Sécurité des Circuits FPGAs en arbre

Projet ANR ARFU7 « SeFPGA »

LIP6: E. Amouri, Z. Marrakchi, H. Mrabet et H. Mehrez

TELECOM ParisTech: J-L Danger, T. Graba, Y. Mathieu, S. Guilley, S. Somsavaddy, F. Flament, S. Bhasin et N. Selmane

- Etat de l'art
- Architecture arborescente Multi niveaux MFPGA
- Partitionnement et placement contraints
- Routage balance-timing-driven

• Cryptographie: l'art de chiffrer des messages pour les rendre incompréhensibles par des personnes n'ayant pas la clé de chiffrement

• Applications cryptographiques: carte bancaire, carte de santé, carte de transport, carte de télévision à péage, carte téléphonique prépayé...

 Algorithmes cryptographiques sont sécurisés au niveau mathématiques (DES, AES ...)

• Mais: leur implémentation physique dévoile des informations reliées à la clé secrète

 Attaques par canaux cachés (temps d'exécution, consommation de courant, radiation électromagnétique)

 DPA (Differential Power Analysis): proposée par Paul Kocher, 1999

 Attaques par canaux cachés (temps d'exécution, consommation de courant, radiation électromagnétique)

 DPA (Differential Power Analysis): proposée par Paul Kocher, 1999

• Basée sur une analyse statistique des profils en consommation de courant du circuit intégré

• Exploite la corrélation entre la puissance consommée et l'activité du circuit

• Transitions $0 \rightarrow 1$ et $1 \rightarrow 0$ consomment différemment

 Attaques par canaux cachés (temps d'exécution, consommation de courant, radiation électromagnétique)

 DPA (Differential Power Analysis): proposée par Paul Kocher, 1999

• Basée sur une analyse statistique des profils en consommation de courant du circuit intégré

• Exploite la corrélation entre la puissance consommée et l'activité du circuit

- Transitions $0 \rightarrow 1$ et $1 \rightarrow 0$ consomment différemment
- Contres mesures: chercher à rendre la consommation de courant indépendante des données

Etat de l'art

Architecture arborescente Multi niveaux MFPGA

Partitionnement et placement contraints

Routage balance-timing-driven

WDDL (Wave Dynamic Differential Logic)

- Technique **WDDL**: proposée par Kris Tiri (2004)
- **Principe**: *rendre la consommation de courant constante (indépendante des données)*
- Duplication de la netlist en deux parties « True » et « False »

WDDL (Wave Dynamic Differential Logic)

 $T(a_T, b_T) = \overline{F}(a_F, b_F)$

Activité constante du circuit

Nombre de Commutations = 3 = constante

WDDL (Wave Dynamic Differential Logic)

 Problématique: Les signaux duaux doivent être équilibrés en termes de temps de propagation et de consommation de courant

 DES WDDL a été attaqué avec succès par Laurent Sauvage et al. (2009) par attaque EMA (ElectroMagnetic Analysis)

S Nécessité de placement et de routage équilibré

WDDL (Placement et routage équilibrés) (Travaux précédents)

ASICs

✤ Fat Wire : Kris Tiri (CHES, 2005)

- Fat Wire = ensemble des deux signaux duaux
- Transformation de deux signaux duaux en un seul signal
- routage du circuit avec le Fat Wire
- Décomposition du signal Fat Wire après le routage

ASICs

Backend Duplication : Sylvain Guilley et al. (CHES, 2005)

• Placement et routage d'une sous-netlist (True ou False)

•Translation des cellules et des fils de routage

FPGAs

Double WDDL (DWDDL) : Patrick Schaumont

- Duplication du circuit WDDL
- Les réseaux « True » et « False » sont inversés entre les deux circuits WDDL
- Copie du placement et routage du circuit WDDL direct
- *Inconvénient*: doubler la surface du circuit WDDL

Double WDDL (DWDDL) Patrick Schaumont

 Inter-changer les portes ET et les portes OU

Double WDDL (DWDDL) Patrick Schaumont

Consommation de courant pour les circuits SE (Single Ended), WDDL et DWDDL

FPGAs

*Path Switching Dual Rail: Baddam et Zwolinski

- Utilisation des XOR: surface réduite et moins de connexion
- le signal switch path est aléatoire
- But: rendre la consommation aléatoire

• lorsque le signal switch path change d'état, les chemins True et False sont inversés, mais la fonctionnalité ne change pas grâce à une inversion à la fin des chemins (juste avant la destination)

FPGAs

Dual Placement: Sylvain GUILLEY

- Mettre les cellules duales dans un même LAB (ALtera) et dans un même Slice (Xilinx)
- Résultat: améliorer l'équilibre entre les signaux duaux en termes de temps de propagation.

