Cartographie Électromagnétique pour la Cryptanalyse Physique

Laurent Sauvage

Institut TELECOM / TELECOM-ParisTech CNRS – LTCI (UMR 5141)

Journée Sécurité du GdR SoC-SiP - Mercredi, 18 mai 2011

Sommaire

- 2 Attaques par Cartographie EM de Cryptoprocesseurs 3DES
 - Cryptoprocesseur non Protégé
 - Cryptoprocesseur Protégé par WDDL
 - Cryptoprocesseur Protégé par Masquage Booléen

Introduction

Attaques par Cartographie EM de Cryptoprocesseurs 3DES Conclusion et Perspectives

Sommaire

2 Attaques par Cartographie EM de Cryptoprocesseurs 3DES
 • Cryptoprocesseur non Protégé

- Cryptoprocesseur Protégé par WDDL
- Cryptoprocesseur Protégé par Masquage Booléen

ntroductio

Attaques par Cartographie EM de Cryptoprocesseurs 3DES Conclusion et Perspectives

Des Systèmes Embarqués Omniprésents...

- iPad
- Smart Phones
- Cartes bancaires
- Télévision à péage
- Passe Navigo
- Téléphone portable chiffrant
- Drone militaire

ntroduction

Attaques par Cartographie EM de Cryptoprocesseurs 3DES Conclusion et Perspectives

... et Leurs Applications Cryptographiques Menacées.

Attaques par Injection de Fautes

- Variation de la tension, fréquence, température
- Tir Laser
- Décharges électrostatiques

ntroduction

Attaques par Cartographie EM de Cryptoprocesseurs 3DES Conclusion et Perspectives

... et Leurs Applications Cryptographiques Menacées.

Attaques par Injection de Fautes

- Variation de la tension, fréquence, température
- Tir Laser
- Décharges électrostatiques

Attaques par Canal Auxiliaire

- Durée des opérations
- Consommation en courant

イロト イヨト イヨト イヨト

 Radiations électromagnétiques

Cartographie EM pour la Cryptanalyse Physique

Introductio

Attaques par Cartographie EM de Cryptoprocesseurs 3DES Conclusion et Perspectives

Globalité vs Localité

Sonde EM

・ロト ・回ト ・ヨト

Mesure globale du rayonnement EM.

Cartographie EM pour la Cryptanalyse Physique

6/43

3

Introductio

Attaques par Cartographie EM de Cryptoprocesseurs 3DES Conclusion et Perspectives

Globalité vs Localité

Mesure locale du rayonnement EM.

Cartographie EM pour la Cryptanalyse Physique

Э

ヘロ・スピ・スピ・スピ・

ntroduction

Attaques par Cartographie EM de Cryptoprocesseurs 3DES Conclusion et Perspectives

Des Méthodes de Localisation Nécessaires

FPGA Stratix décapsulé à l'aide de produits chimiques.

Cartographie EM pour la Cryptanalyse Physique

itroductior

Attaques par Cartographie EM de Cryptoprocesseurs 3DES Conclusion et Perspectives

Principe de la Cartographie

En chacune des $N_P = N_X \times N_Y$ positions (x, y), N_O observations $O^o_{(x,y)}$ de N_S échantillons temporels n sont réalisées.

< D > < B > < E >

3

Introduction Cryptoprocesseur non Protégé Attaques par Cartographie EM de Cryptoprocesseurs 3DES Conclusion et Perspectives Cryptoprocesseur Protégé par Masquage Booléen

Sommaire

2 Attaques par Cartographie EM de Cryptoprocesseurs 3DES

- Cryptoprocesseur non Protégé
- Cryptoprocesseur Protégé par WDDL
- Cryptoprocesseur Protégé par Masquage Booléen

Cryptoprocesseur non Protégé Cryptoprocesseur Protégé par WDDL Cryptoprocesseur Protégé par Masquage Booléen

Photographie aux rayons X du boîtier du FPGA ALTERA Stratix EP1S25

1 LAB est large de 205 μ m, haut de 290 μ m.

Cartographie EM pour la Cryptanalyse Physique

イロト イヨト イヨト イヨト

Cryptoprocesseur non Protégé Cryptoprocesseur Protégé par WDDL Cryptoprocesseur Protégé par Masquage Booléen

Floorplan du SoPC EveSoc programmé dans un Stratix

Cartographie EM pour la Cryptanalyse Physique

Э

ヘロ・スピ・スピ・スピ・

Cryptoprocesseur non Protégé Cryptoprocesseur Protégé par WDDL Cryptoprocesseur Protégé par Masquage Booléen

Attaque par EMA Globale

Trace des radiations EM au-dessus d'un condensateur de découplage.

