

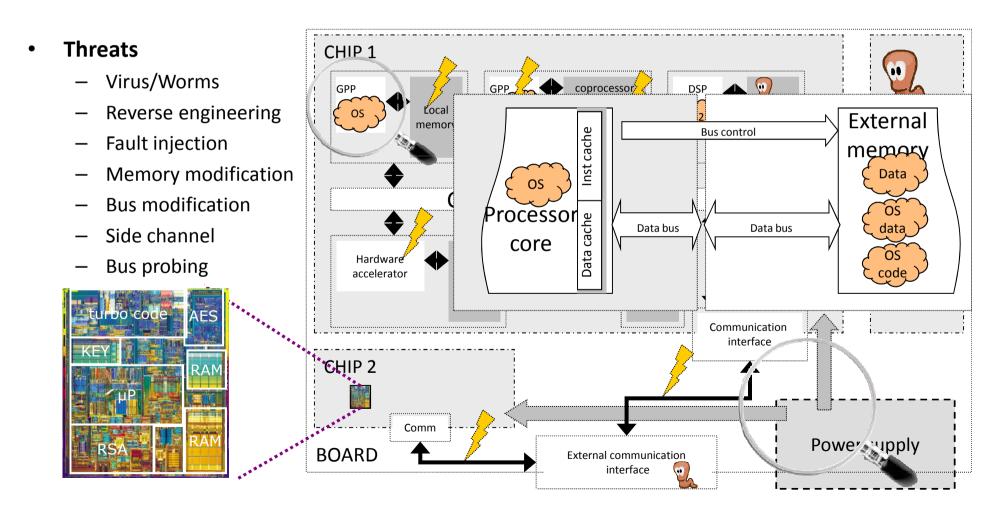

## Data and communication protection in reconfigurable embedded systems

Jérémie Crenne, Pascal Cotret, Guy Gogniat, Russel Tessier, Jean-Philippe Diguet





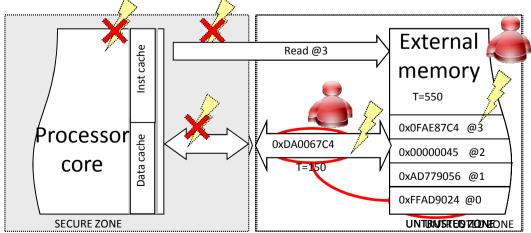
и в s de Bretagne-Sud




### Outline

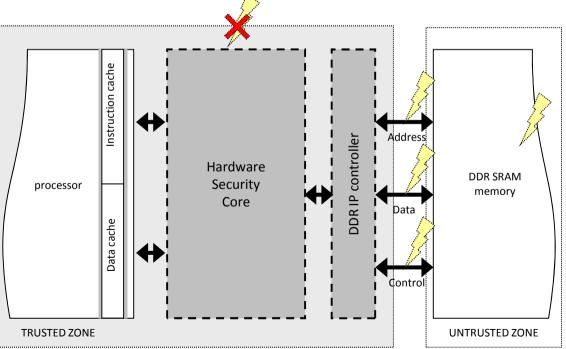
- 1) Global picture
- 2) Memory protection
- 3) Boot protection
- 4) Experimental setup & results
- 5) Communication protection: first ideas
- 6) Conclusion

## Embedded Systems & potential attacks


• Example of embedded system architecture



## The challenge of memory protection & Threat Model


- External bus access leads to
  - Code extraction\modification
  - Private data extraction\modification
- Threat model
  - A secure zone
  - Any possible modification and observation on the address and data buses
- Targeted attacks
  - Spoofing
  - Relocation
  - Replay

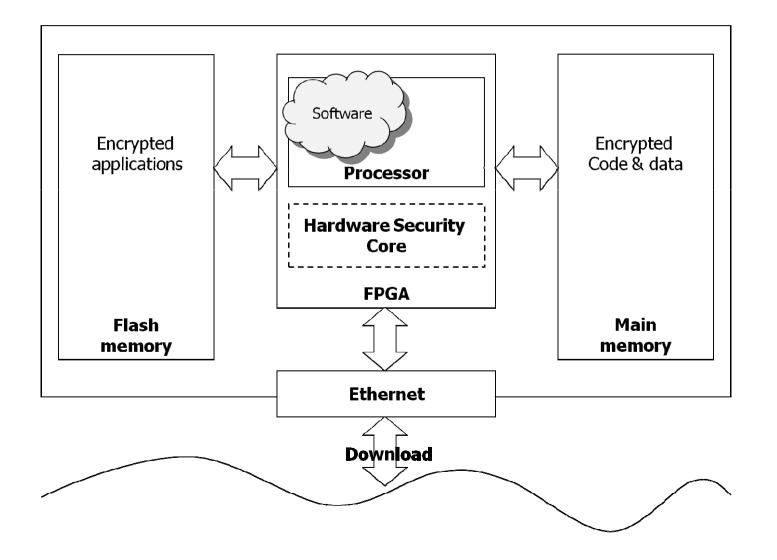
4



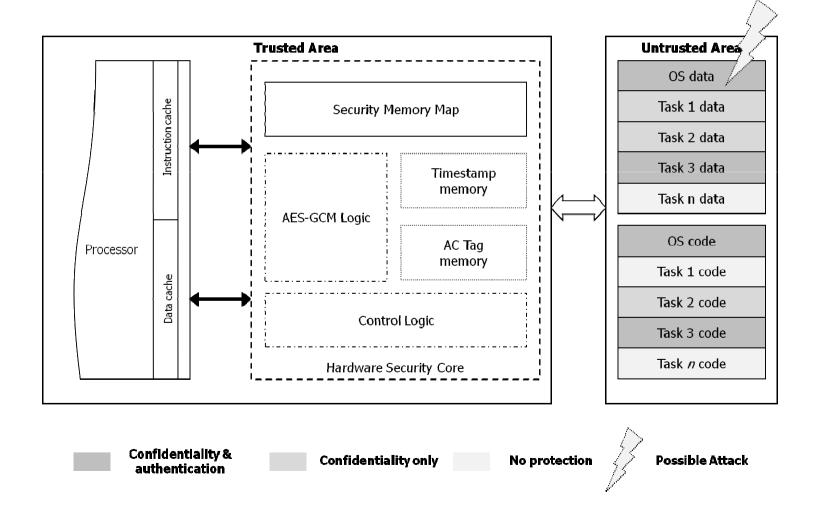
## State of the art

- Existing solutions relying on the same threat model
  - AEGIS (MIT): One-time-pad / Cached hash tree (OS controlled)
  - XOM (Stanford): One-time-pad / MD5 (OS controlled)
  - PE-ICE (LIRMM): AES / tag comparison
  - TEC-Tree (Princeton\LIRMM): PE-ICE / hash tree
- Issues
  - High memory overhead
  - Software execution pe
  - Area overhead (severa




