

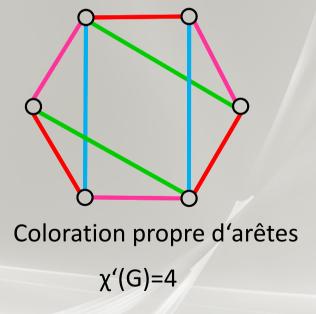
K.Drira, H. Seba et H.Kheddouci

Présenté par: Kaouther Drira Équipe G2AP – Lab. LIESP

6 Novembre 2009

La coloration d'arêtes

- G = (V,E)
- f: E \rightarrow C, telle que pour tout e=(x,y),e'=(y,z) \in E:
 - $-f(e) \neq f(e')$
- Théorème de Vizing :
 - Les arêtes de G sont colorables avec Δ ou Δ+1 couleurs
- Problème NP-complet



 f: E → C, telle que pour toutes e=(x,y),e'=(x',y')∈ E et dist(e,e') ≤ ℓ

$$- f(e) \neq f(e')$$

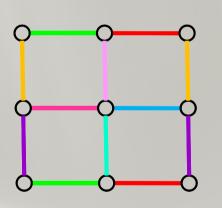
- La coloration 0-distance est la coloration propre d'arêtes classique.
- Le nombre minimum de couleurs est appelé indice ℓ -chromatique du graphe, noté par χ'_ℓ

Travaux existants

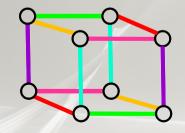
- La coloration & distance d'arêtes est un problème NP-difficile en général [Ito et al. 2007]
 - → Le problème de la coloration & distance ne peut pas être efficacement résoluble pour les graphes généraux
- Ito et al. (2007) présentent un algorithme polynomial des partial k-trees et un algorithme polynomial 2approximatif des graphes planaires.
- Soit ℓ ≥ 0 et G un graphe régulier [Kang et al. 2009]

$$\chi'_{\ell} > \Delta^{\ell}/(2(\ell-1)^{\ell-1})$$

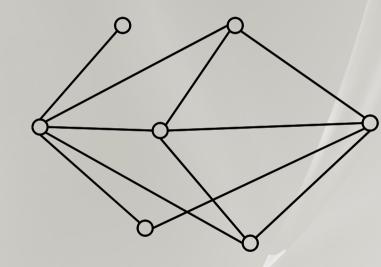
- Chaine
- Grille
- Hypercube
- Arbre k-aire complet
- Arbre quelconque
- Graphe puissance



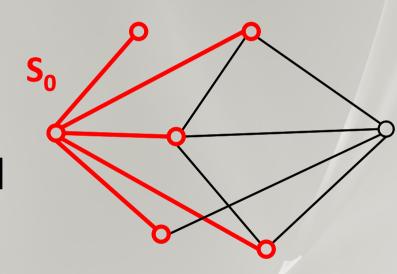




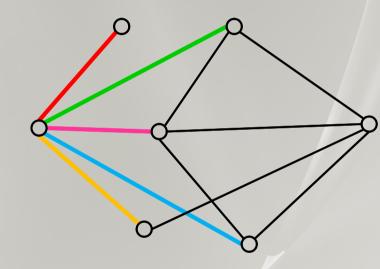
- Soit G=(V,E) et ℓ≥0, S_ℓ est un sous-graphe de G tel que pour toutes e et e' de E la distance dist(e,e') ≤ ℓ
- La borne inf. est égale à |E(S_ε)|
- Comment construire S_ℓ pour chaque classe de graphe?



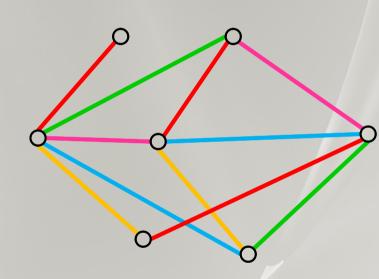
- Soit G=(V,E) et ℓ≥0, S_ℓ est un sous-graphe de G tel que pour toutes e et e' de E la distance dist(e,e') ≤ ℓ
- La borne inf. est égale à |E(S_ε)|
- Comment construire S_ℓ pour chaque classe de graphe?



- Soit G=(V,E) et ℓ≥0, S_ℓ est un sous-graphe de G tel que pour toutes e et e' de E la distance dist(e,e') ≤ ℓ
- La borne inf. est égale à |E(S_ℓ)|
- Comment construire S_ℓ pour chaque classe de graphe?



