
Constructing brambles

Mathieu Chapelle1, Frédéric Mazoit2, Ioan Todinca1

1LIFO – Université d’Orléans
2LaBRI – Université de Bordeaux I

JGA’09
Montpellier

5–6 novembre 2009

1/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

The problem

Tree-decompositions and brambles revisited

The algorithm

Conclusion and perspectives

2/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

The problem

Tree-decompositions and brambles revisited

The algorithm

Conclusion and perspectives

3/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Tree-like decompositions

A popular technique used when dealing with NP-hard problems is
to decompose the input graph and then use dynamic programming.

e.g.: tree-width, branch-width, rank-width, clique-width, . . .

All works in same flavor:

• decompose recursively the graph, and glue subparts in a kind
of tree;

• the ∗-width is given by this decomposition;

• apply a bottom-up approach, and glue sub-solutions to obtain
a global solution.

Lots of usual NP-hard problems can be solved in polynomial or
linear time when restricted to graphs with bounded ∗-widths.

3/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Tree-like decompositions

A popular technique used when dealing with NP-hard problems is
to decompose the input graph and then use dynamic programming.
e.g.: tree-width, branch-width, rank-width, clique-width, . . .

All works in same flavor:

• decompose recursively the graph, and glue subparts in a kind
of tree;

• the ∗-width is given by this decomposition;

• apply a bottom-up approach, and glue sub-solutions to obtain
a global solution.

Lots of usual NP-hard problems can be solved in polynomial or
linear time when restricted to graphs with bounded ∗-widths.

3/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Tree-like decompositions

A popular technique used when dealing with NP-hard problems is
to decompose the input graph and then use dynamic programming.
e.g.: tree-width, branch-width, rank-width, clique-width, . . .

All works in same flavor:

• decompose recursively the graph, and glue subparts in a kind
of tree;

• the ∗-width is given by this decomposition;

• apply a bottom-up approach, and glue sub-solutions to obtain
a global solution.

Lots of usual NP-hard problems can be solved in polynomial or
linear time when restricted to graphs with bounded ∗-widths.

3/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Tree-like decompositions

A popular technique used when dealing with NP-hard problems is
to decompose the input graph and then use dynamic programming.
e.g.: tree-width, branch-width, rank-width, clique-width, . . .

All works in same flavor:

• decompose recursively the graph, and glue subparts in a kind
of tree;

• the ∗-width is given by this decomposition;

• apply a bottom-up approach, and glue sub-solutions to obtain
a global solution.

Lots of usual NP-hard problems can be solved in polynomial or
linear time when restricted to graphs with bounded ∗-widths.

4/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Tree-width and bramble

How can we argue that the tree-width of a graph is at most k?

It is sufficient to provide a tree-decomposition of width k of the
graph.

On the contrary, it is more tricky to argue that the tree-width of a
graph is at least k + 1.
This is given by a bramble (of order k + 2), a combinatorial object
which will act as a certificate that the tree-width of the graph
can’t be less than k + 1.

4/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Tree-width and bramble

How can we argue that the tree-width of a graph is at most k?
It is sufficient to provide a tree-decomposition of width k of the
graph.

On the contrary, it is more tricky to argue that the tree-width of a
graph is at least k + 1.
This is given by a bramble (of order k + 2), a combinatorial object
which will act as a certificate that the tree-width of the graph
can’t be less than k + 1.

4/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Tree-width and bramble

How can we argue that the tree-width of a graph is at most k?
It is sufficient to provide a tree-decomposition of width k of the
graph.

On the contrary, it is more tricky to argue that the tree-width of a
graph is at least k + 1.

This is given by a bramble (of order k + 2), a combinatorial object
which will act as a certificate that the tree-width of the graph
can’t be less than k + 1.

4/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Tree-width and bramble

How can we argue that the tree-width of a graph is at most k?
It is sufficient to provide a tree-decomposition of width k of the
graph.

On the contrary, it is more tricky to argue that the tree-width of a
graph is at least k + 1.
This is given by a bramble (of order k + 2), a combinatorial object
which will act as a certificate that the tree-width of the graph
can’t be less than k + 1.

5/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Intuition

Cops-and-robber game for tree-width:

• tree-decomposition of width at most k → winning strategy for
k + 1 cops;

• if k + 1 cops is not enough → winning strategy for the
fugitive.

5/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Intuition

Cops-and-robber game for tree-width:

• tree-decomposition of width at most k → winning strategy for
k + 1 cops;

• if k + 1 cops is not enough → winning strategy for the
fugitive.

5/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Intuition

Cops-and-robber game for tree-width:

• tree-decomposition of width at most k → winning strategy for
k + 1 cops;

• if k + 1 cops is not enough → winning strategy for the
fugitive.