## Contributions

- Solution fitting with embedded systems resources
  - Logic size
  - Memory footprint (including security data)
  - Performance
- Flexible solution for the software designer
  - Flexible architecture
  - Flexible security policy
- End to end solution, from boot to steady-state system operation


### Outline

- 1) Global picture
- 2) Memory protection
- 3) Boot protection
- 4) Experimental setup & results
- 5) Communication protection: first ideas
- 6) Conclusion

### Model of the system setup

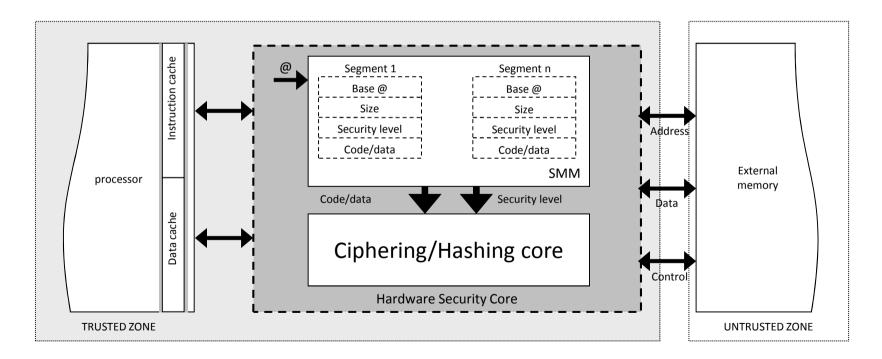


## Main memory security system overview

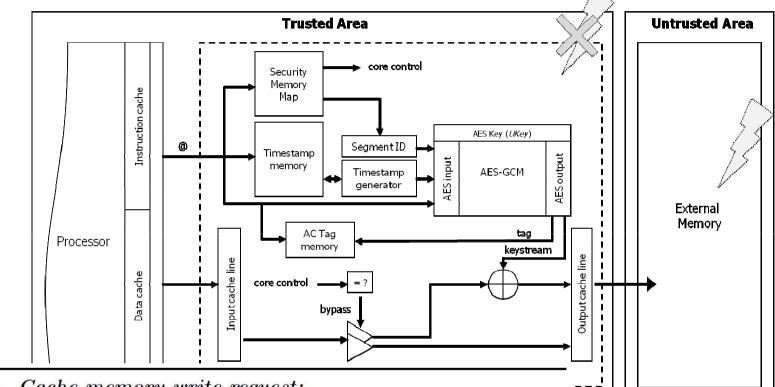


### Security Memory Map construction

| 0x8000020 <alt_excepti< td=""><td>on&gt;:</td><td></td></alt_excepti<> | on>:         |                             |
|------------------------------------------------------------------------|--------------|-----------------------------|
| 8000020:                                                               | addi sp,sp,  | -76                         |
| 8000024:                                                               | stw ra,0(sp  | )                           |
|                                                                        |              |                             |
| 0x80001d0 <task1>:</task1>                                             |              |                             |
| 80001d0 <lask1>.</lask1>                                               | call 800offs | 8 <osflagpend></osflagpend> |
| 80001d0:                                                               |              | mestamp_start>              |
| 80001d4:<br>80001d8:                                                   |              |                             |
| 8000108.                                                               | cmpge r2,r   | 2,2010                      |
| •••                                                                    |              |                             |
| 0x80002e8 <task2></task2>                                              |              |                             |
| 80002e8:                                                               | addi         | sp,sp,-20                   |
| 80002ec:                                                               | stw          | ra,16(sp)                   |
| 80002f0:                                                               | stw          | fp,12(sp)                   |
|                                                                        |              |                             |
| 0x8000424 <task3>:</task3>                                             |              |                             |
| 8000424:                                                               | call 800eff  | 8 <osflagpend></osflagpend> |
| 8000428:                                                               | movhi        |                             |
| 800042c:                                                               | addi         | r4,r4,17116                 |
| 0000 120.                                                              | dddi         | 1 1,1 1,1 1 1 1 0           |
|                                                                        |              |                             |
| 0x80006ac <task4>:</task4>                                             |              |                             |
| 80006ac:                                                               | stb          | r2,9(fp)                    |
| 80006b0:                                                               | ldbu         | r2,9(fp)                    |
| 80006b4:                                                               | cmpgeui      | r2,r2,119                   |
| •••                                                                    |              |                             |


Segment 0:

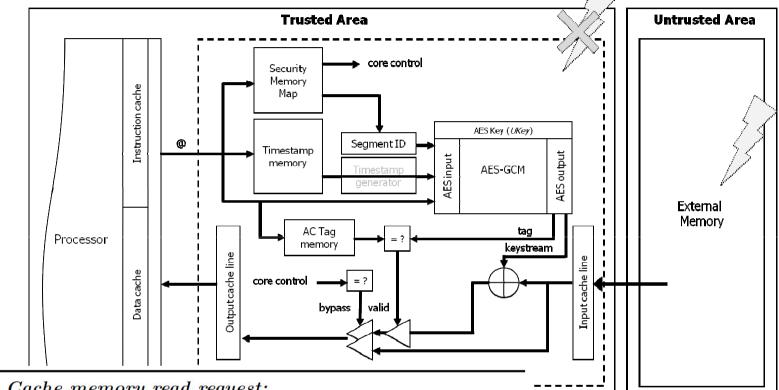
- Base @: 0x8000020
- Size: 1028 bytes
- Confidentiality & integrity
- Code
- Segment 1:


- Base @: 0x8000424
- Size: 680 bytes
- Confidentiality only
- Code
- Segment 2:
  - Base @: 0x80006ac
  - Size: 2048 bytes
  - Confidentiality & integrity
  - Code

