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Definitions and some known results Definitions

Proper coloring

Definition: A proper k-coloring of the vertices of a graph G is a
mapping π : V(G) → {1, · · · , k} such that ∀uv ∈ E(G), π(u) 6= π(v).
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Definitions and some known results Definitions

Acyclic coloring

A proper vertex coloring of a graph G is acyclic if there is no
bicolored cycle in G.

A proper vertex coloring of a graph is acyclic if the graph induced
by the union of every two color classes is a forest.

The acyclic chromatic number, denoted by χa(G), of a graph G,
is the smallest integer k such that G has an acyclic k-coloring.

The acyclic coloring of graphs was introduced by Grünbaum in 1973.
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Definitions and some known results An Example

An example of Petersen graph

a 10Question: ( ) ?Pχ =
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Definitions and some known results Known results

Conjecture on acyclic coloring

Conjecture (Grünbaum, IJM, 1973)
Every planar graph is acyclically 5-colorable.

Let P denote the family of planar graphs.

Mitchem, 1974, χa(P) ≤ 8.

Albertson and Berman, 1977, χa(P) ≤ 7.

Kostochka, 1976, χa(P) ≤ 6.

Borodin, 1979, χa(P) ≤ 5.
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Definitions and some known results Examples

Counterexamples.pdf

Grunbaum's example Kostochka and Mel'nikov's example
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Definitions and some known results Definitions

Acyclic L-coloring

L is a list assignment of a graph G if it assigns a list L(v) of
possible colors to each vertex v ∈ V.
Denoted by L = {L(v) : v ∈ V}.

A graph G is acyclically L-list colorable if for a given list
assignment L, there is an acyclic coloring π of the vertices such
that π(v) ∈ L(v).

If G is acyclically L-list colorable for any list assignment L with
|L(v)| ≥ k for all v ∈ V, then G is acyclically k-choosable.

The acyclic list chromatic number of G, denoted by χl
a(G), is

the smallest integer k such that G is acyclically k-choosable.

Min Chen and André Raspaud (LaBRI) Acyclic k-choosability on planar graphs November 6, 2009 13 / 52



Definitions and some known results Definitions

Acyclic L-coloring

L is a list assignment of a graph G if it assigns a list L(v) of
possible colors to each vertex v ∈ V.
Denoted by L = {L(v) : v ∈ V}.

A graph G is acyclically L-list colorable if for a given list
assignment L, there is an acyclic coloring π of the vertices such
that π(v) ∈ L(v).

If G is acyclically L-list colorable for any list assignment L with
|L(v)| ≥ k for all v ∈ V, then G is acyclically k-choosable.

The acyclic list chromatic number of G, denoted by χl
a(G), is

the smallest integer k such that G is acyclically k-choosable.

Min Chen and André Raspaud (LaBRI) Acyclic k-choosability on planar graphs November 6, 2009 13 / 52



Definitions and some known results Definitions

Acyclic L-coloring

L is a list assignment of a graph G if it assigns a list L(v) of
possible colors to each vertex v ∈ V.
Denoted by L = {L(v) : v ∈ V}.

A graph G is acyclically L-list colorable if for a given list
assignment L, there is an acyclic coloring π of the vertices such
that π(v) ∈ L(v).

If G is acyclically L-list colorable for any list assignment L with
|L(v)| ≥ k for all v ∈ V, then G is acyclically k-choosable.

The acyclic list chromatic number of G, denoted by χl
a(G), is

the smallest integer k such that G is acyclically k-choosable.

Min Chen and André Raspaud (LaBRI) Acyclic k-choosability on planar graphs November 6, 2009 13 / 52



Definitions and some known results Definitions

Acyclic L-coloring

L is a list assignment of a graph G if it assigns a list L(v) of
possible colors to each vertex v ∈ V.
Denoted by L = {L(v) : v ∈ V}.

A graph G is acyclically L-list colorable if for a given list
assignment L, there is an acyclic coloring π of the vertices such
that π(v) ∈ L(v).

If G is acyclically L-list colorable for any list assignment L with
|L(v)| ≥ k for all v ∈ V, then G is acyclically k-choosable.

The acyclic list chromatic number of G, denoted by χl
a(G), is

the smallest integer k such that G is acyclically k-choosable.

Min Chen and André Raspaud (LaBRI) Acyclic k-choosability on planar graphs November 6, 2009 13 / 52



Definitions and some known results Known results

Conjecture on acyclic L-coloring

♠ Conjecture∗: Every planar graph is acyclically 5-choosable.

⇒ Borodin’s acyclic 5-color theorem (1979) and Thomassen’s 5-choosability theorem (1994)

∗Borodin, Flaass, Kostochka, Raspaud, Sopena, JGT, 2002.

Theorem
Every planar graph is acyclically 7-choosable.