3

・ロト ・回ト ・ヨト

Cryptoprocesseur non Protégé Cryptoprocesseur Protégé par WDDL Cryptoprocesseur Protégé par Masquage Booléen

Cartographie EM dans le Domaine Temporel

Valeur Moyenne

$$\mathcal{M}: \mathbb{R}^{N_{S}} \to \mathbb{R}$$
$$O_{(x,y)}^{0} \mapsto \frac{1}{N_{S}} \sum_{n=0}^{N_{S}-1} O_{(x,y)}^{0}(n)$$

Composante continue non mesurée car la bande passante s'étend de 100 kHz à 3 GHz.

Cryptoprocesseur non Protégé Cryptoprocesseur Protégé par WDDL Cryptoprocesseur Protégé par Masquage Booléen

Cartographie EM dans le Domaine Temporel

Perte de l'information sur la polarité du champ EM.

Image: A mathematical states and a mathem

Cartographie EM pour la Cryptanalyse Physique

14/43

Cryptoprocesseur non Protégé Cryptoprocesseur Protégé par WDDL Cryptoprocesseur Protégé par Masquage Booléen

Cartographie EM dans le Domaine Temporel

Cartographie EM pour la Cryptanalyse Physique

Cryptoprocesseur non Protégé Cryptoprocesseur Protégé par WDDL Cryptoprocesseur Protégé par Masquage Booléen

Cartographie EM dans le Domaine Temporel

Dynamiques de -0,46 et 1,78 : les valeurs absolues passent d'un écart nul à un écart de 1,32.

Cartographie EM pour la Cryptanalyse Physique

15/43

Cryptoprocesseur non Protégé Cryptoprocesseur Protégé par WDDL Cryptoprocesseur Protégé par Masquage Booléen

Cartographie EM dans le Domaine Temporel

Dynamique du signal EM

$$egin{array}{rcl} \mathcal{M}:&\mathbb{R}^{N_{\mathcal{S}}}& o&\mathbb{R}\ &O^{0}_{(x,y)}&\mapsto&\mathsf{max}(O^{0}_{(x,y)})-\mathsf{min}(O^{0}_{(x,y)}) \end{array}$$

Cryptoprocesseur non Protégé Cryptoprocesseur Protégé par WDDL Cryptoprocesseur Protégé par Masquage Booléen

Cartographie EM dans le Domaine Temporel

Différence des dynamiques du signal EM

$$\mathcal{M}: \mathbb{R}^{2N_{5}} \xrightarrow{\rightarrow} \mathbb{R}$$
$$(O_{(x,y)}^{0}, O_{(x,y)}^{1}) \xrightarrow{\rightarrow} \mathcal{D}(O_{(x,y)}^{1}) - \mathcal{D}(O_{(x,y)}^{0})$$

Module inactif durant $O^0_{(x,y)}$, actif durant $O^1_{(x,y)}$.

<ロ> <四> <四> <四> <三< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< =< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=<

Cryptoprocesseur non Protégé Cryptoprocesseur Protégé par WDDL Cryptoprocesseur Protégé par Masquage Booléen

Cartographie EM dans le Domaine Temporel

Différence des dynamiques du signal EM

$$\mathcal{M}: \begin{array}{ll} \mathbb{R}^{2N_{\mathcal{S}}} & \to & \mathbb{R} \\ (O_{(x,y)}^{0}, O_{(x,y)}^{1}) & \mapsto & \mathcal{D}(O_{(x,y)}^{1}) - \mathcal{D}(O_{(x,y)}^{0}) \end{array}$$

Module inactif durant $O^0_{(x,y)}$, actif durant $O^1_{(x,y)}$.

Cartographie EM pour la Cryptanalyse Physique

Cryptoprocesseur non Protégé Cryptoprocesseur Protégé par WDDL Cryptoprocesseur Protégé par Masquage Booléen

Cartographie EM dans le Domaine Temporel

Trace complète des radiations EM au-dessus du cryptoprocesseur 3DES non protégé.

Introduction	
Attaques par Cartographie EM de Cryptoprocesseurs 3DES	Cryptoprocesseur Protégé par WDDL
Conclusion et Perspectives	Cryptoprocesseur Protégé par Masquage Booléen

Inconvénients

- Le rapport signal à bruit (SNR) de mesure doit être suffisamment grand ;
- Les instants d'activité / repos de la cible doivent être connus.