### Secure architecture with SMM

- Security Memory Mapping
  - Fully done in hardware, no OS modification



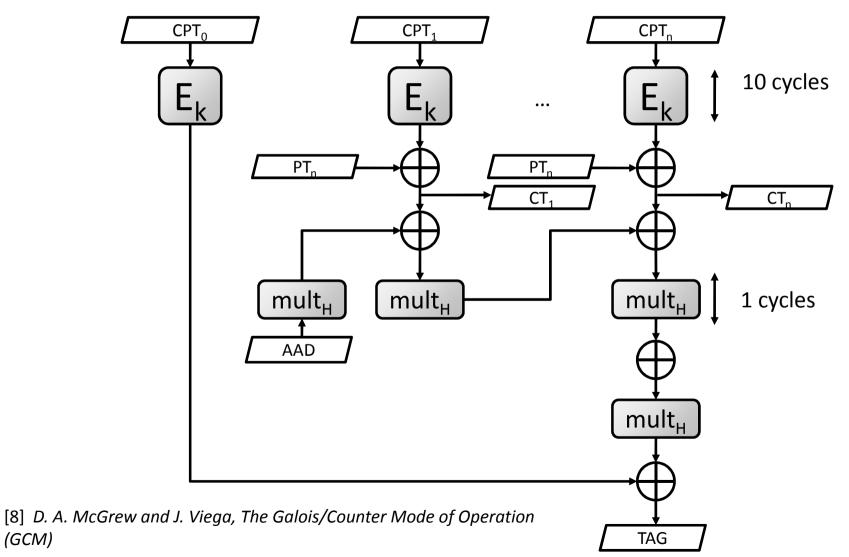

### Cache memory write request



Algorithm 1 - Cache memory write request:

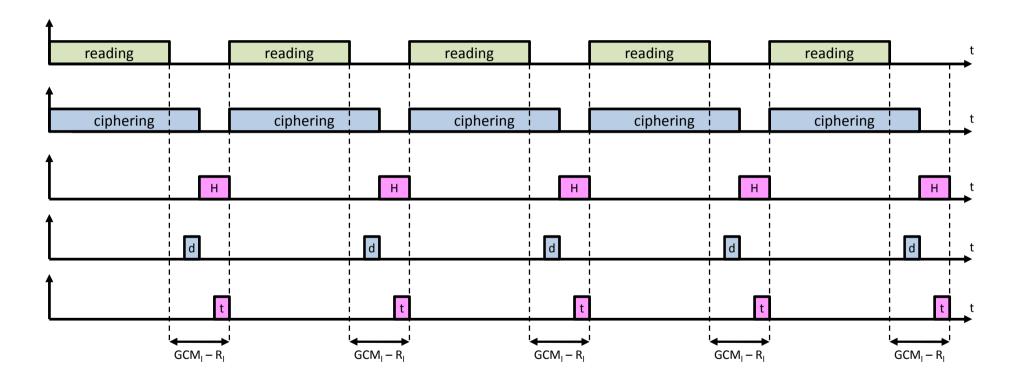
- 1 Timestamp incrementation: TS = TS + 2
- $2 \{Keystream, Tag\} = AES_{GCM}\{SegID, @, TS\}$
- $3 Ciphertext = Plaintext \oplus Keystream$
- $4 Ciphertext \Rightarrow external memory$
- 5 Timestamp storage :  $TS \Rightarrow TS$  memory
- $6 Authentication Tag storage: Tag \Rightarrow Tag memory$

### Cache memory read request



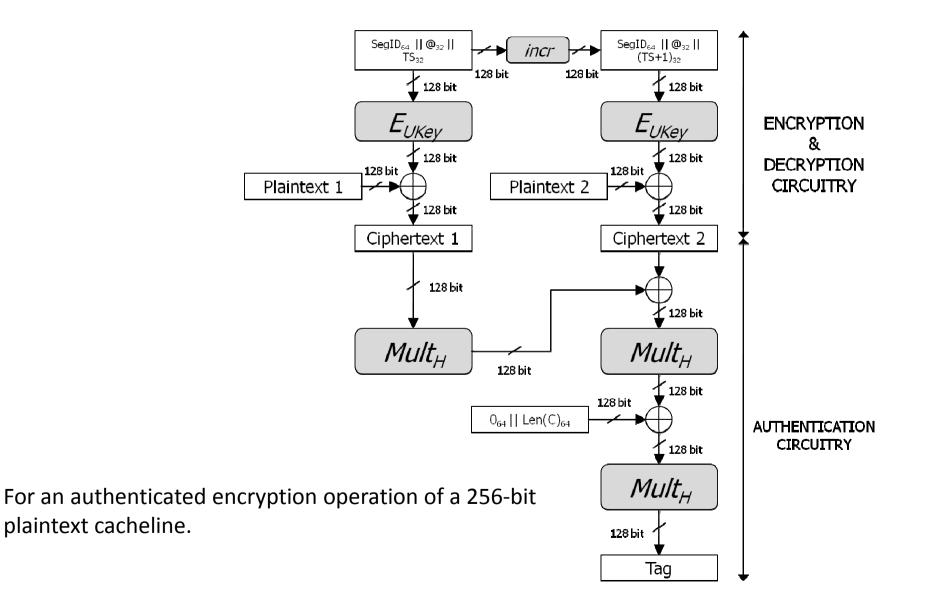

Algorithm 2 - Cache memory read request:

- 1 TS loading :  $TS \Leftarrow TS$  memory
- $2 Tag \ loading: Tag \ \Leftarrow \ Tag \ memory$
- $3 \{Keystream, Tag\} = AES_{GCM}\{SegID, @, TS\}$
- $4 Ciphertext \ loading: \ Ciphertext \ \Leftarrow \ external \ memory$
- $5 Plaintext = Ciphertext \oplus keystream$
- $6 Authentication checking: Tag \equiv Tag$
- 7  $Plaintext \Rightarrow cache memory$


## AES-GCM<sup>[8]</sup>

Overview




(GCM)

