Trapezoid Graphs, Independent Sets, and Whole Genome Comparisons

Raluca Uricaru, Eric Rivals

LIRMM, CNRS Université de Montpellier 2

6 novembre 2009

Conclusion

Whole Genome Comparisons

Chaining with Proportional Overlaps

Conclusion

Whole Genome Comparisons

Pragment Chaining

3 Chaining with Proportional Overlaps

4 Conclusion

Problem and Motivation

Align two or several genomic sequences to determine resemblances between them;

- infer knowledge from one sequence to other highly similar sequences;
- identify the conserved parts between sequences indicating common biological components;
- identify differences between sequences responsible for what distinguishes them (e.g., virulence, pathogenicity).

General Method for Pairwise Alignment

- complex problem due to the sizes of the genomic sequences;
- 3-phase heuristic called the "anchor based strategy" :
 - computation of local similarities (fragments) between sequences; using an external method;
 - Iragment chaining phase : selects a subset of non-overlapping, collinear anchors giving a maximum weighted chain ; non-collinear anchors → NP-complete problem;
 - apply recursively the first 2 phases on yet not aligned regions;

Fragment Chaining)

Chaining with Overlaps

Conclusion

2 Fragment Chaining

3 Chaining with Proportional Overlaps

4 Conclusion

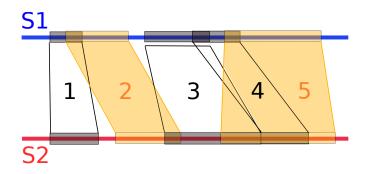
Whole Genome Comparisons

(Fragment Chaining)

Conclusion

Fragment Chaining

Trapezoid Representation

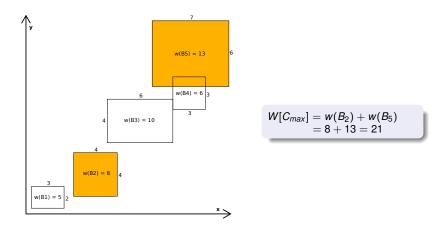


(Fragment Chaining)

Conclusion

Fragment Chaining

Box Representation



Fragment Chaining Definition

- In fragments represented as boxes in a dotplot : {B₁,..., B_n};
- lower corner of $B_i = I(B_i)$, upper corner of $B_i = u(B_i)$;
- if $u(B_i) < I(B_j)$ then $B_i \ll B_j$;
- the weight of a box B_i : $w(B_i) = |P_x(B_i)| + |P_y(B_i)|$ P_x and P_y are the projections on the 2 axis;

 $\{B_{i_1}, B_{i_2}, \dots, B_{i_k}\}$ forms a chain *C* if $B_{i_j} \ll B_{i_{j+1}} \forall j, 1 \le j \le k$, with $W[C] = \sum_{j=1}^k w(B_{i_j}).$

We are looking for the chain C_{max} giving the maximum weight.

10 / 20

Fragment Chaining

• equivalent to the maximum weighted independent set in the trapezoid graph corresponding to the trapezoid/box representations above ;

[S. Felsner et al, *Trapezoid graphs and generalizations, geometry and algorithms*, 1995.]

 dynamic programming algorithm in O(n log(n)), using the sweep line paradigm;

Chaining with Overlaps

Conclusion

11 / 20

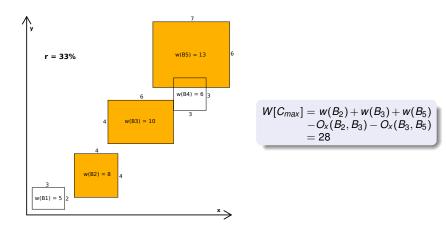
Whole Genome Comparisons

Ohaining with Proportional Overlaps

4 Conclusion

Chaining with Overlaps

Box Representation



Chaining with Overlaps

- overlap between B_i , B_j boxes on x-axis : $O_x(B_i, B_j) = |P_x(B_i) \cap P_x(B_j)|$
- maximum allowed overlap on x-axis : $r * min(|P_x(B_i)|, |P_x(B_j)|)$
- if *I*(*B_i*) < *I*(*B_j*) and *O_x*(*B_i*, *B_j*) ≤ *r* * *min*(| *P_x*(*B_i*) |, | *P_x*(*B_j*) |) or *B_i* ≪ *B_j* then *B_i* ≪_{*r,x*} *B_j*. Similarly on *y*-axis ...
- if $B_i \ll_{r,x} B_j$ and $B_i \ll_{r,y} B_j$ then $B_i \ll_r B_j$
- total overlap between B_i , B_j boxes : $O(B_i, B_j) = O_x(B_i, B_j) + O_y(B_i, B_j)$

 $\{B_{i_1}, B_{i_2}, \dots, B_{i_k}\}$ forms a chain *C* if $B_{i_j} \ll_r B_{i_{j+1}} \forall j, 1 \le j \le k$, with $W[C] = \sum_{j=1}^k w(B_{i_j}) - \sum_{j=1}^{k-1} O(B_{i_j}, B_{i_{j+1}})$.

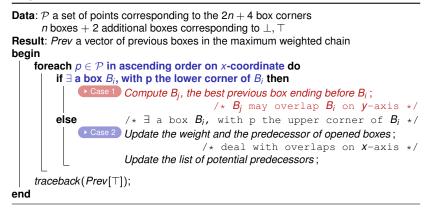
We are looking for the chain C_{max} giving the maximum weight.

Remarks on Chaining With Overlaps

- adapted to all types of fragments;
- makes sense from a biological point of view;
- a straightforward but non-practical dynamic programming algorithm in O(n²), n = number of fragments;
- partial order on boxes ≪_r with the sweep line paradigm : novel algorithm in O(n log n + nm), where m ≤ r% max(| P_y |)

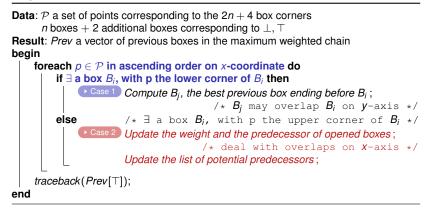
Algorithm for Chaining With Overlaps

Algorithm 1: Maximum Weighted Chain with Overlaps



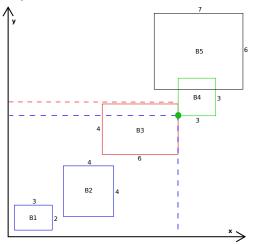
Algorithm for Chaining With Overlaps

Algorithm 2: Maximum Weighted Chain with Overlaps



Case 1

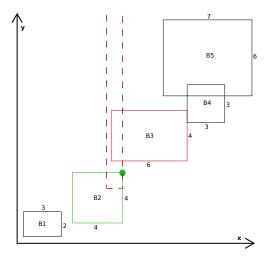
Compute B_i , the best previous box ending before B_i ...



Algorithm

Case 2

Update the weight and the predecessor of opened boxes ...



Fragment Chaining

Chaining with Overlaps

- Whole Genome Comparisons
- Pragment Chaining
- 3 Chaining with Proportional Overlaps

19 / 20

Conclusion

- the chaining with proportional overlaps corresponds to an extended definition of a maximum weighted independent set including a tolerance notion;
- the algorithm in $O(n \log n + nm)$ is very efficient in practice;

e.g., on a real case composed of 190000 fragments : $O(n^2)$ algorithm : 34min $O(n \log n + nm)$ algorithm : < 2min;

Support :

CoCoGEN project http://www.lirmm.fr/~uricaru/CoCoGEN

Thank you for your attention !

Questions?

