Kernels for FEEDBACK ARC SET IN TOURNAMENTS

Anthony Perez

Joint work with S. Bessy, F. V. Fomin, S. Gaspers, C. Paul, S. Saurabh, S. Thomassé

Université Montpellier II - LIRMM

JGA'09 - Montpellier

Kernels for *k*-FAST

- Definitions and structural results
- Reduction rules and size

Kernels for *k*-FAST

- Definitions and structural results
- Reduction rules and size

3 Conclusion

Parameterized algorithm

A problem parameterized by $k \in \mathbb{N}$ is said to be fixed-parameter tractable (in *FPT*) if it can be solved in time $f(k).n^{O(1)}$.

Remarks

The function *f* considered can be anything and depends only on the parameter *k*. Thus, the function $f(k) = 2^{2^{2^k}}$ is good.

Parameterized algorithm

A problem parameterized by $k \in \mathbb{N}$ is said to be fixed-parameter tractable (in *FPT*) if it can be solved in time $f(k).n^{O(1)}$.

Remarks

The function *f* considered can be anything and depends only on the parameter *k*. Thus, the function $f(k) = 2^{2^{2^k}}$ is good.

Kernelization

Given a parameterized problem Π and $(x, k) \in \Pi$, a **kernelization** is a polynomial-time algorithm *(set of reduction rules)* that takes as input $(x, k) \in \Pi$ and outputs $(x', k') \in \Pi$ s.t. :

• x is a YES-instance \Leftrightarrow x' is a YES-instance

•
$$|x'| \leq h(k)$$

•
$$k' \leq k$$

Theorem

 $\Pi \in FPT \Leftrightarrow \Pi$ has a kernel (size : exponential).

Kernelization

Given a parameterized problem Π and $(x, k) \in \Pi$, a **kernelization** is a polynomial-time algorithm *(set of reduction rules)* that takes as input $(x, k) \in \Pi$ and outputs $(x', k') \in \Pi$ s.t. :

• x is a YES-instance \Leftrightarrow x' is a YES-instance

•
$$|x'| \leq h(k)$$

•
$$k' \leq k$$

Theorem

 $\Pi \in FPT \Leftrightarrow \Pi$ has a kernel (size : exponential).

Consequences

- Pre-processing
- $\bullet \ \Rightarrow \text{Reducing the size of a given input}$
- $\bullet \Rightarrow \text{Resolution on kernels}$
- \Rightarrow Additive complexity (O(g(k) + poly(n)))).

2 Kernels for *k*-FAST

- Definitions and structural results
- Reduction rules and size

3 Conclusion

Tournament

- A *tournament* is a graph obtained by orienting every edge of a complete graph.
- A tournament is acyclic iff it has a transitive ordering of its vertices.
- A feedback arc set for a tournament T = (V, A) is a (minimum) set of arcs whose removal makes T acyclic.

Lemma (Raman, Saurabh, TCS 2006)

Let D = (V, A) be a digraph and F a feedback arc set for D. The graph D' obtained by reversing all arcs of F in D is acyclic.

FEEDBACK ARC SET IN TOURNAMENTS

From now on, we order the vertices of the tournament under some σ .

Certificate

Let $T_{\sigma} = (V, A)$ be an ordered tournament, and f = vu any of its backward arc. A *certificate* is a directed path *P* from *u* to *v* such that :

- (i) P belongs to the span of f,
- (ii) P uses only forward arcs.

Let $T_{\sigma} = (V, A)$ be an ordered tournament, and F a set of backward arcs. We say that we can *certify* F if it is possible to find a family of |F| arc-disjoint certificates for the arcs in F.

From now on, we order the vertices of the tournament under some σ .

Safe partition

Let $T_{\sigma} = (V, A)$ be an ordered tournament, and $\mathcal{P} := \{V_1, \ldots, V_p\}$ a partition of its vertex set into intervals. \mathcal{P} is a *safe partition* if all backward arcs between the V_i s can be certified using only arcs between the V_i s.

2 Kernels for *k*-FAST

- Definitions and structural results
- Reduction rules and size

3 Conclusion

Lemma ("well-known")

A tournament is acyclic iff it does not contain any (directed) triangle.

Reduction rule 1

Let v be a vertex that does not belong to any triangle. Remove v from T.

Reduction rule 2

Let T = (V, A) be an ordered tournament, $\mathcal{P} := \{V_1, \dots, V_l\}$ be a safe partition of *V* into intervals and *F* be the set of backward arcs between the intervals. Then reverse all arcs of *F* and decrease *k* by |F|.

Reduction rule 2

Let T = (V, A) be an ordered tournament, $\mathcal{P} := \{V_1, \dots, V_l\}$ be a safe partition of *V* into intervals and *F* be the set of backward arcs between the intervals. Then reverse all arcs of *F* and decrease *k* by |F|.

Proof

- As \mathcal{P} is a safe partition, all backward arcs between the parts of \mathcal{P} can be certified (meaning that every such arc belongs to a directed cycle) without using any arc inside the parts.
- By definition, the others directed cycles are entirely contained in the parts of \mathcal{P} . Thus the edition of the directed cycles between parts is independent from any other edition.

Proof

- As P is a safe partition, all backward arcs between the parts of P can be certified (meaning that every such arc belongs to a directed cycle) without using any arc inside the parts.
- By definition, the others directed cycles are entirely contained in the parts of \mathcal{P} . Thus the edition of the directed cycles between parts is independent from any other edition.

Lemma

Let T = (V, A) be an ordered tournament with $|V| \ge 2p + 1$ and at most p backward arcs, where $p \ge 1$. Then we can find a safe partition (in polynomial time) having at least one backward arc between its parts.

Theorem

Let T = (V, A) be any tournament. For every $\epsilon > 0$, there is a polynomial time algorithm that reduces T to an equivalent instance T' having at most $(2 + \epsilon)k$ vertices.

Proof

- Using a known PTAS for k-FAST, start with a feedback arc set F of at most (1 + ^ε/₂) arcs.
- Order the vertices according to the transitive ordering obtained by reversing *F*. Observe that such an ordering has at most $(1 + \frac{\epsilon}{2})$ backward arcs.
- Using the Lemma, we reduce the graph (finding a safe partition) as long as it has more than $(2 + \epsilon)k$ vertices.

Theorem

Let T = (V, A) be any tournament. For every $\epsilon > 0$, there is a polynomial time algorithm that reduces T to an equivalent instance T' having at most $(2 + \epsilon)k$ vertices.

Proof

- Using a known PTAS for k-FAST, start with a feedback arc set F of at most (1 + ^ε/₂) arcs.
- Order the vertices according to the transitive ordering obtained by reversing *F*. Observe that such an ordering has at most $(1 + \frac{\epsilon}{2})$ backward arcs.
- Using the Lemma, we reduce the graph (finding a safe partition) as long as it has more than $(2 + \epsilon)k$ vertices.

Kernels for *k*-FAST

- Definitions and structural results
- Reduction rules and size

Perspectives and open problems

- Similar results for FEEDBACK VERTEX SET IN TOURNAMENTS?
- What about FEEDBACK ARC SET in general graphs?
- Use approximation to obtain kernels for other problems?