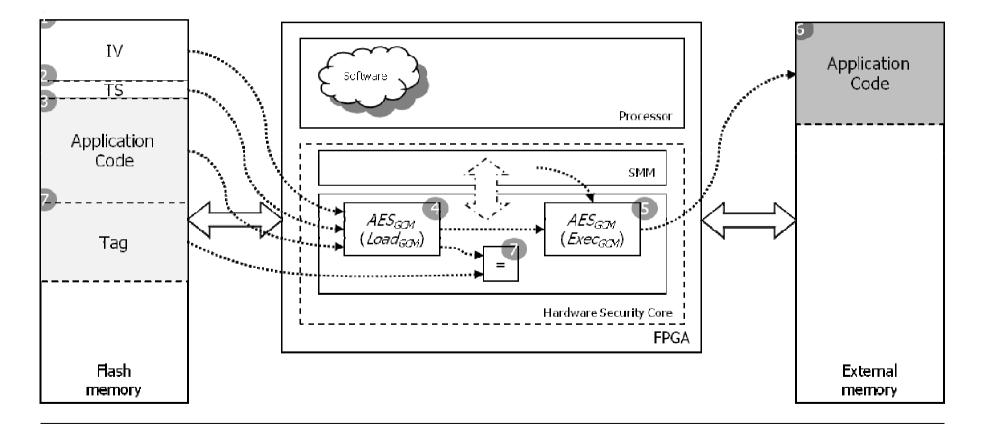
## **AES-GCM**



 $\Box$  Latency penalty : GCM<sub>I</sub> - R<sub>I</sub>

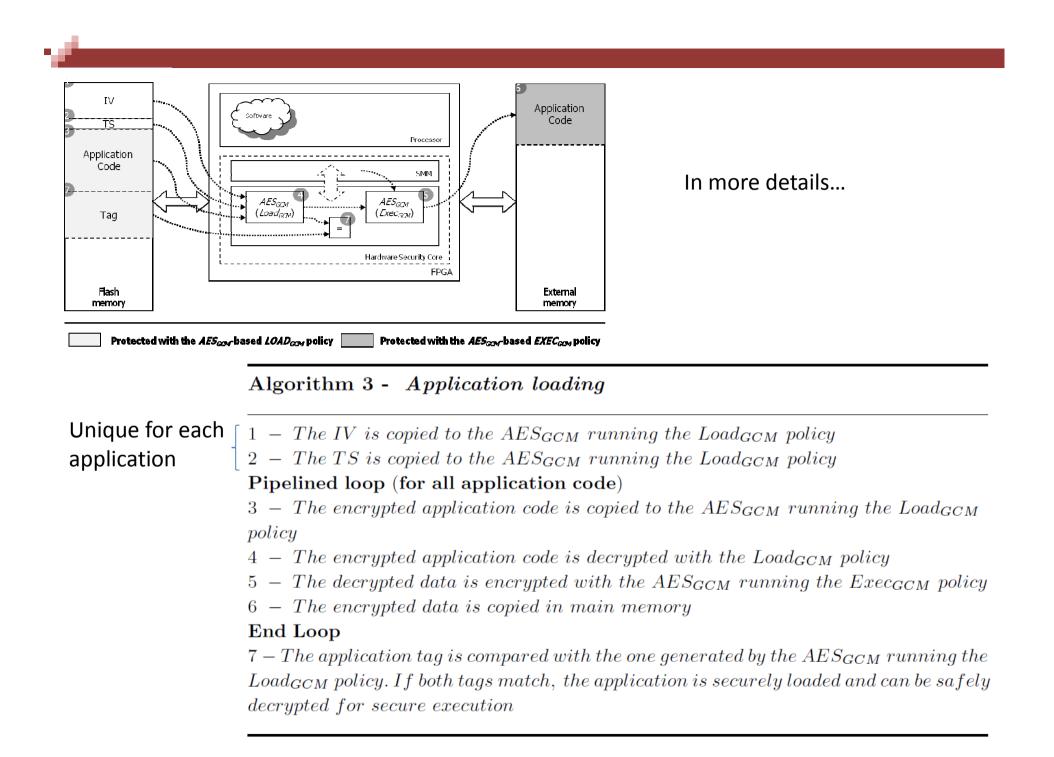
### **AES-GCM** architecture



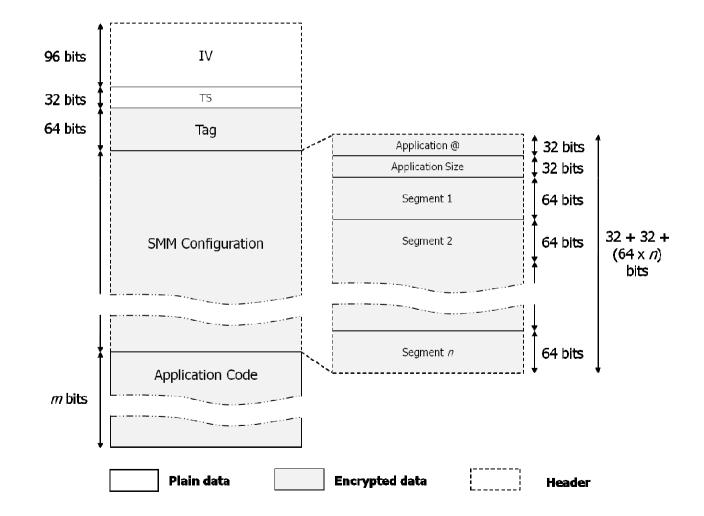

### Outline

- 1) Global picture
- 2) Memory protection
- 3) Boot protection
- 4) Experimental setup & results
- 5) Communication protection: first ideas
- 6) Conclusion

## Secure application Loading


- In our secure system, two distinct scenarios are considered
- Application code loading
  - In this scenario, the SMM is already loaded in hardware so that only application instruction loading to main memory is needed
  - This scenario may occurs if the SMM is included in an FPGA bitstream
- Application code and SMM loading
  - The SMM information must be loaded into a memory-based table adjacent to the microprocessor and application code must be loaded to main memory. SMM loading takes place first, followed by application code loading