Technique de contre-mesure: WDDL

Architecture arborescente Multi niveaux MFPGA

Partitionnement et placement

Routage balance-timing-driven

Topologie des FPGAs

04/12/2010

Hierarchical Topology for FPGA

Mesh-based architecture The number of segments in series has a linear growth with d Tree-based architecture The number of segments in series has a logarithmic growth with d

Experimental results

30 Benchmark circuits: MCNC, ITC, ISCAS, Opencores

Area is reduced by 54% compared to Mesh-based architecture

Architecture arborescente Multi niveaux MFPGA

- Architecture hiérarchique multi niveaux
- Blocs logiques sont placés au niveau le plus bas de l'hiérarchie
- Fils et switches unidirectionnels
- Deux réseaux d'interconnexion:
 - Réseau d'interconnexion descendant
 - Réseau d'interconnexion montant

MFPGA: Réseau d'interconnexion descendant

Réseau d'interconnexion descendant au niveau 0

MFPGA: Réseau d'interconnexion descendant

Réseau d'interconnexion descendant au niveau 1

MFPGA: Réseau d'interconnexion montant

Réseaux d'interconnexion descendant et montant

Technique de contre-mesure: WDDL

Architecture arborescente Multi niveaux MFPGA

Partitionnement et placement

Routage balance-timing-driven

Partitionnement et placement contraints

Partitionnement:

- décomposer une netlist de blocs logiques en clusters de taille égale
- objectif: minimiser les communications externes entre les clusters
- basé sur l'approche « top down » récursive

Placement: choisir des endroits spécifiques sur le FPGA pour les blocs logiques

Flot de conception

Métrique d'évaluation de l'équilibre du circuit WDDL

Evaluation de l'équilibre des signaux duaux :

calculer pour chaque deux connexions duales:

 $\Delta delay = |delay(true) - delay(false)|$

- *delay* : délai de l'interconnexion
 - modèle Elmore
 - technologie 130 nm

Modèle du délai

Modèle Elmore

 Les résistances et les capacités des fils sont proportionnels à leurs longueurs

• La longueur du fil dépend de son niveau dans l'architecture, de sa direction (montant ou descendant), sa source, sa destination et de l'arité de l'architecture

• Le routeur construit l'arbre de routage et calcule les longueurs de tous les fils

 Après le routage d'un net, le routeur crée un arbre RC associé, et calcule le temps de propagation entre la source et chaque destination

Facteurs du déséquilibre dans l'architecture MFPGA

Différence entre les longueurs des fils d'un même niveau

Fig.1: Différence de délais entre les feedbacks de longueur maximale et minimale en fonction du niveau de l'architecture

Facteurs du déséquilibre dans l'architecture MFPGA

Différence du nombre de niveaux (nombre de switches) utilisés pour le routage des signaux duaux

Fig. 2: Délai moyen d'un net en fonction du nombre de niveaux (nombre de switches) utilisés pour le routage

Placement Symétrique

Placement Symétrique

Résultats du placement ($\Delta delay$) (en ps) de DES-WDDL

(a) Placement sans Contraintes

(b) Placement Symétrique

Des S-Box	Max	Mean	Std Dev	Des S-Box	Max	Mean	Std Dev
# 1	8345	1595	1772	# 1	4832	1160	915
# 2	8428	1594	1873	# 2	3040	890	742
#3	8273	1439	1843	# 3	3671	1172	1051
# 4	8147	1706	1973	# 4	6854	1178	859
# 5	8851	1584	1830	# 5	6421	1025	1021
# 6	7456	1747	1571	# 6	3470	915	772
# 7	8838	1669	1887	# 7	5994	888	887
# 8	7321	2071	1879	# 8	4923	1209	1072
Des S-Boxes	8851	1671	1890	Des S-Boxes	6854	1054	941
DES WDDL	9357	1711	1874	DES WDDL	8039	1133	987

Gain : • Délai moyen du DES WDDL réduit de 33 %

Nombre de connexions déséquilibrés en termes de nombre de switches réduit de 1948 à 210

