Acyclic *k*-choosability on planar graphs

Title

Min Chen and André Raspaud

LaBRI, Université Bordeaux 1, France

JGA, November 5-6, 2009

Min Chen and André Raspaud (LaBRI) Acyclic k-choosability on planar graphs

The Sec. 74

< 6 b

• Our main theorem.

• Conclusions and problems.

Min Chen and André Raspaud (LaBRI)

Acyclic k-choosability on planar graphs

November 6, 2009 2 / 52

Proper coloring

Definition: A *proper k-coloring* of the vertices of a graph *G* is a mapping $\pi : V(G) \rightarrow \{1, \dots, k\}$ such that $\forall uv \in E(G), \pi(u) \neq \pi(v)$.

Min Chen and André Raspaud (LaBRI)

Acyclic k-choosability on planar graphs

< 6 k

Proper coloring

Definition: A *proper k-coloring* of the vertices of a graph *G* is a mapping $\pi : V(G) \rightarrow \{1, \dots, k\}$ such that $\forall uv \in E(G), \pi(u) \neq \pi(v)$.

Min Chen and André Raspaud (LaBRI)

Acyclic k-choosability on planar graphs

< 6 b

 A proper vertex coloring of a graph G is *acyclic* if there is *no bicolored cycle* in G.

• A proper vertex coloring of a graph is *acyclic* if the graph induced by the union of every two color classes is *a forest*.

The *acyclic chromatic number*, denoted by χ_a(G), of a graph G, is *the smallest integer k* such that G has an acyclic k-coloring.

The acyclic coloring of graphs was introduced by Grünbaum in 1973.

A proper vertex coloring of a graph G is *acyclic* if there is *no bicolored cycle* in G.

• A proper vertex coloring of a graph is *acyclic* if the graph induced by the union of every two color classes is *a forest*.

The *acyclic chromatic number*, denoted by χ_a(G), of a graph G, is *the smallest integer k* such that G has an acyclic k-coloring.

The acyclic coloring of graphs was introduced by Grünbaum in 1973.

A proper vertex coloring of a graph G is *acyclic* if there is *no bicolored cycle* in G.

• A proper vertex coloring of a graph is *acyclic* if the graph induced by the union of every two color classes is *a forest*.

The *acyclic chromatic number*, denoted by χ_a(G), of a graph G, is *the smallest integer k* such that G has an acyclic k-coloring.

The acyclic coloring of graphs was introduced by Grünbaum in 1973.

A proper vertex coloring of a graph G is *acyclic* if there is *no bicolored cycle* in G.

• A proper vertex coloring of a graph is *acyclic* if the graph induced by the union of every two color classes is *a forest*.

The *acyclic chromatic number*, denoted by χ_a(G), of a graph G, is *the smallest integer k* such that G has an acyclic k-coloring.

The acyclic coloring of graphs was introduced by Grünbaum in 1973.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

An Example

An example of Petersen graph

Question: $\chi_a(P_{10}) = ?$

Min Chen and André Raspaud (LaBRI)

Acyclic k-choosability on planar graphs

November 6, 2009 6 / 52

An Example

An example of Petersen graph

Question: $\chi_a(P_{10}) = ?$

Min Chen and André Raspaud (LaBRI)

Acyclic k-choosability on planar graphs

November 6, 2009 7 / 52

An Example

An example of Petersen graph

Question: $\chi_a(P_{10}) = ?$

Min Chen and André Raspaud (LaBRI)

Acyclic k-choosability on planar graphs

November 6, 2009 8 / 52

An Example

An example of Petersen graph

Question: $\chi_a(P_{10}) = ?$

Min Chen and André Raspaud (LaBRI)

Acyclic k-choosability on planar graphs

November 6, 2009 9 / 52

An Example

An example of Petersen graph

Question: $\chi_a(P_{10}) = 4$

Min Chen and André Raspaud (LaBRI)

Acyclic k-choosability on planar graphs

November 6, 2009 10 / 52

Conjecture (Grünbaum, IJM, 1973) Every planar graph is acyclically 5-colorable.

Let \mathcal{P} denote the family of planar graphs.