## Secure Application Code Loading from Flash Memory




Protected with the AES<sub>COV</sub> based LOAD<sub>GOV</sub> policy

Protected with the AES<sub>GOM</sub> based EXEC<sub>GOM</sub> policy

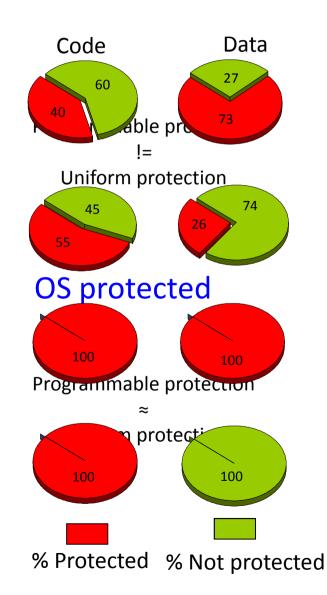


# Application Code and SMM Loading from Flash Memory



### Outline

- 1) Global picture
- 2) Memory protection
- 3) Boot protection


### 4) Experimental setup & results

- 5) Communication protection: first ideas
- 6) Conclusion

## **Applications security policy**

#### Image processing:

- Only algorithm core code & data protected (CI)
- Video-On-Demand:
  - MPEG decoder code must not be stolen (CO)
  - Image must not be stolen (CO)
  - AES sensitive data must be protected (CI)
- Communication:
  - Processed data must not be stolen (CO)
  - Code must not be attacked (CI)
- Hash:
  - Code must not be stolen (CO)
  - Processed data can be stolen



# Application memory protection details by protection level

|      | Conf. and Auth. |      |   | Conf. only |      |   |    |      | No Protection |    |      |   |    |      |   |     |      |   |
|------|-----------------|------|---|------------|------|---|----|------|---------------|----|------|---|----|------|---|-----|------|---|
|      | 0               | Code |   | Ι          | Data |   | 0  | Code |               | Ι  | Data |   | 0  | Code |   | Ι   | Data |   |
| App  | KB              | Т    | S | KB         | Т    | S | KB | Т    | S             | KB | Т    | S | KB | Т    | S | KB  | Т    | S |
| Img  | 25              | 2    | 5 | 33         | 2    | 3 | 7  | 2    | 1             | 10 | 2    | 1 | 48 | 1    | 1 | 16  | 1    | 1 |
| VOD  | 26              | 5    | 3 | 113        | 6    | 4 | 58 | 1    | 1             | 0  | 0    | 0 | 68 | 1    | 1 | 318 | 1    | 1 |
| Com  | 71              | 6    | 1 | 28         | 0    | 2 | 0  | 0    | 0             | 40 | 6    | 1 | 0  | 0    | 0 | 0   | 0    | 0 |
| Halg | 0               | 0    | 0 | 0          | 0    | 0 | 92 | 5    | 1             | 0  | 0    | 0 | 0  | 0    | 0 | 55  | 5    | 1 |

KB denotes the size in KB, T the number of tasks and S the number of segments

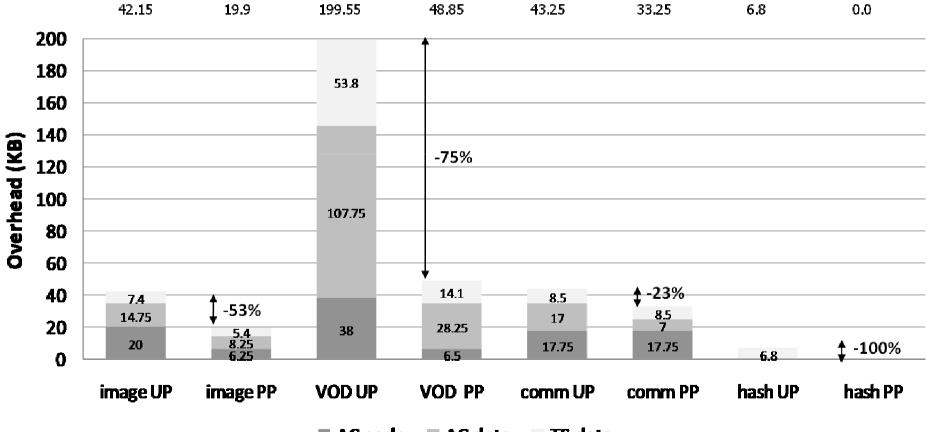
## Area Overhead of Security

• All four applications were implemented on a Spartan-6 (SP605- XC6SLX45T), 128 MB of external DDR3 memory and 32 MB of flash memory

|          |           | Unif                   | form                   |                | Programmable |                |      |                |  |  |
|----------|-----------|------------------------|------------------------|----------------|--------------|----------------|------|----------------|--|--|
|          |           | $\operatorname{prote}$ | $\operatorname{ction}$ |                | protection   |                |      |                |  |  |
| Arch.    | $\mu B +$ | HSC                    | HS                     | SC             | $\mu B +$    | HSC            | HSC  |                |  |  |
|          | LUTs      | $\mathbf{FFs}$         | LUTs                   | $\mathbf{FFs}$ | LUTs         | $\mathbf{FFs}$ | LUTs | $\mathbf{FFs}$ |  |  |
| Img. 512 | 7095      | 3769                   | 3485                   | 1122           | 7237         | 3796           | 3627 | 1149           |  |  |
|          | 16.3%     | 6.9%                   | 8.0%                   | 2.1%           | 16.6%        | 7.0%           | 8.3% | 2.1%           |  |  |
| Img. 2k  | 6820      | 3660                   | 3485                   | 1122           | 6962         | 3687           | 3627 | 1149           |  |  |
|          | 15.6%     | 6.7%                   | 8.0%                   | 2.1%           | 15.9%        | 6.8%           | 8.3% | 2.1%           |  |  |
| VOD 512  | 7229      | 3796                   | 3619                   | 1149           | 7209         | 3792           | 3599 | 1145           |  |  |
|          | 16.6%     | 7.0%                   | 8.3%                   | 2.1%           | 16.5%        | 6.9%           | 8.2% | 2.1%           |  |  |
| VOD 2k   | 6954      | 3687                   | 3619                   | 1149           | 6934         | 3683           | 3599 | 1145           |  |  |
|          | 15.9%     | 6.8%                   | 8.3%                   | 2.1%           | 15.9%        | 6.7%           | 8.2% | 2.1%           |  |  |
| Com. 512 | 7080      | 3768                   | 3470                   | 1121           | 7120         | 3776           | 3510 | 1129           |  |  |
|          | 16.2%     | 6.9%                   | 7.9%                   | 2.1%           | 16.3%        | 6.9%           | 8.0% | 2.1%           |  |  |
| Com. 2k  | 6805      | 3659                   | 3470                   | 1121           | 6845         | 3667           | 3510 | 1129           |  |  |
|          | 15.6%     | 6.7%                   | 7.9%                   | 2.1%           | 15.7%        | 6.7%           | 8.0% | 2.1%           |  |  |
| Hash 512 | 6186      | 3598                   | 2576                   | 951            | 6153         | 3596           | 2543 | 949            |  |  |
|          | 14.2%     | 6.6%                   | 5.9%                   | 1.7%           | 14.1%        | 6.6%           | 5.8% | 1.7%           |  |  |
| Hash 2k  | 5911      | 3489                   | 2576                   | 951            | 5878         | 3487           | 2543 | 949            |  |  |
|          | 13.5%     | 6.4%                   | 5.9%                   | 1.7%           | 13.5%        | 6.4%           | 5.8% | 1.7%           |  |  |