- Soit G=(V,E) et ℓ≥0, S_ℓ est un sous-graphe de G tel que pour toutes e et e' de E la distance dist(e,e') ≤ ℓ
- La borne inf. est égale à |E(S_ε)|
- Comment construire S_ℓ pour chaque classe de graphe?
- Borne sup.
 - Utiliser le même nombre de couleurs pour colorer G



La coloration &-distance d'une chaine

Théorème. Soit $\ell \ge 0$ et P_n une chaine. L'indice ℓ -chromatique de P_n est donné par:

$$\chi'_{\ell}(P_n) = \begin{cases} \ell+2 & \text{Si } n \ge \ell+3 \\ n-1 & \text{Si } n \le \ell+3 \end{cases}$$
 (a)

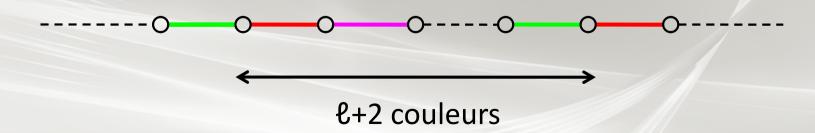
Preuve.

Résultat(b). Si n ≤ ℓ +3, alors pour toutes e, e' \in E dist(e, e') ≤ ℓ . D'où c(e) \neq c(e')

La coloration &-distance d'une chaine

Résultat(a) n ≥ ℓ+3

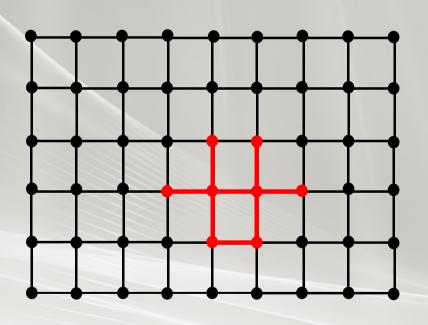
- Borne inf.
 - e, e' ∈ E telle que dist(e, e')= ℓ+1
 - £+2 arêtes dont la distance entre eux est au plus égale à £



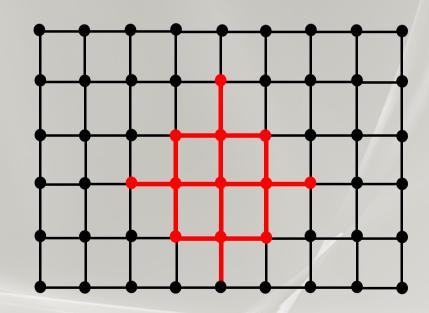
Théorème. Soit $\ell \geq 0$, n,m $\geq \ell+3$ et $M_{n,m}$ une grille à 2 dimensions. L'indice ℓ -chromatique est donné par:

$$\chi'_{\ell}(M_{n,m}) = (\ell+2)^2 - (\ell \mod 2)$$

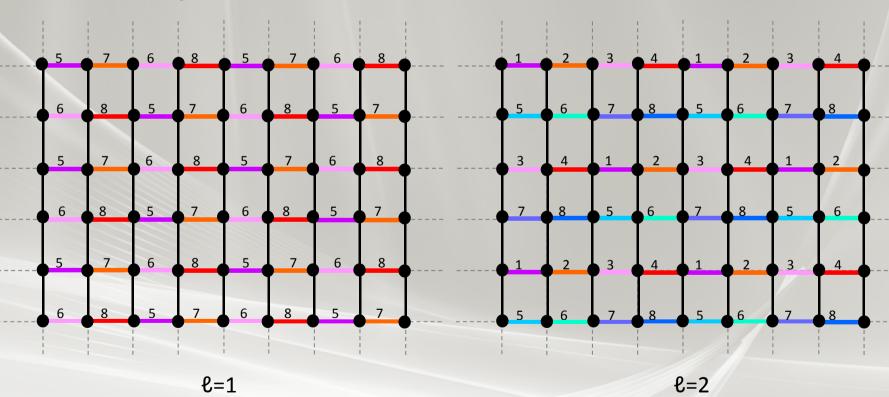
Borne inf.