- Mitchem, 1974, $\chi_a(\mathcal{P}) \leq 8$.
- Albertson and Berman, 1977, $\chi_a(\mathcal{P}) \leq 7$.
- Kostochka, 1976, $\chi_a(\mathcal{P}) \leq 6$.
- Borodin, 1979, $\chi_a(\mathcal{P}) \leq 5$.

A B A A B A

Conjecture (Grünbaum, IJM, 1973) Every planar graph is acyclically 5-colorable.

Let \mathcal{P} denote the family of planar graphs.

- Mitchem, 1974, $\chi_a(\mathcal{P}) \leq 8$.
- Albertson and Berman, 1977, $\chi_a(\mathcal{P}) \leq 7$.
- Kostochka, 1976, $\chi_a(\mathcal{P}) \leq 6$.
- Borodin, 1979, $\chi_a(\mathcal{P}) \leq 5$.

A THE A THE

Conjecture (Grünbaum, IJM, 1973) Every planar graph is acyclically 5-colorable.

Let \mathcal{P} denote the family of planar graphs.

- Mitchem, 1974, $\chi_a(\mathcal{P}) \leq 8$.
- Albertson and Berman, 1977, $\chi_a(\mathcal{P}) \leq 7$.
- Kostochka, 1976, $\chi_a(\mathcal{P}) \leq 6$.
- Borodin, 1979, $\chi_a(\mathcal{P}) \leq 5$.

イロト イポト イラト イラト

Conjecture (Grünbaum, IJM, 1973) Every planar graph is acyclically 5-colorable.

Let \mathcal{P} denote the family of planar graphs.

- Mitchem, 1974, $\chi_a(\mathcal{P}) \leq 8$.
- Albertson and Berman, 1977, $\chi_a(\mathcal{P}) \leq 7$.
- Kostochka, 1976, $\chi_a(\mathcal{P}) \leq 6$.
- Borodin, 1979, $\chi_a(\mathcal{P}) \leq 5$.

イロト イポト イラト イラト

Conjecture (Grünbaum, IJM, 1973) Every planar graph is acyclically 5-colorable.

Let \mathcal{P} denote the family of planar graphs.

- Mitchem, 1974, $\chi_a(\mathcal{P}) \leq 8$.
- Albertson and Berman, 1977, $\chi_a(\mathcal{P}) \leq 7$.
- Kostochka, 1976, $\chi_a(\mathcal{P}) \leq 6$.
- Borodin, 1979, $\chi_a(\mathcal{P}) \leq 5$.

イロト イポト イラト イラト

Conjecture (Grünbaum, IJM, 1973) Every planar graph is acyclically 5-colorable.

Let \mathcal{P} denote the family of planar graphs.

- Mitchem, 1974, $\chi_a(\mathcal{P}) \leq 8$.
- Albertson and Berman, 1977, $\chi_a(\mathcal{P}) \leq 7$.
- Kostochka, 1976, $\chi_a(\mathcal{P}) \leq 6$.
- Borodin, 1979, $\chi_a(\mathcal{P}) \leq 5$.

A D K A B K A B K A B K B B

Grünbaum's example

Kostochka and Mel'nikov's example

Acyclic k-choosability on planar graphs

æ

イロト イヨト イヨト イヨト

Definitions

Acyclic *L*-coloring

- L is a *list assignment* of a graph G if it assigns a *list* L(v) of possible colors to each vertex v ∈ V.
 Denoted by L = {L(v) : v ∈ V}.
- A graph *G* is *acyclically L*-*list colorable* if for a given list assignment *L*, there is an acyclic coloring π of the vertices such that π(v) ∈ L(v).
- If *G* is acyclically *L*-list colorable for any list assignment *L* with $|L(v)| \ge k$ for all $v \in V$, then *G* is acyclically *k*-choosable.
- The *acyclic list chromatic number* of *G*, denoted by χ^l_a(*G*), is *the smallest integer k* such that *G* is acyclically *k*-choosable.

