Specific Countermeasures Against Physical Attacks in FPGAs

Jean-Luc DANGER Shivam BHASIN Guillaume DUC Tarik GRABA Sylvain GUILLEY Houssem MAGHREBI Olivier MEYNARD Maxime NASSAR Laurent SAUVAGE Nidhal SELMANE Youssef SOUISSI

Institut TELECOM / TELECOM-ParisTech / CNRS - LTCI (UMR 5141)

Thursday, December 7th, 2010, Journée SocSip Securité

Jean-Luc Danger

SOCSIP securit

Presentation Outline

- FPGA specificity and vulnerability
- Overview of countermeasures in FPGAs
- 3 Protection by DPL in FPGAs
- Protection by Masking in FPGAs
- 5 Conclusions

< 🗇 🕨

FPGA specificity and vulnerability Overview of countermeasures in FPGAs

Overview of countermeasures in FPGAs Protection by DPL in FPGAs Protection by Masking in FPGAs Conclusions

Specificity vulnerability

Presentation Outline

FPGA specificity and vulnerability

- Overview of countermeasures in FPGAs
- 3 Protection by DPL in FPGAs
- 4 Protection by Masking in FPGAs
- 5 Conclusions

→ ∃ >

▲ □ ► ▲ □ ►

FPGA specificity and vulnerability

Overview of countermeasures in FPGAs Protection by DPL in FPGAs Protection by Masking in FPGAs Conclusions

Specificity vulnerability

FPGA specificity

- Price to pay for reconfigurability:
 - Size 35X \Rightarrow 18X , Consumption 14X ASIC size (Kuon and all 2007)
- Many high-gain DFFs
- Many memories:
 - distributed: LUTs
 - embedded
- Many DSPs
- Many long lines and switches : Interconnect = 80% of the total area, and unknown

Specificity vulnerability

Vulnerability against side-channel attacks

Comparison between ASIC and FPGA in terms of power leakage:

SecMat v3[ASIC]:

• Shared power supply between all modules

SecMat v3[FPGA]:

- SecMat v3[ASIC] VHDL code synthesized in an Altera Stratix EPS1S25
- Global power supply
- 10,157 logic elements and 286,720 RAM bits for the whole SoC
- DES alone is 1,125 logic elements (LuT4)

The power traces acquired from those three circuits are available for download from http://www.dpacontest.org/.

Overview of countermeasures in FPGAs Protection by DPL in FPGAs Protection by Masking in FPGAs Conclusions

SecMat v3[ASIC] – covariance with $|LR[0] \oplus LR[1]|$

SecMat v3[ASIC]:

- Typical trace: 38 mV
- Typical DPA: 0.6 mV
- \Rightarrow Side-channel leakage: 1.5 %

Covariance result (same scale as the average power tra-

Jean-Luc Danger

Overview of countermeasures in FPGAs Protection by DPL in FPGAs Protection by Masking in FPGAs Conclusions

SecMat v3[FPGA] – covariance with $|LR[0] \oplus LR[1]|$

- Typical trace: 19 mV
- Typical DPA: 0.19 mV
- \Rightarrow Side-channel leakage: 1.0 %

8 16 24 32

Time Icloc

260

Covariance result (same scale as the average power tra-

Jean-Luc Danger

0.05

Protocol-Level Register Transfer Level Netlist Level

Presentation Outline

- I FPGA specificity and vulnerability
- Overview of countermeasures in FPGAs
- 3 Protection by DPL in FPGAs
- Protection by Masking in FPGAs
- 5 Conclusions

→ ∃ >

▲ □ ► ▲ □ ►

Protocol-Level Register Transfer Level Netlist Level

Targeted strategies

- Protocol-level:
 - Most wanted since provable
- Register-Transfer Level:
 - Masking, boolean or algorithmic.
 - Encrypted leakage
 - Glitch-full circuits
- Netlist or implementation level:
 - Hiding= DPL, Dual-rail with Precharge Logic
- Degenerated counter-measures
 - Noise generator, Dummy instructions, Varying clock, etc.