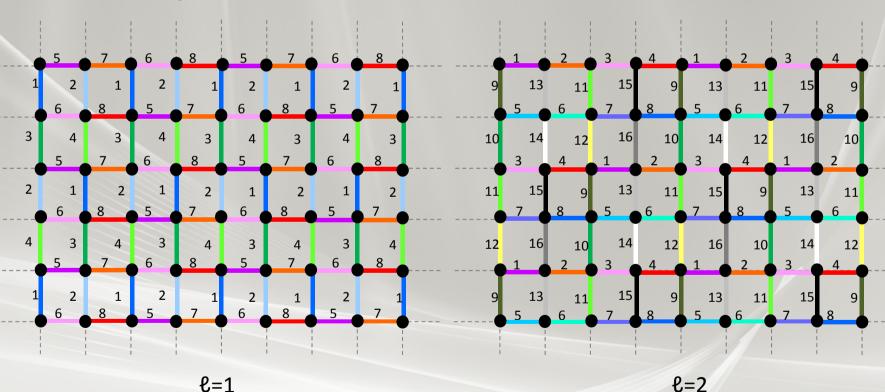


€=1



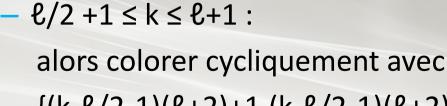
€=2



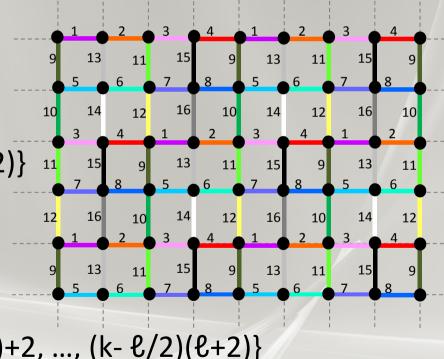


Borne sup. (ℓ est pair)

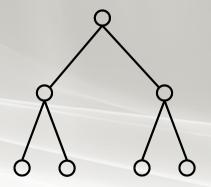
- Si $0 \le k \le \ell/2$: alors colorer cycliquement avec $\{k(\ell+2)+1, k(\ell+2)+2,..., (k+1)(\ell+2)\}$



 $\{(k-\ell/2-1)(\ell+2)+1,(k-\ell/2-1)(\ell+2)+2,...,(k-\ell/2)(\ell+2)\}$



- Un arbre k-aire est un arbre enraciné dont chaque sommet a au plus k fils.
- Un arbre k-aire est complet si, pour une hauteur donnée, il a un nombre maximal de nœuds.

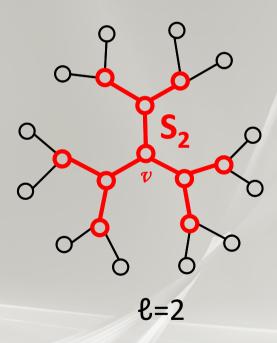


Arbre 2-aire complet

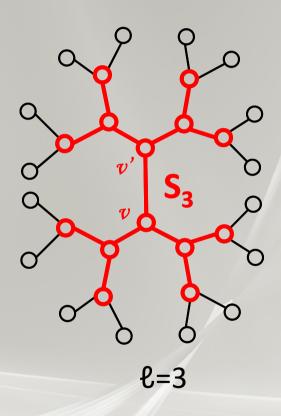
Théorème. Soit ℓ ≥ 0 et T un arbre k-aire complet. L'indice ℓ-chromatique de T est donné par:

$$\chi'_{\ell}(T) = \begin{cases} (1-k^{(\ell+3)/2})((1+k)/(1-k)) & \text{Si } \ell \text{ est pair} \\ (1+k-2k^{(\ell+3)/2})/(1-k) & \text{Si } \ell \text{ est impair} \end{cases}$$
 (b)

- Borne inf.
 - Soit un sous-graphe S_ℓ
 - $S_{\ell} = T[Q_{\nu}UQ_{\nu}]$ et $Q_{\nu} = \{u \in V : dist(u, v) \leq \lfloor \ell/2 \rfloor + 1\}$
 - v = v' si ℓ est pair et $(v, v') \in E$ si ℓ est impair
 - v et v' sont les centres de S_e
 - La distance entre les arêtes est au plus égale à

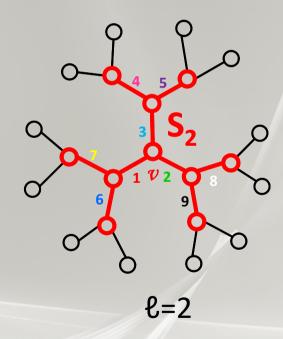


- Borne inf.
 - Soit un sous-graphe S_e
 - $S_{\ell} = T[Q_{\nu}UQ_{\nu}]$ et $Q_{\nu} = \{u \in V : dist(u, v) \leq \lfloor \ell/2 \rfloor + 1\}$
 - v = v' si ℓ est pair et $(v, v') \in E$ si ℓ est impair
 - v et v' sont les centres de S_e
 - La distance entre les arêtes est au plus égale à

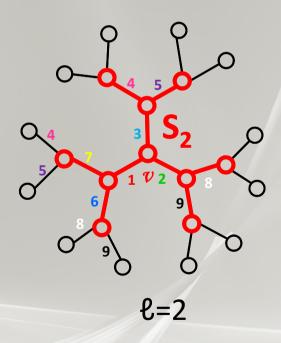


Borne sup.