(日)

- L is a *list assignment* of a graph G if it assigns a *list* L(v) of possible colors to each vertex v ∈ V.
 Denoted by L = {L(v) : v ∈ V}.
- A graph *G* is *acyclically L*-*list colorable* if for a given list assignment *L*, there is an acyclic coloring π of the vertices such that $\pi(v) \in L(v)$.
- If *G* is acyclically *L*-list colorable for any list assignment *L* with $|L(v)| \ge k$ for all $v \in V$, then *G* is acyclically *k*-choosable.
- The *acyclic list chromatic number* of *G*, denoted by χ^l_a(*G*), is *the smallest integer k* such that *G* is acyclically *k*-choosable.

< 日 > < 同 > < 回 > < 回 > < □ > <

Definitions

Acyclic *L*-coloring

- L is a *list assignment* of a graph G if it assigns a *list* L(v) of possible colors to each vertex v ∈ V.
 Denoted by L = {L(v) : v ∈ V}.
- A graph *G* is *acyclically L*-*list colorable* if for a given list assignment *L*, there is an acyclic coloring π of the vertices such that $\pi(v) \in L(v)$.
- If *G* is acyclically *L*-list colorable for any list assignment *L* with $|L(v)| \ge k$ for all $v \in V$, then *G* is acyclically *k*-choosable.
- The *acyclic list chromatic number* of G, denoted by χ^l_a(G), is *the smallest integer k* such that G is acyclically k-choosable.

3

< 日 > < 同 > < 回 > < 回 > < □ > <

Definitions

Acyclic *L*-coloring

- L is a *list assignment* of a graph G if it assigns a *list* L(v) of possible colors to each vertex v ∈ V.
 Denoted by L = {L(v) : v ∈ V}.
- A graph *G* is *acyclically L*-*list colorable* if for a given list assignment *L*, there is an acyclic coloring π of the vertices such that $\pi(v) \in L(v)$.
- If *G* is acyclically *L*-list colorable for any list assignment *L* with $|L(v)| \ge k$ for all $v \in V$, then *G* is acyclically *k*-choosable.
- The acyclic list chromatic number of G, denoted by χ^l_a(G), is the smallest integer k such that G is acyclically k-choosable.

3

Known results

Conjecture on acyclic L-coloring

♠ Conjecture*: Every planar graph is acyclically 5-choosable.

- \Rightarrow Borodin's acyclic 5-color theorem (1979) and Thomassen's 5-choosability theorem (1994)
- *Borodin, Flaass, Kostochka, Raspaud, Sopena, JGT, 2002.

Theorem Every planar graph is acyclically 7-choosable.

Theorem (Wang and *C*., JGT, 2009) *Every planar graph without* **4-cycles** is acyclically 6-choosable.

Min Chen and André Raspaud (LaBRI)

Acyclic k-choosability on planar graphs

November 6, 2009 14 / 52

< 日 > < 同 > < 回 > < 回 > < □ > <

♠ Conjecture*: Every planar graph is acyclically 5-choosable.

 \Rightarrow Borodin's acyclic 5-color theorem (1979) and Thomassen's 5-choosability theorem (1994)

*Borodin, Flaass, Kostochka, Raspaud, Sopena, JGT, 2002.

Theorem Every planar graph is acyclically 7-choosable.

Theorem (Wang and *C*., JGT, 2009)

Every planar graph without 4-cycles is acyclically 6-choosable.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

♠ Conjecture*: Every planar graph is acyclically 5-choosable.

 \Rightarrow Borodin's acyclic 5-color theorem (1979) and Thomassen's 5-choosability theorem (1994)

*Borodin, Flaass, Kostochka, Raspaud, Sopena, JGT, 2002.

Theorem

Every planar graph is acyclically 7-choosable.

Theorem (Wang and C., JGT, 2009)

Every planar graph without 4-cycles is acyclically 6-choosable.

< ロ > < 同 > < 回 > < 回 >

Known results - Acyclic 5-choosability

Theorem (Montassier, Raspaud, Wang, JGT, 2007)

Every planar graph either without $\{4, 5\}$ -cycles or without $\{4, 6\}$ -cycles is acyclically 5-choosable.