## Detailed breakdown of hardware security core (HSC) logic resource usage

| Uniform    |              |      |            |                |                |                |      |      |       |      |
|------------|--------------|------|------------|----------------|----------------|----------------|------|------|-------|------|
| protection |              |      |            |                |                |                |      |      |       |      |
| App.       | Tot          | tal  | AES        | $AES_{GCM}$    |                | g Storage      | SM   | Μ    | Ctrl. |      |
|            | LUTs         | FFs  | LUTs       | $\mathbf{FFs}$ | LUTs           | FFs            | LUTs | FFs  | LUTs  | FFs  |
| Img.       | 3485         | 1122 | 2065       | 798            | 473            | 154            | 23   | 3    | 924   | 167  |
|            | 8.0%         | 2.1% | 4.7%       | 1.5%           | 1.1%           | 0.3%           | 0.1% | 0.0% | 2.1%  | 0.3% |
| VOD        | 3619         | 1149 | 2065       | 798            | 604            | 177            | 29   | 3    | 921   | 171  |
|            | 8.3%         | 2.1% | 4.7%       | 1.5%           | 1.4%           | 0.3%           | 0.1% | 0.0% | 2.1%  | 0.3% |
| Com.       | 3470         | 1121 | 2065       | 798            | 470            | 153            | 20   | 3    | 915   | 167  |
|            | 7.9%         | 2.1% | 4.7%       | 1.5%           | 1.1%           | 0.3%           | 0.0% | 0.0% | 2.1%  | 0.3% |
| Hash       | 2576         | 951  | 2065       | 798            | 0              | 0              | 21   | 3    | 490   | 150  |
|            | 5.9%         | 1.7% | 4.7%       | 1.5%           | 0.0%           | 0.0%           | 0.0% | 0.0% | 1.1%  | 0.3% |
|            | Programmable |      |            |                |                |                |      |      |       |      |
|            |              |      |            |                | protection     | 1              |      |      |       |      |
| App.       | Tot          | tal  | $AES_{GG}$ | $C_M$ Core     | AC Tag Storage |                | SMM  |      | Ctrl. |      |
|            | LUTs         | FFs  | LUTs       | $\mathbf{FFs}$ | LUTs           | $\mathbf{FFs}$ | LUTs | FFs  | LUTs  | FFs  |
| Img.       | 3627         | 1149 | 2065       | 798            | 473            | 153            | 214  | 31   | 875   | 167  |
|            | 8.3%         | 2.1% | 4.7%       | 1.5%           | 1.1%           | 0.3%           | 0.5% | 0.1% | 2.0%  | 0.3% |
| VOD        | 3599         | 1145 | 2065       | 798            | 473            | 153            | 161  | 27   | 900   | 167  |
|            | 8.2%         | 2.1% | 4.7%       | 1.5%           | 1.1%           | 0.3%           | 0.4% | 0.0% | 2.1%  | 0.3% |
| Com.       | 3510         | 1129 | 2065       | 798            | 475            | 154            | 61   | 10   | 909   | 167  |
|            | 8.0%         | 2.1% | 4.7%       | 1.5%           | 1.1%           | 0.3%           | 0.1% | 0.0% | 2.1%  | 0.3% |
| Hash       | 2543         | 949  | 2065       | 798            | 0              | 0              | 12   | 1    | 466   | 150  |
|            | 5.8%         | 1.7% | 4.7%       | 1.5%           | 0.0%           | 0.0%           | 0.0% | 0.0% | 1.1%  | 0.3% |


## Performance Cost of Security

|          | No         | Unife     | orm                    | Programmable |          |  |
|----------|------------|-----------|------------------------|--------------|----------|--|
|          | protection | protec    | $\operatorname{ction}$ | protection   |          |  |
| Arch.    | Time (ms)  | Time (ms) | Overhead               | Time (ms)    | Overhead |  |
| Img. 512 | 150.5      | 188.0     | -24.9%                 | 173.4        | -15.2%   |  |
| Img. 2k  | 131.3      | 156.9     | -19.5%                 | 146.9        | -11.9%   |  |
| VOD 512  | 13691.5    | 16806.4   | -22.8%                 | 15619.8      | -14.1%   |  |
| VOD 2k   | 11940.3    | 13751.2   | -15.2%                 | 13453.5      | -12.7%   |  |
| Com. 512 | 69.1       | 84.1      | -21.6%                 | 78.7         | -14.0%   |  |
| Com. 2k  | 60.2       | 66.7      | -10.8%                 | 65.4         | -8.6%    |  |
| Hash 512 | 8.6        | 10.2      | -18.9%                 | 9.9          | -15.1%   |  |
| Hash 2k  | 7.5        | 8.7       | -15.9%                 | 8.6          | -14.4%   |  |

The extra latency caused by our security approach for the prototype implementation is 7 cycles for a 256-bit cacheline read and 13 cycles for a cacheline write.

The cacheline write overhead is primarily due to the 10-cycle 128-bit AES operation. The read overhead is reduced due to an overlap in AES operation and bus read operations.

