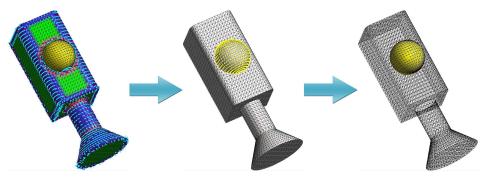
• From Curvatures


Introduction 00000	Primitives Extraction ○●○○○○	Problems	Conclusion
Spheres Ex	ktraction		

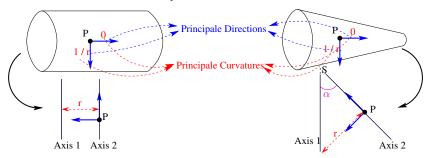
- From Curvatures
- Group all adjacent points with $k_{max} = k_{min} \approx K$


Introduction	Primitives Extraction	Problems	Conclusion
00000	○●○○○○	000	00
Spheres Ex	ktraction		

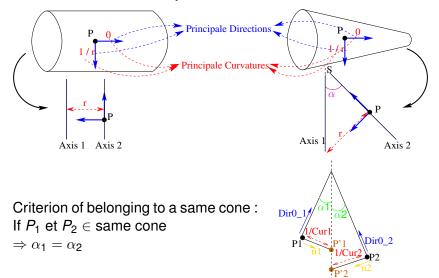
- From Curvatures
- Group all adjacent points with $k_{max} = k_{min} \approx K$


Introduction	Primitives Extraction ○●○○○○	Problems	Conclusion
Spheres E	xtraction		

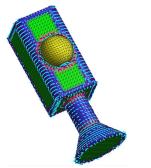
- From Curvatures
- Group all adjacent points with $k_{max} = k_{min} \approx K$
- The radius and the center are approximated by a least square method
- \Rightarrow The average of the curvature inverse is used to validate it


Introduction	Primitives Extraction ○●○○○○	Problems	Conclusion
Spheres E	xtraction		

- From Curvatures
- Group all adjacent points with $k_{max} = k_{min} \approx K$
- The radius and the center are approximated by a least square method
- \Rightarrow The average of the curvature inverse is used to validate it

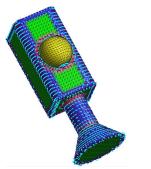

Introduction 00000	Primitives Extraction ○○●○○○	Problems	Conclusion
Cones/Cylino	lers Extraction		

Features of Cones and Cylinders :


Features of Cones and Cylinders :

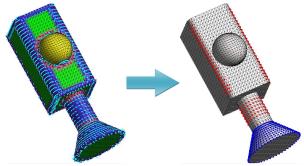
Recovering Primitives in 3D CAD / R.Bénière

Introduction	Primitives Extraction	Problems	Conclusion
00000	○○○●○○	000	
Cones/Cylinder	rs Extraction		


• From Curvatures

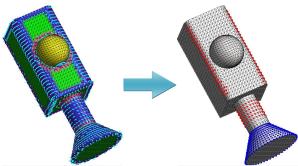
Recovering Primitives in 3D CAD / R.Bénière

Introduction	Primitives Extraction ○○○●○○	Problems 000	Conclusion
Cones/Cylinde	ers Extraction		

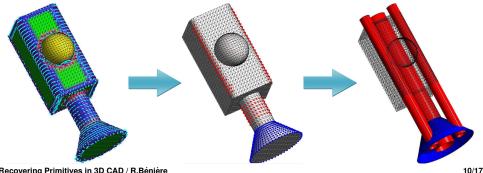

- From Curvatures
- Group adjacent points by the criterion of belonging

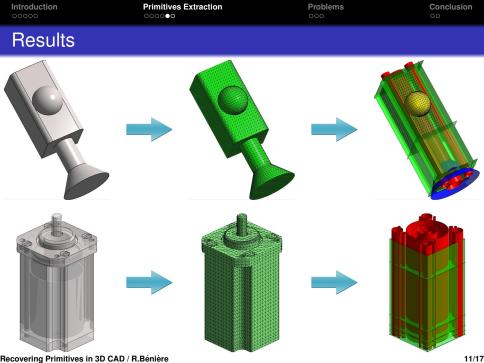
Recovering Primitives in 3D CAD / R.Bénière