Theorem (Wang and C., JGT, 2009)
Every planar graph without 4-cycles is acyclically 6-choosable.
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Definitions and some known results Known results

Known results - Acyclic 5-choosability

Theorem (Montassier, Raspaud, Wang, JGT, 2007)

Every planar graph either without {4, 5}-cycles or without {4, 6}-cycles
is acyclically 5-choosable.

Theorem (C., Wang, DM, 2008)
Every planar graph without 4-cycles and without two 3-cycles at
distance less than 3 is acyclically 5-choosable.

Theorem (Zhang, Xu, DM, 2009)
Every planar graph having neither 4-cycles nor chordal 6-cycles is
acyclically 5-choosable.
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Definitions and some known results Known results

Known results - Acyclic 4-choosability

Theorem
Planar graphs without {4, i, j}-cycles with 5 ≤ i < j ≤ 8 are acyclically
4-choosable.

1.pdf
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Montassier, Raspaud, Wang, 2006 
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C ., Raspaud, Wang, 2009
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Definitions and some known results Other known results

Definition: The girth g(G) of a graph G is the length of a shortest
cycle in G.

Theorem (Borodin, Kostochka, Woodall, JLM, 1999)
Let G be a planar graph.
(1) If g(G) ≥ 7 then χa(G) ≤ 3.
(2) If g(G) ≥ 5 then χa(G) ≤ 4.

These two results are, respectively, improved by the following:

Theorem (Borodin, C., Ivanova, Raspaud, 2009)

If G is a planar graph with g(G) ≥ 7, then χl
a(G) ≤ 3.

Theorem (Montassier, 2006)

If G is a planar graph with g(G) ≥ 5, then χl
a(G) ≤ 4.
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Definitions and some known results Other known results

Theorem (Hocquard, Montassier, IPL, 2009)
Every planar graph without cycles of lengths 4 to 12 is acyclically
3-choosable.
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Definitions and some known results Definitions

Maximum average degree

Definition (Maximum average degree)

Mad(G) = max{2|E(H)|
|V(H)| : H ⊆ G}.

Observation

If G is a planar graph with girth g, then Mad(G) < 2·g
g−2 .
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Definitions and some known results Related results

Theorem (Montassier, Ochem, Raspaud, JGT, 2005)

(1) Every graph G with Mad(G) < 8
3 is acyclically 3-choosable;

(2) Every graph G with Mad(G) < 19
6 is acyclically 4-choosable;

(3) Every graph G with Mad(G) < 24
7 is acyclically 5-choosable.

By using relationship Mad(G) < 2·g
g−2 , then

Corollary

(1) Every planar graph G with g(G) ≥ 8 is acyclically 3-choosable;
(2) Every planar graph G with g(G) ≥ 6 is acyclically 4-choosable;
(3) Every planar graph G with g(G) ≥ 5 is acyclically 5-choosable.
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Our main theorem

♣ Main Theorem:
Planar graphs without {4, 5, 8}-cycles are acyclically 4-choosable.

Choose a counterexample G with least number of vertices.

Show some reducible configurations of G.
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Our main theorem Proof - step 2 - reducible configurations

Lemma (Montassier, Raspaud, Wang, 2006)

G does not contain the following twelve configurations.

1

2

2 2

2 3

3
3
3

 A 2-vertex is incident to a 3-face.

 1-vertex.

A 2-vertex is adjacent to a vertex of degree at most 3.

A 3-vertex is adjacent to at least two 3-vertices.
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Our main theorem Proof - step 2 - reducible configurations

4 2

3

3
4

5

2
2

2
2

5 2
2

2

A 4-vertex is adjacent to at least two 2-vertices.

A 3-face incident to two 3-vertices and one 4-vertex.

A 5-vertex is adjacent to at least four 2-vertices.

A 5-vertex is incident to one 3-face, adjacent to three 2-vertices.

2
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Our main theorem Proof - step 2 - reducible configurations

Min Chen and André Raspaud (LaBRI) Acyclic k-choosability on planar graphs November 6, 2009 24 / 52



Our main theorem Proof - step 2 - reducible configurations

2 2

2 3 A 2-vertex is adjacent to a vertex of degree at most 3.
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Our main theorem Proof - step 2 - reducible configurations

2 2

2 3 A 2-vertex is adjacent to a vertex of degree at most 3.

2 3−

x y

1y

2y

1x
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Our main theorem Proof - step 2 - reducible configurations
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2 3 A 2-vertex is adjacent to a vertex of degree at most 3.

2 3−

x y
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' { }G G x= −
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Our main theorem Proof - step 2 - reducible configurations

2 2

2 3 A 2-vertex is adjacent to a vertex of degree at most 3.

2 3−

x y

1y

2y

1x

' { }G G x= −

G' admits an acyclic 4-list-coloring c.
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Our main theorem Proof - step 2 - reducible configurations

Lemma
G does not contain B1, B2, B3 as a subgraph.

B1 B2 B3
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Our main theorem Proof - step 2 - reducible configurations

Lemma
G does not contain C1, C2 as a subgraph.