Theorem (*C*., Wang, DM, 2008)

Every planar graph without **4-cycles** and without **two 3-cycles at distance less than 3** is acyclically 5-choosable.

Theorem (Zhang, Xu, DM, 2009)

Every planar graph having neither **4-cycles** nor **chordal 6-cycles** is acyclically 5-choosable.

Known results - Acyclic 5-choosability

Theorem (Montassier, Raspaud, Wang, JGT, 2007)

Every planar graph either without $\{4,5\}$ -cycles or without $\{4,6\}$ -cycles is acyclically 5-choosable.

Theorem (C., Wang, DM, 2008)

Every planar graph without **4-cycles** and without **two 3-cycles at distance less than 3** is acyclically 5-choosable.

Theorem (Zhang, Xu, DM, 2009)

Every planar graph having neither **4-cycles** nor **chordal 6-cycles** is acyclically 5-choosable.

Min Chen and André Raspaud (LaBRI)

Acyclic k-choosability on planar graphs

November 6, 2009 15 / 52

Known results - Acyclic 5-choosability

Theorem (Montassier, Raspaud, Wang, JGT, 2007)

Every planar graph either without $\{4,5\}$ -cycles or without $\{4,6\}$ -cycles is acyclically 5-choosable.

Theorem (C., Wang, DM, 2008)

Every planar graph without **4-cycles** and without **two 3-cycles at distance less than 3** is acyclically 5-choosable.

Theorem (Zhang, Xu, DM, 2009)

Every planar graph having neither **4-cycles** nor **chordal 6-cycles** is acyclically 5-choosable.

Min Chen and André Raspaud (LaBRI)

Acyclic k-choosability on planar graphs

November 6, 2009 15 / 52

Known results

Known results - Acyclic 4-choosability

Theorem

Planar graphs without $\{4, i, j\}$ -cycles with $5 \le i < j \le 8$ are acyclically 4-choosable.

4	5	6	7	8	Reference
×	×	×			Montassier, Raspaud, Wang, 2006
×	×		×		
×	×			×	C., Raspaud, 2009
×		×	×		C ., Raspaud, Wang, 2009
×		×		×	
×			×	×	C., Raspaud, Roussel, Zhu, 2009

12 N A 12

< 6 b

Definition: The *girth* g(G) of a graph *G* is the length of *a shortest cycle in G*.

Theorem (Borodin, Kostochka, Woodall, JLM, 1999)

Let *G* be a planar graph. (1) If $g(G) \ge 7$ then $\chi_a(G) \le 3$. (2) If $g(G) \ge 5$ then $\chi_a(G) \le 4$.

These two results are, respectively, improved by the following:

Theorem (Borodin, *C*., Ivanova, Raspaud, 2009) If *G* is a planar graph with $g(G) \ge 7$, then $\chi_a^l(G) \le 3$.

I heorem (Montassier, 2006) If *G* is a planar graph with $g(G) \ge 5$, then $\chi_a^l(G) \le 4$.

Min Chen and André Raspaud (LaBRI)

Acyclic k-choosability on planar graphs

November 6, 2009 17 / 52

Definition: The *girth* g(G) of a graph *G* is the length of *a shortest cycle in G*.

Theorem (Borodin, Kostochka, Woodall, JLM, 1999)

Let *G* be a planar graph. (1) If $g(G) \ge 7$ then $\chi_a(G) \le 3$. (2) If $g(G) \ge 5$ then $\chi_a(G) \le 4$.

These two results are, respectively, improved by the following:

Theorem (Borodin, C., Ivanova, Raspaud, 2009)

If G is a planar graph with $g(G) \ge 7$, then $\chi_a^l(G) \le 3$.

Theorem (Montassier, 2006)

If G is a planar graph with $g(G) \ge 5$, then $\chi_a^l(G) \le 4$.

э

Theorem (Hocquard, Montassier, IPL, 2009)

Every planar graph without cycles of **lengths 4 to 12** *is acyclically 3-choosable.*

Definitions

Maximum average degree

Definition (Maximum average degree) $Mad(G) = max\{\frac{2|E(H)|}{|V(H)|} : H \subseteq G\}.$

Observation

If G is a planar graph with girth g, then $Mad(G) < \frac{2 \cdot g}{g-2}$.