### **Memory Cost of Security**



AC code AC data TS data

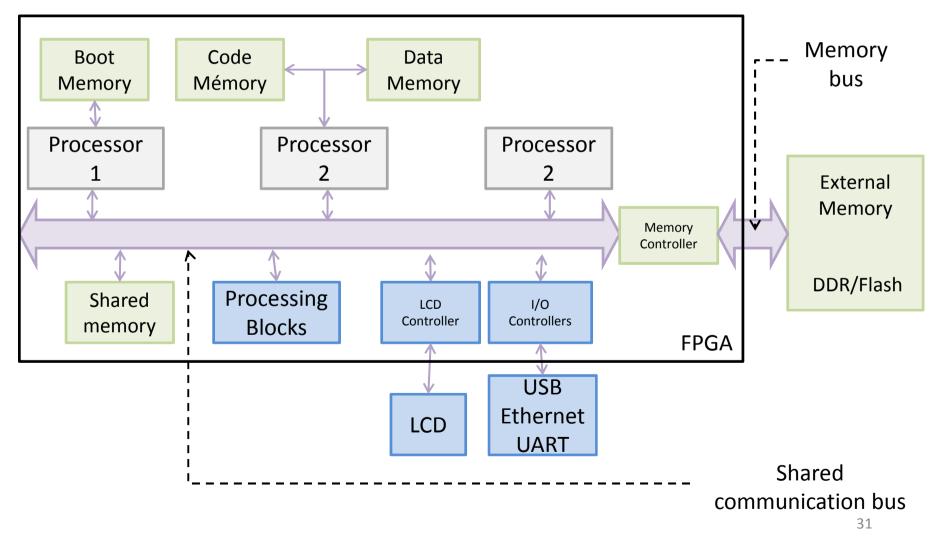
## Secure loading time

• For application code transferred from flash to the output of the crypto core

|      | No         |       | U              | niform                 |          |            | Programmable |         |          |  |
|------|------------|-------|----------------|------------------------|----------|------------|--------------|---------|----------|--|
|      | protection |       | $\mathbf{pro}$ | otection               |          | protection |              |         |          |  |
| App. | Time (ms)  |       | Tiı            | me (ms)                |          |            | Tii          | me (ms) |          |  |
|      |            | Load  | Exec           | $\operatorname{Total}$ | Overhead | Load       | Exec         | Total   | Overhead |  |
| Img. | 19.84      | 20.36 | 1.51           | 21.87                  | 10.21%   | 20.36      | 1.05         | 21.41   | 7.92%    |  |
| VOD  | 37.32      | 38.30 | 2.87           | 41.17                  | 10.32%   | 38.30      | 2.41         | 40.71   | 9.07%    |  |
| Com. | 17.46      | 17.92 | 1.34           | 19.26                  | 10.33%   | 17.92      | 1.34         | 19.26   | 10.33%   |  |
| Hash | 22.48      | 22.91 | 1.73           | 24.64                  | 9.62%    | 22.91      | 1.73         | 24.64   | 9.62%    |  |

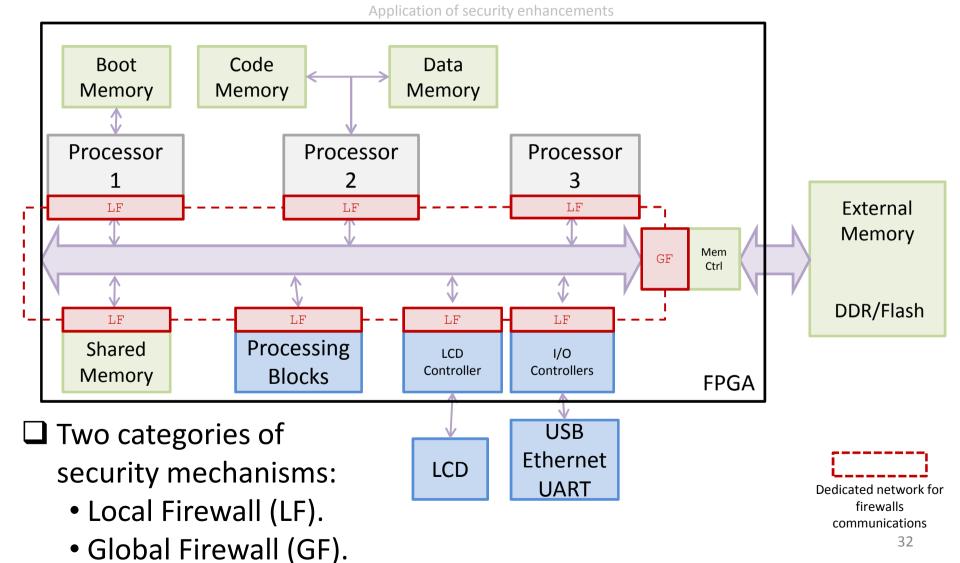
Load indicates the amount of time to load the application from flash and

decrypt/authenticate it using the GCM policy.


Exec indicates the amount of time needed to reencrypt and generate authentication tags for the application using the GCM policy.

### Outline

- 1) Global picture
- 2) Memory protection
- 3) Boot protection
- 4) Experimental setup & results
- 5) Communication protection: first ideas
- 6) Conclusion