A⊒ ▶ ∢ ∃

Protocol-Level Register Transfer Level Netlist Level

if ≈ 1 bit is leaked per 100 encryptions...

The FPGAs designs can take advantage of Reconfigurability to change regularly the implementation.

Jean-Luc Danger

SOCSIP security

590

TELECOM TELECOM

SECURE

Protocol-Level Register Transfer Level Netlist Level

Masking

Principle

- Every variable s, potentially sensible, is represented as a share $\{s_0, s_1, \cdots, s_{n-1}\}$
- To reconstruct s, all the s_i are required.
- Example: n = 2, $s \doteq s_0 \oplus s_1$.

Constraints and Drawbacks

- Leakage resistant since variables are never used plain.
- Attractive but works only fine for registers.
- Efforts done to protect also the combinational logic.
- Sensitive to Hi-orders attacks.
- Ineffective against Fault attacks.

Conclusions

Protocol-Level Register Transfer Level Netlist Level

イロト イヨト イヨト イヨト

æ

Encrypted Leakage

Protocol-Level Register Transfer Level Netlist Level

Hiding by using DPL: Dual Rail with Precharge Logic

$a \leftrightarrow (a_f, a_t)$ DPL representation:

- *a* is **VALID** if $a_f \oplus a_t = 1$. VALID \doteq {VALID0, VALID1} or VALID \doteq {(1,0), (0,1)}.
- *a* is **NULL** if $a_f \oplus a_t = 0$. NULL \doteq {NULL0, NULL1} or NULL \doteq {(0,0), (1,1)}.

Image: A (1)

SECURE

Protocol-Level Register Transfer Level Netlist Level

A common DPL: WDDL=Waveform Dynamic Differential Logic

A digital circuit and its WDDL equivalent

PRE/EVAL at bt yt bt yt yt yt

Timing Diagram of a WDDL AND gate

Only positive gates could be used for netlist synthesis. Jean-Luc Danger SOCSIP security 14/43

Protocol-Level Register Transfer Level Netlist Level

Important constraints in DPL : No glitches +

No Early Evaluation

No Technological Biais

- OR consumption = AND consumption
- routing T = routing F

RE

How to meet the DPL constraints in FPGAs ? Case study of BCDL

Presentation Outline

- FPGA specificity and vulnerability
- 2 Overview of countermeasures in FPGAs
- OPROTECTION BY DPL in FPGAs
- 4 Protection by Masking in FPGAs
- 5 Conclusions

< 🗇 🕨

How to meet the DPL constraints in FPGAs ? Case study of BCDL

Security constraints 1/2

Logic without glitches and early propagation

$\Rightarrow \textbf{Synchronization}$

The rules to be "synchronized":

- Rule 1: Evaluation starts after all the input signals are valid.
- Rule 2: Precharge starts:
 - Either after all the inputs becomes NULL¹ but the outputs need to be memorized or
 - Or before the first input becomes NULL (which does not need any memorization).

¹NULL is the value in precharge phase

SOCSIP security

SECURE 1

How to meet the DPL constraints in FPGAs ? Case study of BCDL

< 17 > <

1 IDF

Security constraint 2/2

Logic with a minimum of technological biais

- Special care at placing and routing (but the FPGA vendors give few informations)
- Use of the same logic structure for True and False (e.g. MDPL with majority gates)
- Statistical balancing

Logic resistant to fault attacks

- Detection capability or
- Resilience

How to meet the DPL constraints in FPGAs ? Case study of BCDL

▲ □ ► ▲ □ ►

SECURE 1

Cost and Speed constraints

Logic with a minimum cost

- A few more than X2
- Use of RAMs and DSP in FPGAs

Fast speed

• speed divided by 2. Possible to be better?

How to meet the DPL constraints in FPGAs ? Case study of BCDL

Case study of BCDL: Balance Cell Differential Logic

The BCDL gate: Synchronization with Global Precharge

- No need of memorization as a **global precharge** *PRE* is faster than any inputs.
- U/\overline{PRE} falls to 0 \Rightarrow precharge is forced immediately.
- U/\overline{PRE} rises to $1 \Rightarrow$ evaluation begins after "unanimity to 1".
- Tables T and F can be fully separated ⇒ huge complexity gain.