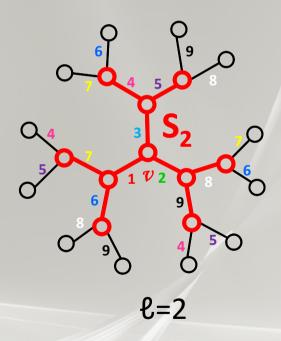
 Affecter des couleurs différentes à E(S_e)



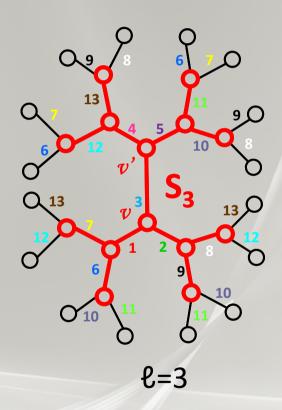
- Affecter des couleurs différentes à E(S_e)
- Colorer les autres arêtes en utilisant le même nombre de couleurs



- Affecter des couleurs différentes à E(S_e)
- Colorer les autres arêtes en utilisant le même nombre de couleurs



- Affecter des couleurs différentes à E(S_e)
- Colorer les autres arêtes en utilisant le même nombre de couleurs

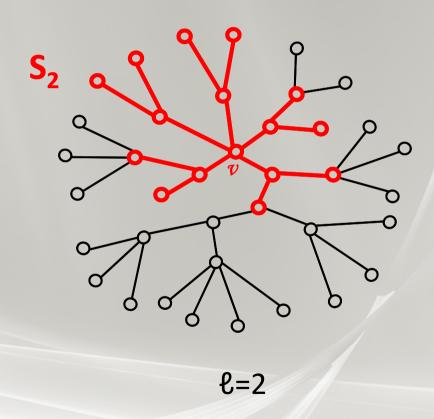


Théorème Soit $\ell \geq 0$ et T = (V, E) un arbre quelconque de diamètre diam(T), alors

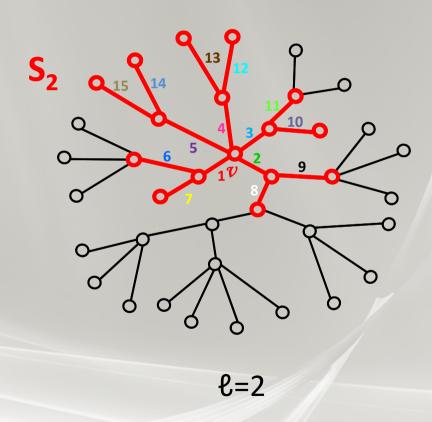
$$\chi'_{\ell}(T) = |E(T)|$$
 Si $diam(T) \le \ell + 2$

$$\chi'_{\ell}(T) = |E(S_{\ell})|$$
 Si diam(T) > $\ell+2$

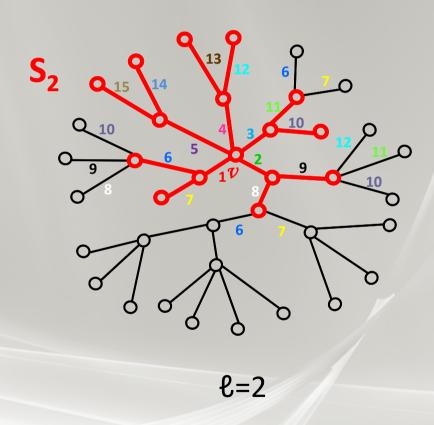
- Rechercher le sousarbre maximum S_e
- Affecter des couleurs différentes à S_e
- Etendre l'algorithme de coloration des arbres k-aires complet



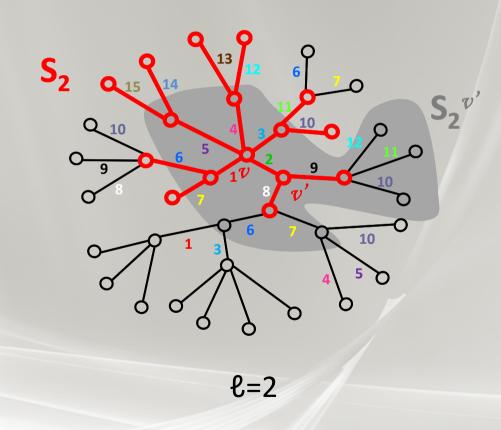
- Rechercher le sousarbre maximum S_e
- Affecter des couleurs différentes à S_e
- Etendre l'algorithme de coloration des arbres k-aires complet