5/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Intuition

Cops-and-robber game for tree-width:

• tree-decomposition of width at most k → winning strategy for
k + 1 cops;

• if k + 1 cops is not enough → winning strategy for the
fugitive.

X

S
C

5/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Intuition

Cops-and-robber game for tree-width:

• tree-decomposition of width at most k → winning strategy for
k + 1 cops;

• if k + 1 cops is not enough → winning strategy for the
fugitive.

X

S
C

6/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Duality theorem for tree-width

Theorem ([Seymour, Thomas (92)])

A graph G has tree-width strictly larger than k if and only if G has
a bramble of order k + 2.

This follow the natural intuition of cops-and-robber game: there
can’t be a winning strategy for both players (the k cops and the
fugitive).

He we present the first (non-trivial) exact algorithm to construct
an optimal bramble in time O(nk+4).

6/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Duality theorem for tree-width

Theorem ([Seymour, Thomas (92)])

A graph G has tree-width strictly larger than k if and only if G has
a bramble of order k + 2.

This follow the natural intuition of cops-and-robber game: there
can’t be a winning strategy for both players (the k cops and the
fugitive).

He we present the first (non-trivial) exact algorithm to construct
an optimal bramble in time O(nk+4).

6/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Duality theorem for tree-width

Theorem ([Seymour, Thomas (92)])

A graph G has tree-width strictly larger than k if and only if G has
a bramble of order k + 2.

This follow the natural intuition of cops-and-robber game: there
can’t be a winning strategy for both players (the k cops and the
fugitive).

He we present the first (non-trivial) exact algorithm to construct
an optimal bramble in time O(nk+4).

7/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

The problem

Tree-decompositions and brambles revisited

The algorithm

Conclusion and perspectives

8/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Partitioning trees

c

e f

h i

d g

ba

We start with a node containing every edges of the graph,

8/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Partitioning trees

a b

c

e f

h i

d g

We start with a node containing every edges of the graph, and we
recursively decompose it

8/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Partitioning trees

d e

h

gf

i

a b

c

We start with a node containing every edges of the graph, and we
recursively decompose it

8/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Partitioning trees

a b

c

e f
h i

d g

We start with a node containing every edges of the graph, and we
recursively decompose it until we obtain a partitioning tree of the
graph.

8/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Partitioning trees

2 3

2

4

2

1

3

1

6

3

5

2

4 5 5 6

5

3

Now, let us exhibit the border of each internal node, i.e. the vertices
appearing in at least two leaves of the internal node.

8/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Partitioning trees

2 3

2

4

2 3

1

6

3

5

2

4 5 5 6

5

3

1

Now, let us exhibit the border of each internal node, i.e. the vertices
appearing in at least two leaves of the internal node.

8/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Partitioning trees

2 3

2

4

2 3

1

6

3

5

2

4 5 5 6

5

3

1
1

Now, let us exhibit the border of each internal node, i.e. the vertices
appearing in at least two leaves of the internal node.

8/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Partitioning trees

2 3

2

4

2 3

1

6

3

5

2

4 5 5 6

5

3

1
1 2

Now, let us exhibit the border of each internal node, i.e. the vertices
appearing in at least two leaves of the internal node.

8/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Partitioning trees

2 3

2

4

2 3

1

6

3

5

2

4 5 5 6

5

3

1
1 2 3

Now, let us exhibit the border of each internal node, i.e. the vertices
appearing in at least two leaves of the internal node.

8/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Partitioning trees

2 3

2

4

2 3

1

6

3

5

2

4 5 5 6

5

3

1
1 2 3

2 3 5

2 4 5 3 5 6

Now, let us exhibit the border of each internal node, i.e. the vertices
appearing in at least two leaves of the internal node.

8/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Partitioning trees

1 2 3

2 3 5

2 4 5 3 5 6

We end up with a tree decomposition of the initial graph.
Tree-width ≤ k iff there exists a partitioning tree with internal bags
≤ k + 1.

9/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Pk-partitioning trees

Pk = {µ : |δ(µ)| ≤ k} is the family of partitions of E with borders
size at most k.

Definition (Pk-partitioning tree)

A Pk -partitioning tree (T , τ) of G is a tree whose set of leaves is
the set of edges of G , and ∀v ∈ T , µv ∈ Pk .

Thus a partitioning tree is a recursive decomposition of the edge
set E .

The partitions of Pk correspond to partial partitioning stars (i.e.
trees with only one internal node).

9/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Pk-partitioning trees

Pk = {µ : |δ(µ)| ≤ k} is the family of partitions of E with borders
size at most k.