Min Chen and André Raspaud (LaBRI) Acyclic

Acyclic k-choosability on planar graphs

November 6, 2009 19 / 52

Theorem (Montassier, Ochem, Raspaud, JGT, 2005)

(1) Every graph *G* with $Mad(G) < \frac{8}{3}$ is acyclically 3-choosable; (2) Every graph *G* with $Mad(G) < \frac{19}{6}$ is acyclically 4-choosable; (3) Every graph *G* with $Mad(G) < \frac{24}{7}$ is acyclically 5-choosable.

By using relationship $Mad(G) < \frac{2 \cdot g}{g-2}$, then

Corollary

(1) Every planar graph *G* with $g(G) \ge 8$ is acyclically 3-choosable; (2) Every planar graph *G* with $g(G) \ge 6$ is acyclically 4-choosable; (3) Every planar graph *G* with $g(G) \ge 5$ is acyclically 5-choosable.

< 日 > < 同 > < 回 > < 回 > < □ > <
Theorem (Montassier, Ochem, Raspaud, JGT, 2005)

(1) Every graph *G* with $Mad(G) < \frac{8}{3}$ is acyclically 3-choosable; (2) Every graph *G* with $Mad(G) < \frac{19}{64}$ is acyclically 4-choosable; (3) Every graph *G* with $Mad(G) < \frac{24}{7}$ is acyclically 5-choosable.

By using relationship $Mad(G) < \frac{2 \cdot g}{g-2}$, then

Corollary

(1) Every planar graph *G* with $g(G) \ge 8$ is acyclically 3-choosable; (2) Every planar graph *G* with $g(G) \ge 6$ is acyclically 4-choosable; (3) Every planar graph *G* with $g(G) \ge 5$ is acyclically 5-choosable.

& Main Theorem:

Planar graphs without $\{4, 5, 8\}$ -cycles are acyclically 4-choosable.

• Choose a counterexample G with least number of vertices.

• Show some reducible configurations of G.

Min Chen and André Raspaud (LaBRI) Acyclic

Acyclic k-choosability on planar graphs

November 6, 2009 21 / 52

4 3 5 4 3 5

& Main Theorem:

Planar graphs without $\{4, 5, 8\}$ -cycles are acyclically 4-choosable.

- Choose a counterexample G with least number of vertices.
- Show some reducible configurations of *G*.

A THE A THE

& Main Theorem:

Planar graphs without $\{4, 5, 8\}$ -cycles are acyclically 4-choosable.

- Choose a counterexample G with least number of vertices.
- Show some reducible configurations of *G*.

Min Chen and André Raspaud (LaBRI) Acyclic k-choosability on planar graphs

4 E N 4 E N

Lemma (Montassier, Raspaud, Wang, 2006)

G does not contain the following twelve configurations.

Min Chen and André Raspaud (LaBRI)

Acyclic k-choosability on planar graphs

November 6, 2009 22 / 52

A 4-vertex is adjacent to at least two 2-vertices.

A 3-face incident to two 3-vertices and one 4-vertex.

A 5-vertex is adjacent to at least four 2-vertices.

A 5-vertex is incident to one 3-face, adjacent to three 2-vertices.

Min Chen and André Raspaud (LaBRI)

Acyclic k-choosability on planar graphs

November 6, 2009 24 / 52

æ

э

Min Chen and André Raspaud (LaBRI)

Acyclic *k*-choosability on planar graphs

November 6, 2009 26 / 52

æ

Acyclic k-choosability on planar graphs

November 6, 2009 27 / 52

2

æ

Min Chen and André Raspaud (LaBRI)

Acyclic *k*-choosability on planar graphs

November 6, 2009 29 / 52

Min Chen and André Raspaud (LaBRI)

Acyclic *k*-choosability on planar graphs

November 6, 2009 30 / 52

Min Chen and André Raspaud (LaBRI)

Acyclic *k*-choosability on planar graphs

November 6, 2009 31 / 52

Min Chen and André Raspaud (LaBRI)

Acyclic *k*-choosability on planar graphs

November 6, 2009 32 / 52

Min Chen and André Raspaud (LaBRI)

Acyclic k-choosability on planar graphs

November 6, 2009 33 / 52

Lemma

G does not contain B1, B2, B3 as a subgraph.