3

3

3

3

3

3

55

C1 C2
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Our main theorem

♣ Main Theorem:
Planar graphs without {4, 5, 8}-cycles are acyclically 4-choosable.

Choose a counterexample G with least number of vertices.

Show some reducible configurations of G.

Give some useful definitions.
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Our main theorem Proof - step 3 - useful definitions

Light

v
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Our main theorem Proof - step 3 - useful definitions
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Our main theorem Proof - step 3 - useful definitions

pendant light.pdf
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3≠

u
4+

v

3≠

3≠

u
3

4+

4+

Bad f
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3≠
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u
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4+

4+
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Our main theorem

♣ Main Theorem:
Planar graphs without {4, 5, 8}-cycles are acyclically 4-choosable.

Choose a counterexample G with least number of vertices.

Show some reducible configurations of G.

Give some useful definitions.

Use discharging argument to obtain a contradiction.
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Our main theorem Proof - step 4 - discharging argument

♠ We define a weight function:

∀v ∈ V(G), ω(v) = 2d(v)− 6;
∀f ∈ F(G), ω(f ) = d(f )− 6.

By Euler’s formula and handshake lemma, we derive an identity (4).

|V(G)| − |E(G)|+ |F(G)| = 2 (1)

− 6|V(G)|+ 6|E(G)| − 6|F(G)| = −12 (2)

− 6|V(G)|+ 2
∑

v∈V(G)

d(v) +
∑

f∈F(G)

d(f )− 6|F(G)| = −12 (3)

∑
v∈V(G)

(2d(v)− 6) +
∑

f∈F(G)

(d(f )− 6) = −12. (4)

Therefore ∑
x∈V(G)∪F(G)

ω(x) = −12.
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Our main theorem Proof - step 4 - discharging argument

♠ Discharging rules:

1
2

4+ 1

1

1
24+

1R0: Every strong pendant light 3-vertex sends  to its incident 3-face.
2

+ 1R1: Every 4 -vertex gives 1 to its adjacent 2-vertex and  to each pendant light 3-vertex.
2

0R 1R 1R
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Our main theorem Proof - step 4 - discharging argument

1
1

1

4+

4+ 1
3

5+

4+

1 5.

3

4

3

5+

3

1 5.

1 2 3 4

1

R2: Denote v be a 4-vertex. Let f , f , f , and f  be the faces of G incident to v in a 
cyclic order such that d(f )=3.

3 1 3R2a: If d(f )=3, then (v f )=1 and (v f )=1.τ τ→ →

+ + +
3 1 1R2b1: If d(f ) 3, then (v f )=1 when f  is a (4,4 ,4 )-face or a good (3,4, 5 )-face.τ≠ →

2 1R b

+
3 1 1R2b2: If d(f 3), then (v f )=1.5 when f  is a (3,4,4)-face or a bad (3,4,5 )-face.τ≠ →

2 2R b

v

v v

v v
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Our main theorem Proof - step 4 - discharging argument

+ +R3: Every 5 -vertex sends 2 to each incident (3,3,5 )-face and 1.5 to each other incident 3-face.

5+ 5+ 5+

3

3

3

4+

4+

4+

2 1.5 1.5

+R4: Every 9 -face sends 0.5 to each of its sinks.

9 face+ −

0.5
3+

3 4

4+
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Our main theorem Proof - step 4 - two observations

G does not contain 4, 5 and 8-faces.

There is no i-face adjacent to two 3-faces with i = 3, 6, 7.
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Our main theorem Proof - step 4 - discharging arguments

♠ Applying discharging rules R0 to R4, we obtain that:

ω∗(x) ≥ 0 for all x ∈ V(G)
⋃

F(G).

♠ We derive the following obvious contradiction:

0 ≤
∑

x∈V(G)∪F(G) ω∗(x) =
∑

x∈V(G)∪F(G) ω(x) = −12.
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Our main theorem

♣ Main Theorem:
Planar graphs without {4, 5, 8}-cycles are acyclically 4-choosable.

Choose a counterexample G with least number of vertices.

Show some reducible configurations of G.

Give some useful definitions.

Use discharging argument to obtain a contradiction.

Hence, no counterexample can exist.

Min Chen and André Raspaud (LaBRI) Acyclic k-choosability on planar graphs November 6, 2009 50 / 52



Conclusion and problems

♠ Conjecture∗: Every planar graph is acyclically 5-choosable.

∗Borodin, Flaass, Kostochka, Raspaud, Sopena, JGT, 2002.

♠ Weaker Conjecture:
Every planar graph without 4-cycles is acyclically 5-choosable.

Let G be a planar graph having neither 4-cycles nor 3-cycles at distance
less than d.

d = 0 corresponds to the Weaker Conjecture.

d = ∞ implies the case of g(G) ≥ 5, which is shown to be acyclically
5-choosable by Montassier, Ochem, Raspaud in 2006.

d = 3 is proved by C., Wang in 2008.

♠ Question: How about other integer d?
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Conclusion and problems

Thanks for your attention !
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