Placement Adjacent

Placement Adjacent

Résultats du placement ($\Delta delay$) (en ps) de DES-WDDL

(a) Placement sans Contraintes

(b) Placement Adjacent

Des S-Box	Max	Mean	Std Dev	Des S-Box	Max	Mean	Std Dev
# 1	8345	1595	1772	# 1	4017	626	772
# 2	8428	1594	1873	# 2	3951	449	598
# 3	8273	1439	1843	#3	5205	607	776
# 4	8147	1706	1973	# 4	3440	417	480
# 5	8851	1584	1830	# 5	4777	480	532
# 6	7456	1747	1571	# 6	3027	532	514
# 7	8838	1669	1887	# 7	3893	591	632
# 8	7321	2071	1879	# 8	3530	435	469
Des S-Boxes	8851	1671	1890	Des S-Boxes	5205	517	620
WDDL design	9357	1711	1874	WDDL design	7137	479	587

Gain : • Délai moyen du DES WDDL réduit de 72 %

 Nombre de connexions déséquilibrés en termes de nombre de switches réduit de 1948 à 146

PLAN

Contexte

Technique de contre-mesure: WDDL

Architecture arborescente Multi niveaux MFPGA

Partitionnement et placement contraints

Routage balance-timing-driven

Routage Pathfinder

Objectif : router les signaux avec le chemin le plus court (le minimum de ressources de routage)

Principe :

- Algorithme itératif
- Fonction de coût = coût de congestion de la ressource

Routage timing_balance-driven

Routage Pathfinder

Objectif : router les signaux avec le chemin le plus court (le minimum de ressources de routage)

Principe :

- Algorithme itératif
- Fonction de coût = coût de congestion de la ressource

Routage *timing_balance-driven*

Objectif : router les signaux en équilibrant les temps de propagation de deux signaux duaux

Routage timing_balance-driven

Principe :

- Basé sur l'algorithme itératif Pathfinder
- Nouvelle *fonction de coût* tient en compte de :
 - la *congestion* des ressources
 - la *différence de délai* entre les connexions duales
 - la *différence en nombre de switches* entre les connexions duales
- Donner la priorité aux connexions les plus critiques (Δdelay important)

Résultats du routage (en ps) de DES- WDDL avec placement adjacent

(a) Routage Pathfinder

	Max	Mean	Std Dev
Des S-Boxes	5205	517	620
DES WDDL	7137	479	587

(b) Routage timing-balance-driven

	Max	Mean	Std Dev
Des S-Boxes	1505	193	226
DES WDDL	1505	160	184

- Gain :

 64 % de délai moyen du DES WDDL (vs. placement adjacent et routage Pahfinder)
 - 90 % de délai moyen du DES WDDL (vs. Placement sans contraintes et routage Pathfinder)
 - Nombre de connexions déséquilibrés en termes de nombre de switches réduit à 2

Conclusion & Perspectives

- Placement adjacent
- Routage timing-balance-driven
 - Gain (DES WDDL) :
 - $\Delta delay$ moyen réduit de 90 % (1711 ps à 160 ps)

 Nb. de connexions déséquilibrés en termes de nombre de switches réduit de 1947 à 2

Conclusion & Perspectives

- Placement adjacent
- Routage timing-balance-driven
 - Gain (DES WDDL) :
 - $\Delta delay$ moyen réduit de 90 % (1711 ps à 160 ps)
 - Nb. de connexions déséquilibrés en termes de nombre de switches réduit de 1947 à 2

Perspectives :

- Améliorer les outils de placement et de routage
- Equilibrer la consommation de courant entre les signaux duaux
- Appliquer les méthodes proposées sur un circuit réel (en cours de conception)

Merci pour votre attention

Communauté et Conférences

Equipe Française: SEN de ENST

Equipes Internationales: Jonathan Rose (Université de Toronto), Kris Tiri (Intel, Oregon), Patrick Schaumont (Virginia Tech), EmSec (Ingrid Verbauwhede, UCLA)

Communauté et Conférences

Equipe Française: SEN de ENST

Equipes Internationales: Jonathan Rose (Université de Toronto), Kris Tiri (Intel, Oregon), Patrick Schaumont (Virginia Tech), EmSec (Ingrid Verbauwhede, UCLA)

> Conférences :

- ReConFig (International Conference on Reconfigurable Computing and FPGAs)
- FPT (International Conference on Field-Programmable Technology)
- ICECS (IEEE International Conference on Electronic Circuits and Systems)
- ICM (International Conference on Microelectronics)
- HOST (IEEE International Workshop on Hardware-Oriented Security and Trust)
- CHES (Workshop on Cryptographic Hardware and Embedded Systems)