Definition (Pk-partitioning tree)

A Pk -partitioning tree (T , τ) of G is a tree whose set of leaves is
the set of edges of G , and ∀v ∈ T , µv ∈ Pk .

Thus a partitioning tree is a recursive decomposition of the edge
set E .

The partitions of Pk correspond to partial partitioning stars (i.e.
trees with only one internal node).

9/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Pk-partitioning trees

Pk = {µ : |δ(µ)| ≤ k} is the family of partitions of E with borders
size at most k.

Definition (Pk-partitioning tree)

A Pk -partitioning tree (T , τ) of G is a tree whose set of leaves is
the set of edges of G , and ∀v ∈ T , µv ∈ Pk .

Thus a partitioning tree is a recursive decomposition of the edge
set E .

The partitions of Pk correspond to partial partitioning stars (i.e.
trees with only one internal node).

9/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Pk-partitioning trees

Pk = {µ : |δ(µ)| ≤ k} is the family of partitions of E with borders
size at most k.

Definition (Pk-partitioning tree)

A Pk -partitioning tree (T , τ) of G is a tree whose set of leaves is
the set of edges of G , and ∀v ∈ T , µv ∈ Pk .

Thus a partitioning tree is a recursive decomposition of the edge
set E .

The partitions of Pk correspond to partial partitioning stars (i.e.
trees with only one internal node).

10/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Recall that we deal with graphs of tree-width strictly greater than
k .

We use partial partitioning trees, which are just like partitioning
trees, but whose leaves can contain arbitrary subsets of edges (not
necessarily uniques), and where internal nodes are still of border at
most k .

10/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Recall that we deal with graphs of tree-width strictly greater than
k .

We use partial partitioning trees, which are just like partitioning
trees, but whose leaves can contain arbitrary subsets of edges (not
necessarily uniques), and where internal nodes are still of border at
most k .

10/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Recall that we deal with graphs of tree-width strictly greater than
k .

We use partial partitioning trees, which are just like partitioning
trees, but whose leaves can contain arbitrary subsets of edges (not
necessarily uniques), and where internal nodes are still of border at
most k .

d e

h

a b

c

i

f g k
l

j

10/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Recall that we deal with graphs of tree-width strictly greater than
k .

We use partial partitioning trees, which are just like partitioning
trees, but whose leaves can contain arbitrary subsets of edges (not
necessarily uniques), and where internal nodes are still of border at
most k .

d e

h

a b

c

i

f g k
l

j

10/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Recall that we deal with graphs of tree-width strictly greater than
k .

We use partial partitioning trees, which are just like partitioning
trees, but whose leaves can contain arbitrary subsets of edges (not
necessarily uniques), and where internal nodes are still of border at
most k .

a b

c

h i

f g k
l

j

d

e

10/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Recall that we deal with graphs of tree-width strictly greater than
k .

We use partial partitioning trees, which are just like partitioning
trees, but whose leaves can contain arbitrary subsets of edges (not
necessarily uniques), and where internal nodes are still of border at
most k .

a b

i

f g k
l

j

d

e

3

4 5

1

2 3

1
2

c

h

2

4

2

5
5

3

1 2 3

2 3 5

2 4 5
7

6

11/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

P-bramble

Definition (P-bramble)

A P-bramble B of G = (V ,E) is a family of subsets of E
containing a non-trivial part (i.e. not a single edge) of every
partition (E1, . . . ,Ep) ∈ P, and such that they are pairwise
intersecting.∗

Note that computing the order of a given bramble is NP-hard (it
is the minimum cardinality of a hitting set).

∗In the usual definition of a bramble, the elements are subsets of V and need to be

pairwise touching.

11/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

P-bramble

Definition (P-bramble)

A P-bramble B of G = (V ,E) is a family of subsets of E
containing a non-trivial part (i.e. not a single edge) of every
partition (E1, . . . ,Ep) ∈ P, and such that they are pairwise
intersecting.∗

Note that computing the order of a given bramble is NP-hard (it
is the minimum cardinality of a hitting set).

∗In the usual definition of a bramble, the elements are subsets of V and need to be

pairwise touching.

12/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

More on the duality theorem

Suppose that tree-width is greater than k .

Let B be a set containing a (non-trivial) part of every partition in
P↑, upward-closed, and minimal.

Theorem ([Lyaudet, Mazoit, Thomassé (09)])

B is a P↑-bramble.

Our algorithm uses this result to construct a P↑-bramble.

12/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

More on the duality theorem

Suppose that tree-width is greater than k .

Let B be a set containing a (non-trivial) part of every partition in
P↑, upward-closed, and minimal.