#### A Multi-Processors Architecture with Secured Communications (1/3)

Inter-communication model

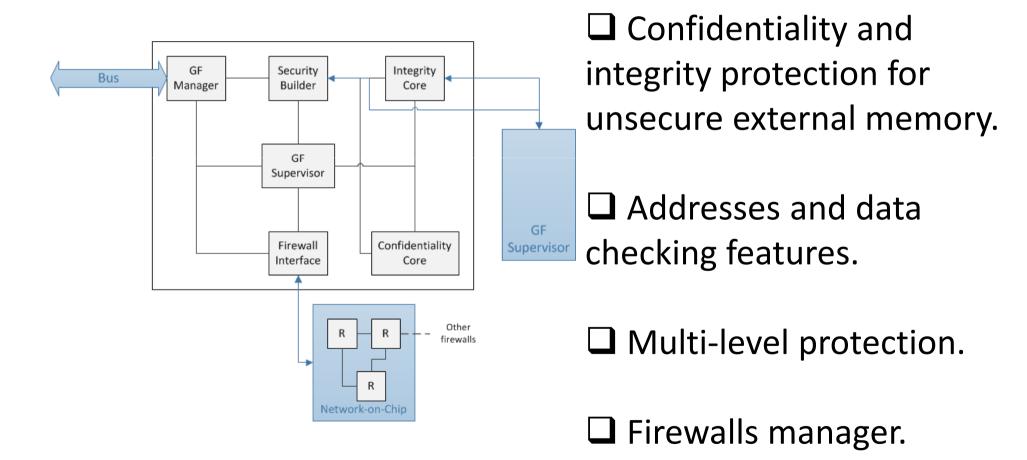


## A Multi-Processors Architecture with Secured

#### Communications (2/3)

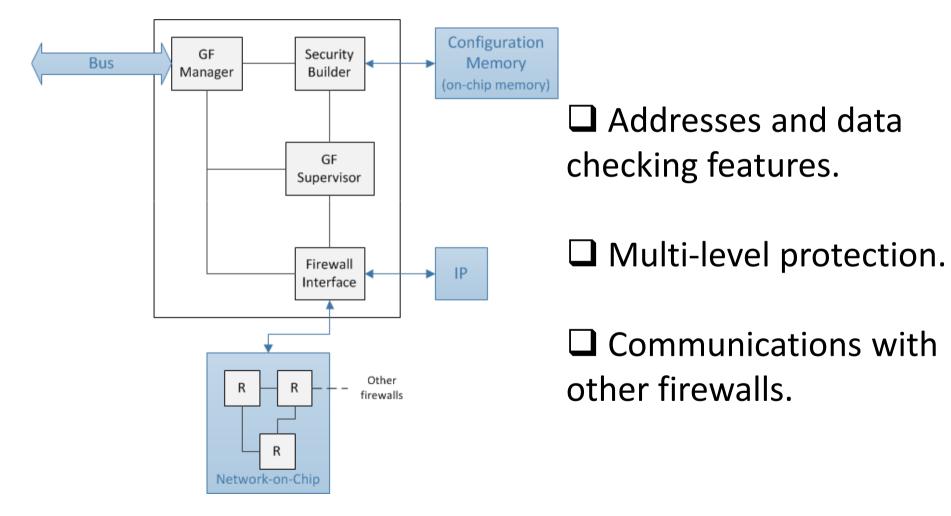


### A Multi-Processors Architecture with Secured Communications (3/3)


What do we mean by a security policy ?

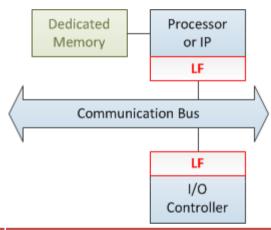
#### □ A security policy can be defined by several parameters:

- Read/Write access rights.
- Allowed data characteristics (format and value).
- Tags associated with each firewall.
- Address spaces where security policies are applicable.
- □ Parameters specific to the external memory:
  - Confidentiality (use of a ciphering algorithm such as AES, RSA...).
  - Integrity (can be done in association with the ciphering : AES-CMAC, AES-GCM...).
- A security policy can be applied on discontinuous address spaces.
  A functional block of the architecture can require more than one security policy.
- □ Security policies are adaptative (fitting with new standards). <sup>33</sup>


## Firewalls features description (1/2)

Security services provided by Global Firewall

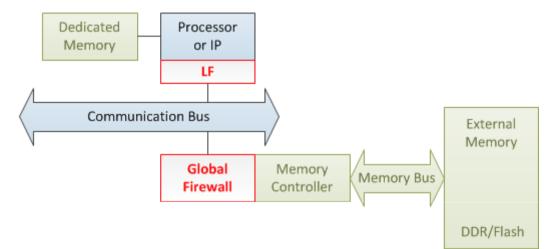



## Firewalls features description (2/2)

Security services provided by Local Firewall



## Firewalls behavioural scenarios (1/2)


Scenario 1: communication between two Local Firewalls



| Controls done the at the source | Description & comments                    |
|---------------------------------|-------------------------------------------|
| Existence of target IP address  | Aims to cover spoofing/relocation.        |
| Read/Write access rules         | Protects from illegal accesses.           |
| Allowed data format             | Similar to buffer overflow.               |
| Controls done at the target     | Description & comments                    |
| Source ID                       | Authenticity-like feature.                |
| Existence of the section needed | Aims to cover spoofing/relocation.        |
| Allowed data values             | An abnormal value can cause malfunctions. |

## Firewalls behavioural scenarios (2/2)

Scenario 2: communication between a Local Firewall and the Global Firewall



| Controls done the at the source | Description & comments                      |
|---------------------------------|---------------------------------------------|
| Existence of DDR address        | Aims to cover spoofing/relocation.          |
| Allowed data format             | Similar to buffer overflow.                 |
| Controls done at the target     | Description & comments                      |
| Source ID                       | Authenticity-like feature.                  |
| Existence of the section needed | Aims to cover spoofing/relocation.          |
| Read/Write access rules         | Protect from illegal accesses.              |
| Confidentiality / Integrity     | Aims to cover replay (for read/write data). |

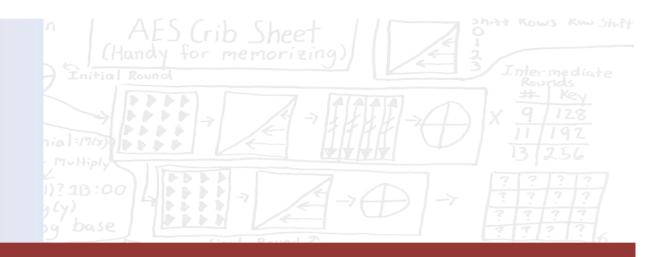
## **Security flows**

Connections between firewalls

□ Firewalls are considered as "security sensors":

- A processor dedicated to security services is like a "megasupervisor" of the system (other protection can be managed).
- The Global Firewall is the manager of all Local Firewalls.
- Security-related information goes through a NoC dedicated for firewall communications.

### □ Reconfiguration flow:


- The processor dedicated to security services is responsible for reconfiguring security policies of the Global Firewall.
- Global Firewall can reconfigure Local Firewall security parameters through the dedicated network.

### Outline

- 1) Global picture
- 2) Memory protection
- 3) Boot protection
- 4) Experimental setup & results
- 5) Communication protection: first ideas
- 6) Conclusion

## Conclusion

- Global approach for data and communication protection
  - Based on hardware resources, no modification of the OS / Low latency solution
- Reconfigurable security policy to set up a security on an application basis (thread level)
   Need of monitoring
- Secure execution in a multiprocessor context (cache coherency)



## Data and communication protection in reconfigurable embedded systems

Jérémie Crenne, Pascal Cotret, Guy Gogniat, Russel Tessier, Jean-Philippe Diguet





и в s de Bretagne-Sud