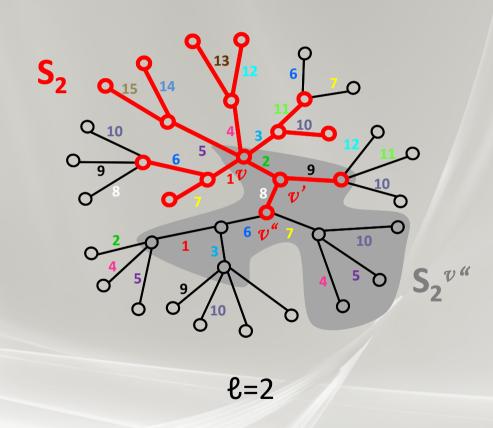
- Rechercher le sousarbre maximum S_e
- Affecter des couleurs différentes à S_e
- Etendre l'algorithme de coloration des arbres k-aires complet



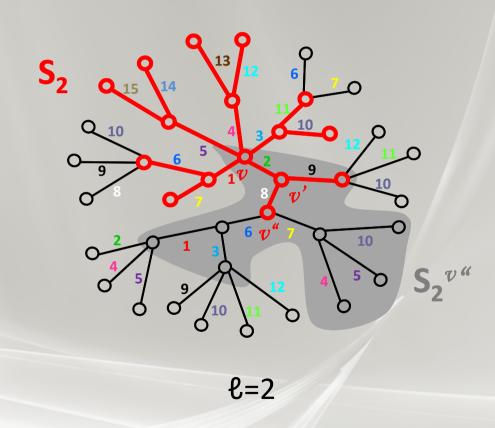
- Rechercher le sousarbre maximum S_e
- Affecter des couleurs différentes à S_e
- Etendre l'algorithme de coloration des arbres k-aires complet



- Rechercher le sousarbre maximum S_e
- Affecter des couleurs différentes à S_e
- Etendre l'algorithme de coloration des arbres k-aires complet



- Rechercher le sousarbre maximum S_e
- Affecter des couleurs différentes à S_e
- Etendre l'algorithme de coloration des arbres k-aires complet



Analyse de la complexité

Théorème. Soit ℓ ≥ 0 et T un arbre quelconque. Δ est le degré maximum de T . D'où, la complexité de notre algorithme est égale à:

$$O(n(\Delta-1)^{\lfloor \ell/2 \rfloor+1})$$

→Algorithme semi-polynomial

H_d un hypercube à d dimensions

•
$$H_d = K_2 \times H_{d-1}$$

 H_d est formé de H¹_{d-1} et H²_{d-1} ainsi que des arêtes qui les relient

H¹_{d-1} et H²_{d-1} sont isomorphes

Théorème. Soit ℓ ≥ 0 et H_d un hypercube à d dimensions. L'indice ℓ-chromatique de H_d est donné par:

$$\chi'_{\ell}(H_d) = \begin{cases} d2^{d-1} & \text{Si } \ell \ge d-1 \\ d2^{\ell} & \text{Si } \ell \le d-1 \end{cases}$$
 (b)

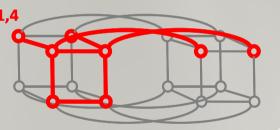
Preuve.

Résultat (a) la distance entre deux arêtes est au plus égale à &

• Construire $H_{\ell+1} \subset S_{\ell,d}$

€=0, d=4

- Inclure $(d \ell 1)2^{\ell}$ arêtes:
 - 2^ℓ sommets incidents ont un degré d



ℓ=1, d=4

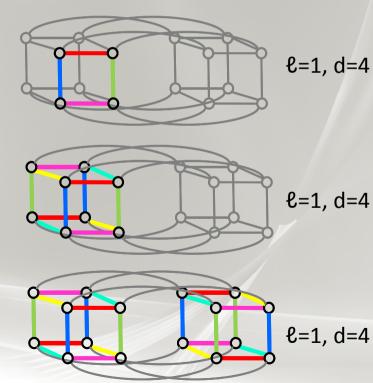
Le sous graphe induit forme S2,4
un hypercube H_e

ℓ=2, d=4

Borne sup.

Colorer S_{e,d} d'une manière itérative:

- 1. Colorer $H_{\ell+1}$
- Incrémenter la dimension de l'hypercube
 - Colorer H¹_{ℓ+i} et H²_{ℓ+i}
 - Colorer les arêtes qui les relient de la même manière mais avec des couleurs nouvelles.



Merci

Questions?