Linear Time Split Decomposition of Undirected Graphs

Mathieu Raffinot

CNRS-LIAFA, University Paris-7

Joint work with
Pierre Charbit (LIAFA)
Fabien de Montgolfier (LIAFA)

Cunningham 1972/1982

2 splits cross:

Strong split: does not cross any other split

Stars Cliques Primes

Cunningham 1972/1982

Primes

Non decompable subgraph

Cunningham 1972/1982

Stars

Cliques

General example

Depth First Search (DFS)

Between layers

Each layer

Stars Cliques Prime

identify all splits blocks

Partitive family

Tree reconstruction

Tree structure

Main theorem 1/6

 $M_h = modules of G[<=h]$ that are subset of layer h

Main theorem 2/6

 $M_h = modules of G[<=h]$ that are subset of layer h

Intuition: Neighborhood of C, component of G[>h]

Main theorem 3/6

 M_h = modules of G[<=h] that are subset of layer h Neighborhood of C, component of G[>h]

Main theorem 4/6

 $M_h = modules of G[<=h]$ that are subset of layer h Neighborhood of C, component of G[>h]

Neighborhood of x in $[h+1] \cap layer h$

Main theorem 5/6

 $M_h = modules of G[<=h]$ that are subset of layer h

Neighborhood of C, component of G[>h]

Neighborhood of x in $[h+1] \cap layer h$

Co-neighborhood of x in C: $(N(C) \setminus N(x) \cap [h])$

A layer, all split blocks.

Main theorem 6/6

 $M_h = \text{modules of G[} <= \text{h]}$ that are subset of layer h

Co-neighborhood of x in C: $(N(C) \setminus N(x) \cap [h])$

$$\mathsf{B}_\mathsf{h}^{} = \mathsf{M}_\mathsf{h}^{} \cap \mathsf{V}^{\perp}_{}_\mathsf{h}^{} = (\mathsf{M}^{\perp}_{}_\mathsf{h}^{} \cup \mathsf{V}_\mathsf{h}^{})^{\perp}$$

B_h partitive familly
B_h representable as a tree

A layer, all split blocks.

Computation

$$B_h = (M_h^{\perp} \cup V_h^{\perp})^{\perp}$$
 but

How to compute M_h^{\perp} ?

How to compute V_h ?

How to compute the main orthogonal?

Several techniques!

Warning: $\Omega(||F||)$

1. Modular decomposition of G[h-1,h] + reduction to layer h

Pb: size of the family!

- 2. Theorem: || strong modules || = O(n+m)
- 3. Trick

Neighborhood of C, component of G[>h]
$$V_h = V_h = V_h$$
 Neighborhood of x in [h+1] \cap layer h
$$Co\text{-neighborhood of x in C: } (N(C) \setminus N(x) \cap [h])$$

$$V_h \quad \Longrightarrow \quad V_h^{\ 1} \ \cup \ V_h^{\ 2} \ \cup \ V_h^{\ 3} \ \cup \ \ \cup \ V_h^{\ k}$$

$$V_h^i$$
 = neighborhood of C_i
+ neighborhood of its vertices $N(x)_{|C}$
+ co-neighborhood $N(x)_{|C}$

Second trick: partition refining on $N(C_i)$ using N(x) as pivots Partition $B_1 ... B_r$ of $N(C_i)$

Overlapping a member of V_h^i overlapping $B_i \cup B_{i+1}$

Back to first trick ! family $W_h^i = \{N(C_i), B_1 \cup B_2, B_2 \cup B_3, ..., B_r \cup B_1\}$