How to meet the DPL constraints in FPGAs ? Case study of BCDL

Exemple of a 2-input OR gate

A ► 4

э

æ

How to meet the DPL constraints in FPGAs ? Case study of BCDL

Robustness against FA

In-Built Robustness against Fault Attacks

- Automatically detects symmetric faults: {VALID0, VALID1} $\stackrel{\downarrow \text{ or }\uparrow}{\longrightarrow}$ {NULL0, NULL1}(1 \rightarrow 0 or 0 \rightarrow 1).
- "Error state" is propagated throughout the design \Rightarrow Fault resilience.

PRECHARGE	Fault detection
1	state \neq {NULL0, NULL1}
0	state \neq {VALID0, VALID1}

▲ □ ► < □</p>

How to meet the DPL constraints in FPGAs ? Case study of BCDL

Fault Detection with DSP blocks

- based on $AxB = (-A)x(-B) \Rightarrow$ $(2A+1)x(2B+1) = (2\overline{A}+1)x(2\overline{B}+1)$
- Allows to detect and locate either during precharge or evaluation

How to meet the DPL constraints in FPGAs ? Case study of BCDL $% \left({\left({{{\rm{S}}} \right)_{\rm{s}}} \right)_{\rm{s}} \right)$

Area

T and F easy to implement

- Not limited to positive functions
- separable
 - 1 additionnal input (U/\overline{PRE}) + duplication(T and F)
 - Area of tables = $2.2^{n+1} < 2^{2n}$ if n > 2
 - \Rightarrow S-Box area = only 4 times the size of an unprotected one.

Total Area

 $= \mathsf{DFF}(*4) + [\mathsf{SYNC}(a \text{ few gates}) + \mathsf{T} + \mathsf{F}] * n.$

Special case: MUX driven by single rail signal

No needs of synchronization.

<ロ> (四) (四) (三) (三)

How to meet the DPL constraints in FPGAs ? Case study of BCDL

Speed optimization

Faster than other DPLs

- Evaluation time > precharge time \Rightarrow performances \nearrow
- Speed / $\sim 1.25~\leftrightarrow~1.75$

・ロト ・回ト ・ヨト

э

SECURE

How to meet the DPL constraints in FPGAs ? Case study of BCDL

A 🕨 🕨 🖌 🖻

results in FPGA Stratix for an AES implementation

Complexity and speed

	ALM	Reg	RAM	Max. freq.	Max. throughput
no protection	1078	256	40 Kb	71.88 MHz	287.52 Mbps
WDDL	4885	1024		37.07 MHz	74.14 Mbps
BCDL	1841	1024	160 Kb	50.64 MHz	151.92 Mbps

CPA results

- Attack processed on 150000 power consumption traces.
- No subkey found for BCDL.

How to meet the DPL constraints in FPGAs ? Case study of BCDL

MIA results for different subbytes implementations

How to meet the DPL constraints in FPGAs ? Case study of BCDL

Comparison with other DPLs in FPGAs

- **WDDL** : Propagation of the NULL state with positive functions
- **RCDDL** : WDDL with factored logic, which amplifies the early evaluation
- **MDPL** : T gate =F gate = Majority, random Mask to balance the True and False networks
- **STTL** : A third wire is added to synchronize with the last stable signal.
- DRSL : As MDPL with a synchronization before evaluation
- **IWDDL** : Isolated WDDL with separated T and F networks by means of superpipelining
- BCDL : The logic presented here
- MBCDL : BCDL with mask

SECURE

How to meet the DPL constraints in FPGAs ? Case study of BCDL

Comparison with other DPLs

Logic	Compl.	Speed	Robust. SCA		Robust. FA		Design Constr
			EE	Т. В.	Fault	Det.	Design Constr.
WDDL	*	< 1/2			asym	comb	Positive gates
MDPL	*	< 1/2		1	asym	comb	$MAJ\;gate+RNG$
STTL	*	< 1/4	1		sym	seq	50% more wiring
DRSL	*	< 1/2	partly	1	sym	comb	+ RNG
IWDDL		$< 1/2 \cdot n$	1		asym	comb	superpipeline
BCDL	**	> 1/2	1		sym	comb	
MBCDL	*	> 1/2	1	1	sym	comb	+ RNG

イロト イヨト イヨト イヨト

TELECORE SECURE

æ

Zero-offset implementation Squeezed Leakage

Presentation Outline

- FPGA specificity and vulnerability
- Overview of countermeasures in FPGAs
- 3 Protection by DPL in FPGAs
- Protection by Masking in FPGAs
- 5 Conclusions

Zero-offset implementation Squeezed Leakage

ROM Hardware masking

Masked DES implemented with ROMs.