Theorem ([Lyaudet, Mazoit, Thomassé (09)])

B is a P↑-bramble.

Our algorithm uses this result to construct a P↑-bramble.

12/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

More on the duality theorem

Suppose that tree-width is greater than k .

Let B be a set containing a (non-trivial) part of every partition in
P↑, upward-closed, and minimal.

Theorem ([Lyaudet, Mazoit, Thomassé (09)])

B is a P↑-bramble.

Our algorithm uses this result to construct a P↑-bramble.

12/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

More on the duality theorem

Suppose that tree-width is greater than k .

Let B be a set containing a (non-trivial) part of every partition in
P↑, upward-closed, and minimal.

Theorem ([Lyaudet, Mazoit, Thomassé (09)])

B is a P↑-bramble.

Our algorithm uses this result to construct a P↑-bramble.

13/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

The problem

Tree-decompositions and brambles revisited

The algorithm

Conclusion and perspectives

14/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

First algorithm

Bramble(Pk)

B ← Flaps(P↑k)
foreach X ∈ B taken by increasing size do

if there is no µ ∈ P↑k with Flaps(µ) ∩ B = {X} and
X strictly contains no Y ∈ B
then B ← B \ {X}

return B

Problem

The size of P↑k is exponential in |Pk |.

14/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

First algorithm

Bramble(Pk)

B ← Flaps(P↑k)
foreach X ∈ B taken by increasing size do

if there is no µ ∈ P↑k with Flaps(µ) ∩ B = {X} and
X strictly contains no Y ∈ B
then B ← B \ {X}

return B

Problem

The size of P↑k is exponential in |Pk |.

14/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

First algorithm

Bramble(Pk)
B ← Flaps(Pk)
foreach X ∈ B taken by increasing size do

if there is no µ ∈ Pk with Flaps(µ) ∩ B = {X} and
X strictly contains no Y ∈ B
then B ← B \ {X}

return B

Problem

The size of P↑k is exponential in |Pk |.

15/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Anticipate forced decisions

Mark the forbidden flaps and the forced flaps. A flap is forced if it
is the unique non-trivial leaf of some partial partioning tree.

e f
h i

d g

a b

c

15/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Anticipate forced decisions

Mark the forbidden flaps and the forced flaps. A flap is forced if it
is the unique non-trivial leaf of some partial partioning tree.

a b

c

e
h

d

f
i

g

15/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Anticipate forced decisions

Mark the forbidden flaps and the forced flaps. A flap is forced if it
is the unique non-trivial leaf of some partial partioning tree.

a b

c

e
h

d

f
i

g

15/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Anticipate forced decisions

Mark the forbidden flaps and the forced flaps. A flap is forced if it
is the unique non-trivial leaf of some partial partioning tree.

a b

c

e
h

d

f
i

g

15/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Anticipate forced decisions

Mark the forbidden flaps and the forced flaps. A flap is forced if it
is the unique non-trivial leaf of some partial partioning tree.

a b

c

e
h

d

f
i

g

16/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Algorithm with marking process

Bramble(Pk)
B ← Flaps(Pk); UpdateMarks
foreach X ∈ B taken by increasing size do

if X is not marked as forced and
X strictly contains no Y ∈ B
then B ← B \ {X}; UpdateMarks

return B

UpdateMarks
while there exists µ ∈ Pk with Flaps(µ) ∩ B = {X} do

Mark X as forced;

17/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

d e

h

i

f g k
l

j

a b

c

17/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

d e

h

i

f g k
l

j

b

c

a

17/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

d e

h

i

f g k
l

j

b

c

a

17/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

d e

h

i

f g k
l

j

a b

c

17/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

d e

h

i

f g k
l

j

a b

c

17/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

i

f g k
l

j

a b

c

d e

h

17/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

d e

h

i

f g k
l

j

a b

c

17/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

d e

h

a b

c

i

f g k
l

j

18/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Algorithm with marking process

Bramble(Pk)
B ← Flaps(Pk); UpdateMarks
foreach X ∈ B taken by increasing size do

if X is not marked as forced and
X strictly contains no Y ∈ B
then B ← B \ {X}; UpdateMarks

return B

UpdateMarks
while there exists µ ∈ Pk with Flaps(µ) ∩ B = {X} do

Mark X as forced;

Theorem

The time complexity of Bramble is polynomial in |Pk |.