Introduction	Primitives Extraction ○○○●○○	Problems	Conclusion
Cones/Cylinde	ers Extraction		


- From Curvatures
- Group adjacent points by the criterion of belonging

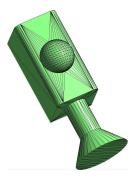
Recovering Primitives in 3D CAD / R.Bénière


Introduction	Primitives Extraction ○○o●○○	Problems	Conclusion
Cones/Cyl	inders Extraction		

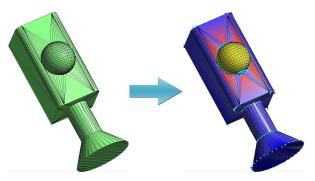

- From Curvatures
- Group adjacent points by the criterion of belonging
- For each point : *pointAxisTheo* = *point* + *normal* * *radius*
 - \Rightarrow Rotation Axis $\Rightarrow \alpha$ angle between Axis and $\textit{Dir}_{=0}$
 - $\alpha = \pi \Rightarrow$ Cylinder : Average curvature \Rightarrow Radius
 - α ≠ π ⇒ Cone : Intersection between each plane created by the two principal directions of one point ⇒ Vertex

Introduction	Primitives Extraction ○○o●○○	Problems	Conclusion
Cones/Cyl	inders Extraction		

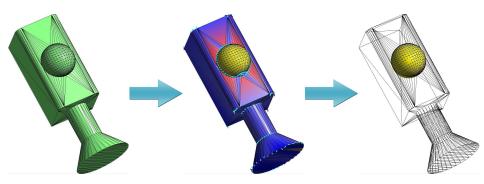
- From Curvatures
- Group adjacent points by the criterion of belonging
- For each point : *pointAxisTheo* = *point* + *normal* * *radius*
 - \Rightarrow Rotation Axis $\Rightarrow \alpha$ angle between Axis and $Dir_{=0}$
 - $\alpha = \pi \Rightarrow$ Cylinder : Average curvature \Rightarrow Radius
 - $\alpha \neq \pi \Rightarrow$ Cone : Intersection between each plane created by the two principal directions of one point \Rightarrow Vertex



Introduction 00000	Primitives Extraction ○○○○○●	Problems	Conclusion
Results			

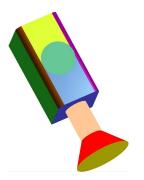

http://shapes.aimatshape.net Recovering Primitives in 3D CAD / R.Bénière

Introduction 00000	Primitives Extraction	Problems ●o○	Conclusion
Sparse Mesh			


Introduction 00000	Primitives Extraction	Problems ●○○	Conclusion
Sparse Mesh			

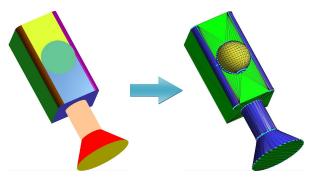
The mesh can not have many point \Rightarrow The curvature computation is not correct

Introduction 00000	Primitives Extraction	Problems ●○○	Conclusion
Sparse Mesh			


- $\stackrel{\Longrightarrow}{\Rightarrow} \mbox{The curvature computation is not correct} \\ \stackrel{\Longrightarrow}{\Rightarrow} \mbox{The primitive extraction is disturbed}$

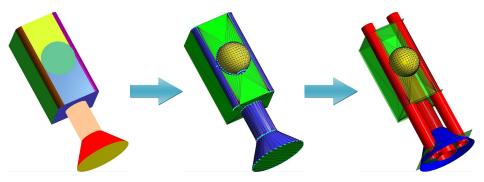
Introduction	Primitives Extraction	Problems	Conclusion
00000		○●○	00
Charge Mach	Compostation		

Sparse Mesh \Rightarrow Segmentation


A solution can be to segment the mesh (by the dihedral angle for example)

Introduction	Primitives Extraction	Problems ○●○	Conclusion
Sparse Mesh -	\Rightarrow Segmentation		

