

Journée équipe ICAR 13/07/2018

Reconstruction intervalliste en TEP : Applications en neurologie

- Pr. Denis Mariano-Goulart PU-PH CHU Montpellier
- 💠 Dr. Olivier Strauss MC HDR LIRMM Equipe ICAR
- Florentin Kucharczak Doctorant CIFRE Siemens Healthineers

Florentin Kucharczał

La thèse CIFRE

Contexte :

- Partenariat entre le service de médecine nucléaire et Siemens Healthineers.
- Travaux communs entre Pr. Mariano-Goulart et Dr. Strauss sur l'utilisation des méthodes de quantification de l'imprécision pour l'aide au diagnostic de maladies neurodégénératives.

Cadre :

 Thèse CIFRE sur la reconstruction tomographique intervalliste en tomographie d'émission.

Plan de la présentation

- La tomographie d'émission
- Le diagnostic de démences neurodégénératives
- Aide au diagnostic
 Limites des méthodes déjà proposées
 Notre proposition : la reconstruction intervalliste
- Résultats préliminaires pour le diagnostic de démences
- Conclusion

La tomographie d'émission

Siemens mCT20 Flow - PET CT Service de médecine nucléaire CHU Gui de Chauliac

Le diagnostic de démences neurodégénératives

- Objectif : mesurer quantitativement des processus biologiques importants, mais altérés dans le cerveau des patients atteints de démence, par exemple le métabolisme du glucose.
- Utilisation d'un marqueur du glucose, le <u>FluoroDésoxyGlucose (18F)</u>. OH
- Reconstruction de la distribution 3D du radio-traceur dans le cerveau du patient.

HO

Florentin Kucharczak

18 🗖

OH

Le diagnostic de démences neurodégénératives

Diagnostic en médecine nucléaire souvent basé sur la comparaison de régions d'intérêt (ROIs).

On cherche à répondre à la question:
 « Est-ce que ROIs = ROIs ? »

Le diagnostic de démences neurodégénératives

Diagnostic en routine clinique :

Recherche, dans les ROI, de différences de métabolisme et perfusion.

Ces perfusions sont souvent asymétriques.

Détection d'hypo-métabolismes, illustration d'un cas typique de démence temporo-frontale.

- Limites de la comparaison directe de ROIs :
- Variabilité statistique importante

Image post-traitées pour faciliter
 l'évaluation visuelle du médecin

AVANT

Outil proposé par Siemens Healthineers

- Aucune connaissance de la loi statistique suivie par données reconstruites.
 Impossible d'inférer de la variabilité statistique directement.
- Principales familles de méthodes proposées dans la littérature :
 - Méthodes basées propagation de variance (Fessler 1996, Li 2011)
 - Méthodes basées répétition statistique bootstrap (Buvat 2002, Lartizien 2011)

Inconvénients :

- Pas utilisées en routine car trop complexes ou gourmandes en temps de calcul
- Aucune méthodologie proposée pour la comparaison de ROIs utilisant l'information de la variance statistique jusqu'à aujourd'hui

Cahier des charges : *

- Algorithme de reconstruction permettant la quantification de la variabilité statistique.
- Production d'images interprétables par le médecin.
- Temps de reconstruction compatible avec la routine clinique.

Approche classique :

Notre proposition :

INF

Notre algorithme: $\mathbf{\mathbf{A}}$

- Quantification de la variabilité statistique basée sur la modélisation de l'imprécision du modèle.
- L'algorithme classiquement utilisé:
 - Algorithme itératif pour lequel on alterne en deux espaces : projection et image.
 - Choix de modèles de projection et rétro-projection.

Notre proposition : la reconstruction intervalliste

Le passage discret-continu:

- Physiquement -> la distribution de la source f(x) est continue dans le domaine spatial.
- En pratique -> utilisation d'un ensemble fini de fonctions de base (généralement pixels ou voxels en 3D) pour représenter *f(x)* lors de la reconstruction.

Notre proposition : la reconstruction intervalliste

Notre proposition : projection « garantie » :

- Utilisation de la théorie des probabilités imprécises pour modéliser l'imprécision du passage discret-continu.
- Utilisation de l'intégrale de Choquet comme opérateur de projection non-additif.

Calcul de chaque projection $\overline{p_j}$, comme l'ensemble des projections possibles considérant un noyau d'interpolation basé 4 plus proches voisins.

Adaptation de l'algorithme ML-EM en sa version intervalliste NIBEM :

Florentin Kucharczak

Estimated

sinogram $\mathbf{P}([f^k])$

Comparison

Error $\frac{\rho}{\mathbf{P}([f^k])}$

Projection domain

 $\boxtimes [f^k]$

Notre proposition : la reconstruction intervalliste

Des intervalles aux propriétés intéressantes :

Simulations d'acquisitions

du fantôme de Hoffman

Intervalles de confiance :

	NIBEM CL	
Number of counts	3M	9M
Region 1:1	0.940	0.920
Region 1.5:1	0.963	0.975
Region 2:1	1.0	1.0

9M

3M

Interval-based reconstruction for uncertainty quantification in PET F. Kucharczak, K. Loquin, I. Buvat, O. Strauss and D. Mariano-Goulart Physics in Medicine & Biology, Volume 63, Number 3, 2018

2^{ème} étape : Sélection régularisée (RS)

Notre proposition : la reconstruction intervalliste

La sélection régularisée

1^{ère} étape : Reconstruction intervalliste

Regularized selection: A new paradigm for inverse based regularized image reconstruction techniques. F. Kucharczak, C. Mory, F. Comby, O. Strauss and D. Mariano-Goulart ICIP 2017: 1637-1641

Notre proposition : la reconstruction intervalliste

La sélection régularisée : quelques résultats

(a) MAP-EM quadratic NMAE=0.089 NMV_{1:1}=0.350

(d) ML-EM NMAE=0.086 NMV_{1:1}=0.256

(b) MAP-EM TV

NMAE=0.043

NMV1:1=0.164

Bilan

•

•

- Nouvelle méthode de régularisation pour les problèmes inverses.
- Algorithme fiable, modulaire, et sans paramètres.
- Propriétés très intéressantes en reconstruction tomographique.

Confidence interval constraint based total variation regularization for PET quantization. Submitted to IEEE Transactions in Medical Imaging

Diagnostic de démences Résultats préliminaires

Classifier et caractériser DMP DCL MA DFT

Diagnostic de démences Méthodologie proposée

B : recalage

Florentin Kucharczak

Diagnostic de démences Méthodologie proposée

C : segmentation et comparaison

~15 patients Alzheimer ~10 patients sains

Constitution d'un base de patients atteints de démence

• Etude rétrospective jusqu'à diagnostic final du neurologue \rightarrow gold standard

Conclusion

Objectifs futurs:

- Publier les travaux sur la méthodologie d'aide au diagnostic de démences
- Recalage imprécis, comparaison CI NIBEM et bootstrap...
- Validation sur d'autres problématiques comme le DaTSCAN.
- Soutenir, un jour? 😳

Merci de votre attention Des questions?

Florentin Kucharczak