(4) (5) (4) (5)

Lemma

G does not contain *C*1, *C*2 as a subgraph.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Main Theorem:

Planar graphs without $\{4, 5, 8\}$ -cycles are acyclically 4-choosable.

- Choose a counterexample G with least number of vertices.
- Show some reducible configurations of *G*.
- Give some useful definitions.

E N 4 E N

Acyclic k-choosability on planar graphs

2

November 6, 2009 38 / 52

2

Min Chen and André Raspaud (LaBRI)

Acyclic k-choosability on planar graphs

November 6, 2009 39 / 52

2

Min Chen and André Raspaud (LaBRI)

Acyclic k-choosability on planar graphs

November 6, 2009 40 / 52

æ

Acyclic k-choosability on planar graphs

æ

Acyclic k-choosability on planar graphs

November 6, 2009 42 / 52

æ

Main Theorem:

Planar graphs without $\{4, 5, 8\}$ -cycles are acyclically 4-choosable.

- Choose a counterexample G with least number of vertices.
- Show some reducible configurations of *G*.
- Give some useful definitions.
- Use discharging argument to obtain a contradiction.

We define a weight function:

$$\forall v \in V(G), \, \omega(v) = 2d(v) - 6; \\ \forall f \in F(G), \, \omega(f) = d(f) - 6.$$

By Euler's formula and handshake lemma, we derive an identity (4).

$$|V(G)| - |E(G)| + |F(G)| = 2$$
(1)

$$-6|V(G)| + 6|E(G)| - 6|F(G)| = -12$$
(2)

$$-6|V(G)| + 2\sum_{v \in V(G)} d(v) + \sum_{f \in F(G)} d(f) - 6|F(G)| = -12$$
(3)

$$\sum_{v \in V(G)} (2d(v) - 6) + \sum_{f \in F(G)} (d(f) - 6) = -12.$$
(4)

Therefore

$$\sum_{x \in V(G) \cup F(G)} \omega(x) = -12.$$

Min Chen and André Raspaud (LaBRI)

Acyclic k-choosability on planar graphs

November 6, 2009 44 / 52

We define a weight function:

$$\forall v \in V(G), \, \omega(v) = 2d(v) - 6; \\ \forall f \in F(G), \, \omega(f) = d(f) - 6.$$

By Euler's formula and handshake lemma, we derive an identity (4).

$$|V(G)| - |E(G)| + |F(G)| = 2$$
(1)

$$-6|V(G)| + 6|E(G)| - 6|F(G)| = -12$$
(2)

$$-6|V(G)| + 2\sum_{v \in V(G)} d(v) + \sum_{f \in F(G)} d(f) - 6|F(G)| = -12$$
(3)

$$\sum_{v \in V(G)} (2d(v) - 6) + \sum_{f \in F(G)} (d(f) - 6) = -12.$$
 (4)

Therefore

$$\sum_{x \in V(G) \cup F(G)} \omega(x) = -12.$$

Min Chen and André Raspaud (LaBRI)

Acyclic k-choosability on planar graphs

November 6, 2009 44 / 52

We define a weight function:

$$\forall v \in V(G), \, \omega(v) = 2d(v) - 6; \\ \forall f \in F(G), \, \omega(f) = d(f) - 6.$$

By Euler's formula and handshake lemma, we derive an identity (4).

$$|V(G)| - |E(G)| + |F(G)| = 2$$
(1)

$$-6|V(G)| + 6|E(G)| - 6|F(G)| = -12$$
(2)

$$-6|V(G)| + 2\sum_{v \in V(G)} d(v) + \sum_{f \in F(G)} d(f) - 6|F(G)| = -12$$
(3)

$$\sum_{v \in V(G)} (2d(v) - 6) + \sum_{f \in F(G)} (d(f) - 6) = -12.$$
 (4)

Therefore

$$\sum_{x \in V(G) \cup F(G)} \omega(x) = -12$$

Acyclic k-choosability on planar graphs

Discharging rules:

R0: Every strong pendant light 3-vertex sends $\frac{1}{2}$ to its incident 3-face.

