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Example: maintenance operation

Symmetric links, capacity 1

Maintenance on link 5-8
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Context

Circuit-switched networks

Telephone: call repacking (70’s)

ATM

WDM, MPLS

Motivation

Optimize usage of resources (reduce blocking probability)

Fault tolerance

Maintenance operations
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Our problem
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Inputs: Set of connection requests
+ current and new routing

Output: Scheduling for rerouting connection requests from
current to new routes

Objectives: Later

Constraint: Reroute requests one by one to their final routes
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GMPLS

Make-before-break:

Establish new path before switching the connection

=⇒ Destination resources must be available

Break-before-make:

Break connection before establishing the new path

=⇒ Traffic stopped while new path not established
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Dependency digraph
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Example
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Objective Functions

MIN-TOTAL-DISRUPTION:

= Minimize overall number of interrupted connections

= Minimum Feedback Vertex Set (MFVS), here 4

MIN-MAX-DISRUPTION

= Minimize number of simultaneous interrupted connections

= Process Number, here 1

Gap with MFVS up to N/2

∼ Graph searching problem, cops-and-robber game, pursuit,. . .
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Strategy

Rules

R1 Put an agent on a vertex

= break/interrupt/route on temporary resources a connection

R2 Process a vertex if all its out-neighbors are either processed or
occupied by an agent

= (Re)route a connection when final resources are available

R3 An agent can be re-used after the processing of the vertex

(p, q)-process strategy = strategy to process D using p agents and
q vertices covered by agents.

MIN-MAX-DISRUPTION = minimize p, pn(D)

MIN-TOTAL-DISRUPTION = minimize q, mfvs(D)
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Example: DAG
Rules

R1 Put an agent on a vertex

= break/interrupt/route on temporary resources a connection

R2 Process a vertex if all its out-neighbors are either processed or
occupied by an agent

= (Re)route a connection when final resources are available

R3 An agent can be re-used after the processing of the vertex

Direct path, DAG

Th: If D is a DAG, then pn(D) = 0
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What is known?
Parameters related to pn

Pathwidth, pw [Robertson & Seymour, JCTB, 1983]

Node search number, ns [Kirousis & Papadimitriou, TCS, 1986]

Vertex separation, vs [Kinnersley, IPL, 1992]

Relations with pn

pw(G ) = vs(G ) = ns(G )− 1

vs(D) ≤ pn(D) ≤ vs(D) + 1 [Coudert & Sereni, 2007]

Complexity

NP-Hard (pn and mfvs)

Not APX (pn and mfvs)

= No polynomial time constant factor approximation algorithm

Characterization of digraphs with process number 0, 1, 2

Heuristic algorithms [Coudert, Huc, M, Nisse, Sereni, ONDM 09]
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Tradeoff

Smallest number of agents such that the number of occupied
vertices is minimum = pnmfvs(D)

Smallest total number of occupied vertices such that the
number of agents is minimum = mfvspn(D)

#agents

mfvs

mfvs_{pn}

pn_{mfvs}pn mfvs

#occupied vertices
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Tradeoff

Smallest number of agents such that the number of occupied
vertices is minimum = pnmfvs(D)

µ = pnmfvs(D)
pn(D)

Smallest total number of occupied vertices such that the
number of agents is minimum = mfvspn(D)

λ =
mfvspn(D)
mfvs(D)

Theorem

The problems of determining pnmfvs(D), mfvspn(D), µ, and λ are
NP-Complete and not APX.
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Digraphs with Arbitrary Large Ratios

µ = pnmfvs(D)
pn(D) .

mfvs(D) = n

pn(D) = 2

pnmfvs(D) = n
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Digraphs with Arbitrary Large Ratios

λ =
mfvspn(D)
mfvs(D) is not bounded.

mfvs(D) = 4

pn(D) = 3

mfvspn(D) = n + 4
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Some open questions

• Maximum value of λ =
mfvspn(D)
mfvs(D) for symmetric digraphs?

We have a graph with λ > 3− ε and we proved that λ ≤ pn(D).

• Approximation and Heuristic algorithms for these parameters
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