(using data structure as in [Arnborg, Corneil, Proskurowski (87)])

18/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Algorithm with marking process

Bramble(Pk)
B ← Flaps(Pk); UpdateMarks
foreach X ∈ B taken by increasing size do

if X is not marked as forced and
X strictly contains no Y ∈ B
then B ← B \ {X}; UpdateMarks

return B

UpdateMarks
while there exists µ ∈ Pk with Flaps(µ) ∩ B = {X} do

Mark X as forced;

Theorem

The time complexity of Bramble is O(|Pk |n4).

(using data structure as in [Arnborg, Corneil, Proskurowski (87)])

18/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Algorithm with marking process

Bramble(Pk)
B ← Flaps(Pk); UpdateMarks
foreach X ∈ B taken by increasing size do

if X is not marked as forced and
X strictly contains no Y ∈ B
then B ← B \ {X}; UpdateMarks

return B

UpdateMarks
while there exists µ ∈ Pk with Flaps(µ) ∩ B = {X} do

Mark X as forced;

Theorem

The time complexity of Bramble is O(nk+4).

(using data structure as in [Arnborg, Corneil, Proskurowski (87)])

19/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

The problem

Tree-decompositions and brambles revisited

The algorithm

Conclusion and perspectives

20/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Theorem

There is an algorithm computing in time O(nk+4), either a
tree-decomposition of width at most k, or a bramble of order k + 2.

• There always exists a bramble of size f (k) (by kernelization),
but f (k) can be exponential ([Grohe, Marx (09)]).

• Computing the order of a bramble is NP-hard (hitting set).

Perspectives:

• Better bramble (in size) or better time complexity?

• Can we extend this approach to other tree-like
decompositions?

• Approximate brambles (see e.g. [Kreutzer, Tazari
(SODA’10)])?

20/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Theorem

There is an algorithm computing in time O(nk+4), either a
tree-decomposition of width at most k, or a bramble of order k + 2.

• There always exists a bramble of size f (k) (by kernelization),
but f (k) can be exponential ([Grohe, Marx (09)]).

• Computing the order of a bramble is NP-hard (hitting set).

Perspectives:

• Better bramble (in size) or better time complexity?

• Can we extend this approach to other tree-like
decompositions?

• Approximate brambles (see e.g. [Kreutzer, Tazari
(SODA’10)])?

20/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Theorem

There is an algorithm computing in time O(nk+4), either a
tree-decomposition of width at most k, or a bramble of order k + 2.

• There always exists a bramble of size f (k) (by kernelization),
but f (k) can be exponential ([Grohe, Marx (09)]).

• Computing the order of a bramble is NP-hard (hitting set).

Perspectives:

• Better bramble (in size) or better time complexity?

• Can we extend this approach to other tree-like
decompositions?

• Approximate brambles (see e.g. [Kreutzer, Tazari
(SODA’10)])?

20/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Theorem

There is an algorithm computing in time O(nk+4), either a
tree-decomposition of width at most k, or a bramble of order k + 2.

• There always exists a bramble of size f (k) (by kernelization),
but f (k) can be exponential ([Grohe, Marx (09)]).

• Computing the order of a bramble is NP-hard (hitting set).

Perspectives:

• Better bramble (in size) or better time complexity?

• Can we extend this approach to other tree-like
decompositions?

• Approximate brambles (see e.g. [Kreutzer, Tazari
(SODA’10)])?

20/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Theorem

There is an algorithm computing in time O(nk+4), either a
tree-decomposition of width at most k, or a bramble of order k + 2.

• There always exists a bramble of size f (k) (by kernelization),
but f (k) can be exponential ([Grohe, Marx (09)]).

• Computing the order of a bramble is NP-hard (hitting set).

Perspectives:

• Better bramble (in size) or better time complexity?

• Can we extend this approach to other tree-like
decompositions?

• Approximate brambles (see e.g. [Kreutzer, Tazari
(SODA’10)])?

20/20

The problem Tree-decompositions and brambles revisited The algorithm Conclusion and perspectives

Theorem

There is an algorithm computing in time O(nk+4), either a
tree-decomposition of width at most k, or a bramble of order k + 2.

• There always exists a bramble of size f (k) (by kernelization),
but f (k) can be exponential ([Grohe, Marx (09)]).

• Computing the order of a bramble is NP-hard (hitting set).

Perspectives:

• Better bramble (in size) or better time complexity?

• Can we extend this approach to other tree-like
decompositions?

• Approximate brambles (see e.g. [Kreutzer, Tazari
(SODA’10)])?

	The problem
	Obstruction to a tree-decomposition of small width
	A duality theorem for tree-width

	Tree-decompositions and brambles revisited
	Partitioning trees and gluing
	Obstruction to a tree-decomposition
	Duality treewidth -- bramble

	The algorithm
	First algorithm
	Algorithm with marking process

	Conclusion and perspectives
	Conclusion