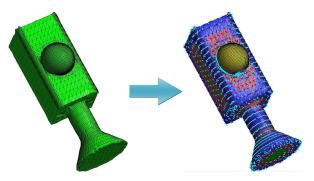
A solution can be to segment the mesh (by the dihedral angle for example)


 \Rightarrow The curvature computation is better

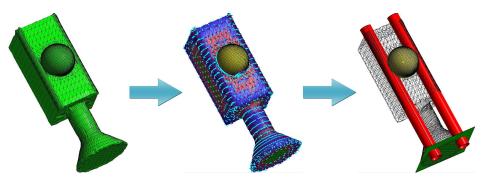
Introduction 00000	Primitives Extraction	Problems ○●○	Conclusion
Sparse Mesh	\Rightarrow Segmentation		

A solution can be to segment the mesh (by the dihedral angle for example)

- \Rightarrow The curvature computation is better
- \Rightarrow The primitive extraction is improved



Introduction 00000	Primitives Extraction	Problems ○○●	Conclusion
Noisy Mesh			

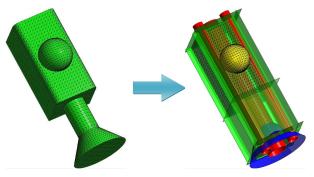

Introduction	Primitives Extraction	Problems ○○●	Conclusion
Noisy Mesh			

The mesh can not have many point \Rightarrow The curvature computation is not correct

Introduction	Primitives Extraction	Problems ○○●	Conclusion 00
Noisy Mesh			

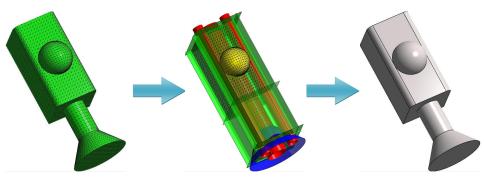
- $\stackrel{\Longrightarrow}{\Rightarrow} \mbox{The curvature computation is not correct} \\ \stackrel{\Longrightarrow}{\Rightarrow} \mbox{The primitive extraction is disturbed}$

Introduction 00000	Primitives Extraction	Problems	Conclusion ●○
Conclusion	and Future Work		


Our method take a Mesh

Recovering Primitives in 3D CAD / R.Bénière

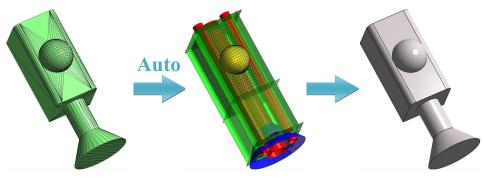
Introduction	Primitives Extraction	Problems 000	Conclusion ●○
Conclusion and	d Future Work		


Our method take a Mesh \Rightarrow extract primitives.

Introduction	Primitives Extraction	Problems	Conclusion ●○
Conclusion	and Future Work		

Our method take a Mesh \implies extract primitives. Future Work

• Cut and Fuse Primitives to reconstruct the continue representation

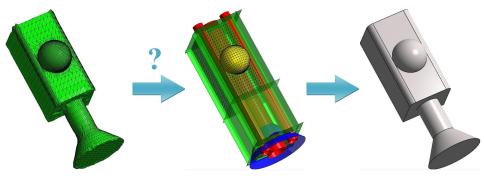


Introduction 00000	Primitives Extraction	Problems	Conclusion ●○
O a maluration			

Conclusion and Future Work

Our method take a Mesh \implies extract primitives. Future Work

- Cut and Fuse Primitives to reconstruct the continue representation
- Add a Segmentation step to the method



Introduction	Primitives Extraction	Problems	Conclusion ●○

Conclusion and Future Work

Our method take a Mesh \implies extract primitives. Future Work

- Cut and Fuse Primitives to reconstruct the continue representation
- Add a Segmentation step to the method
- Deal with noisy mesh

Problems

Thanks for your attention

QUESTIONS?

Site : www.lirmm.fr/~beniere Mail : roseline.beniere@lirmm.fr C4W site : www.c4w.com

Roseline Bénière, G. Subsol, G. Gesquière, F. Le Breton and W. Puech, Recovering Primitives in 3D CAD meshes, SPIE, San Francisco, 2011

Recovering Primitives in 3D CAD / R.Bénière