R1: Every 4⁺-vertex gives 1 to its adjacent 2-vertex and $\frac{1}{2}$ to each pendant light 3-vertex.

Min Chen and André Raspaud (LaBRI) Acyclic k-choosability on planar graphs

November 6, 2009 45 / 52

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

R2: Denote v be a 4-vertex. Let f_1 , f_2 , f_3 , and f_4 be the faces of G incident to v in a cyclic order such that $d(f_1)=3$.

R2a: If $d(f_3)=3$, then $\tau(v \rightarrow f_1)=1$ and $\tau(v \rightarrow f_3)=1$.

R2b1: If $d(f_3) \neq 3$, then $\tau(v \rightarrow f_1)=1$ when f_1 is a $(4,4^+,4^+)$ -face or a good $(3,4,5^+)$ -face.

R2b2: If d($f_3 \neq 3$), then $\tau(v \rightarrow f_1)=1.5$ when f_1 is a (3,4,4)-face or a bad (3,4,5⁺)-face.

R3: Every 5^+ -vertex sends 2 to each incident $(3,3,5^+)$ -face and 1.5 to each other incident 3-face.

R4: Every 9⁺-face sends 0.5 to each of its sinks.

Min Chen and André Raspaud (LaBRI)

Acyclic k-choosability on planar graphs

November 6, 2009 47 / 52

• *G* does not contain 4, 5 and 8-faces.

• There is no *i*-face adjacent to two 3-faces with i = 3, 6, 7.

Min Chen and André Raspaud (LaBRI)

Acyclic k-choosability on planar graphs

November 6, 2009 48 / 52

• *G* does not contain 4, 5 and 8-faces.

• There is no *i*-face adjacent to two 3-faces with i = 3, 6, 7.

Min Chen and André Raspaud (LaBRI) Acyo

Acyclic k-choosability on planar graphs

November 6, 2009 48 / 52

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Applying discharging rules R0 to R4, we obtain that:

 $\omega^*(x) \ge 0$ for all $x \in V(G) \bigcup F(G)$.

We derive the following obvious contradiction:

$$0 \le \sum_{x \in V(G) \cup F(G)} \omega^*(x) = \sum_{x \in V(G) \cup F(G)} \omega(x) = -12.$$

Min Chen and André Raspaud (LaBRI) Acyclic k-choosability on planar graphs

4 D K 4 B K 4 B K 4 B K

Applying discharging rules R0 to R4, we obtain that:

$$\omega^*(x) \ge 0$$
 for all $x \in V(G) \bigcup F(G)$.

We derive the following obvious contradiction:

$$0 \leq \sum_{x \in V(G) \cup F(G)} \omega^*(x) = \sum_{x \in V(G) \cup F(G)} \omega(x) = -12.$$
Main Theorem:

Planar graphs without $\{4, 5, 8\}$ -cycles are acyclically 4-choosable.

- Choose a counterexample G with least number of vertices.
- Show some reducible configurations of G.
- Give some useful definitions.
- Use discharging argument to obtain a contradiction.
- Hence, no counterexample can exist.

Conjecture*: Every planar graph is acyclically 5-choosable.

*Borodin, Flaass, Kostochka, Raspaud, Sopena, JGT, 2002.

Weaker Conjecture:

Every planar graph without 4-cycles is acyclically 5-choosable.

Let G be a planar graph having neither 4-cycles nor 3-cycles at distance less than d.

- d = 0 corresponds to the Weaker Conjecture.
- *d* = ∞ implies the case of *g*(*G*) ≥ 5, which is shown to be acyclically 5-choosable by Montassier, Ochem, Raspaud in 2006.
- d = 3 is proved by C., Wang in 2008.

Question: How about other integer d?

Thanks for your attention !

Min Chen and André Raspaud (LaBRI)

Acyclic k-choosability on planar graphs

November 6, 2009 52 / 52

3 × 4 3