"Zero Offset" From Waddle et al., Peeters et al..

Activity:

 $A = HW[(x \oplus m) \oplus (S(x \oplus k) \oplus m')] + HW[m \oplus m']$

• The register data Hamming distance is:

$$\Delta(x) = x \oplus S(x \oplus k)$$

• The register mask Hamming distance is:

< 🗇 🕨

$$\Delta(m)=m\oplus m'$$

• Then:

 $A = HW[\Delta(x) \oplus \Delta(m)] + HW[\Delta(m)]$

Zero-offset implementation Squeezed Leakage

Problem # 1: HO-attacks

Power distributions of the five possible values of $HW(\Delta(x, k))$.

Theoretic MIA attack evaluation

Table: Theoretical conditional entropy of the ROM masked DES.

Theoretical entropies	The correct key	Any wrong key		
$H(O HW(\Delta(x,k)))$	1.3992 bit	2.5442 bit		

<mark>Zero-offset implementation</mark> Squeezed Leakage

Problem # 2: ROM too complex for FPGAs

- Need of 2^{2n} memory
- Use of external Mask recomposition with USM: Universal S-Box Masking

But attackable on the combinatorial logic!

SECURE

Zero-offset implementation Squeezed Leakage

Solution #1: Squeezed leakage by encoding tables

Jean-Luc Danger

< ≣⇒

ECURE

Zero-offset implementation Squeezed Leakage

Solution #2: Squeezed leakage by encoding tables with USM

Jean-Luc Danger

SOCSIP security

E> E

-

Zero-offset implementation Squeezed Leakage

Implementation results with leakage squeezing

Table 1: Complexity and speed results. "I. s." denotes the "leakage squeezing" countermeasure.

Implementation	ALMs	Block mem-	M4Ks	Throughput
		-ory [bit]		[Mbit/s]
Unprotected DES (reference)	276	0	0	929.4
DES masked USM	447	0	0	689.1
DES masked ROM	366	131072	32	398.4
DES masked ROM with I. s.	408	131072	32	320.8
DES masked USM with I. s.	488	0	0	582.8

▲ □ ► ▲ □ ►

Zero-offset implementation Squeezed Leakage

MIA results with leakage squeezing

Jean-Luc Danger

SOCSIP security

● ▶ ● ●

Zero-offset implementation Squeezed Leakage

Squeezed leakage by mask decomposition

• • • • •

< ≣⇒

ECURE

Zero-offset implementation Squeezed Leakage

Distributions obtained for different Θ

< 🗗 🕨

JRE

Zero-offset implementation Squeezed Leakage

MIA by Squeezed leakage by mask decomposition

Presentation Outline

- FPGA specificity and vulnerability
- Overview of countermeasures in FPGAs
- 3 Protection by DPL in FPGAs
- Protection by Masking in FPGAs

5 Conclusions

< 17 b

SECURE

- The FPGAs need efficient countermeasures to be protected against physical attacks.
- Three levels:
 - Protocol:
 - Reconfiguration can be done in FPGAs
 - RTL : Masking by taking davantages of RAMs but care has to be taken against HO-DPA. Exemples:
 - Leakage squeezing
 - Mask decomposition
 - Netlist : By using DPL. Examples:
 - $\bullet\,$ STTL: no EE, need of 3rd wire, care of P/R
 - $\bullet\,$ BCDL: no EE, low complexity, care of P/R
 - MBCDL: BCDL + easy P/R

Thanks for your attention. Any question?

Jean-Luc Danger

SECURE