Introduction	
Attaques par Cartographie EM de Cryptoprocesseurs 3DES	Cryptoprocesseur Protégé par WDDL
Conclusion et Perspectives	Cryptoprocesseur Protégé par Masquage Booléen

Inconvénients

- Le rapport signal à bruit (SNR) de mesure doit être suffisamment grand ;
- Les instants d'activité / repos de la cible doivent être connus.

Domaine fréquentiel

- Limitation à une bande de fréquence où le SNR est satisfaisant;
- Parfaite synchronisation inutile.

Cryptoprocesseur non Protégé Cryptoprocesseur Protégé par WDDL Cryptoprocesseur Protégé par Masquage Booléen

Cartographie EM dans le Domaine Fréquentiel

Module de la Transformée de Fourier Discrète $\mathcal{M}: \mathbb{R}^{N_{S}} \to \mathbb{R}$ $O_{(x,y)}^{0} \mapsto \left| \sum_{n=0}^{N_{S}-1} O_{(x,y)}^{0}(n) \cdot e^{-2i\pi k \frac{n}{N_{S}}} \right|$

Composante à 20 MHz (k=2097), module de test en position NO.

イロト イヨト イヨト イヨト

Cartographie EM pour la Cryptanalyse Physique

20/43

Cryptoprocesseur non Protégé Cryptoprocesseur Protégé par WDDL Cryptoprocesseur Protégé par Masquage Booléen

Cartographie EM dans le Domaine Fréquentiel

Décomposition de l'activité du module 3DES en le produit algébrique de deux autres activités.

Cryptoprocesseur non Protégé Cryptoprocesseur Protégé par WDDL Cryptoprocesseur Protégé par Masquage Booléen

Cartographie EM dans le Domaine Fréquentiel

Spectre fréquentiel d'un signal modulé en amplitude.

Cryptoprocesseur non Protégé Cryptoprocesseur Protégé par WDDL Cryptoprocesseur Protégé par Masquage Booléen

Cartographie EM dans le Domaine Fréquentiel

Composante à 19,800 MHz.

<ロ> <四> <四> <四> <三< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< =< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=< => <=<

Cartographie EM pour la Cryptanalyse Physique

Cryptoprocesseur non Protégé Cryptoprocesseur Protégé par WDDL Cryptoprocesseur Protégé par Masquage Booléen

Cartographie EM dans le Domaine Fréquentiel

Spectre fréquentiel autour de la fréquence cible pour le point d'intérêt.

Cryptoprocesseur non Protégé Cryptoprocesseur Protégé par WDDL Cryptoprocesseur Protégé par Masquage Booléen

Cartographie EM par Corrélations Croisées

Inconvénients des méthodes précédentes

- Nécessité de connaître l'activité du module à localiser (description matérielle, SPA / SEMA);
- En conséquence, analyse partielle.

イロト イヨト イヨト イヨト

Cryptoprocesseur non Protégé Cryptoprocesseur Protégé par WDDL Cryptoprocesseur Protégé par Masquage Booléen

Cartographie EM par Corrélations Croisées

Inconvénients des méthodes précédentes

- Nécessité de connaître l'activité du module à localiser (description matérielle, SPA / SEMA);
- En conséquence, analyse partielle.

Objectifs

- Localisation exhaustive des sources EM ;
- Sans connaissances préalables.

Cryptoprocesseur non Protégé Cryptoprocesseur Protégé par WDDL Cryptoprocesseur Protégé par Masquage Booléen

Cartographie EM par Corrélations Croisées

Fonction de corrélation croisée normalisée

$$\Gamma_{A,B}(d) = \frac{\frac{\operatorname{cov}(A,B_{-d})}{\sigma_{A} \cdot \sigma_{B}}}{\sum\limits_{n=d}^{d+\inf(n_{A},n_{B})-1} (A(n) - \overline{A(n)}) \cdot (B(n-d) - \overline{B(n)})} \\ = \frac{\sum\limits_{n=d}^{n-d} (A(n) - \overline{A(n)})^{2}}{\sqrt{\sum\limits_{n=0}^{n-1} (A(n) - \overline{A(n)})^{2}} \cdot \sqrt{\sum\limits_{n=0}^{n-1} (B(n-d) - \overline{B(n)})^{2}}}$$

Cryptoprocesseur non Protégé Cryptoprocesseur Protégé par WDDL Cryptoprocesseur Protégé par Masquage Booléen

Cartographie EM par Corrélations Croisées

Le point de référence est le centre (à gauche) ou au-dessus du module de test en position NO (à droite).

Cryptoprocesseur non Protégé Cryptoprocesseur Protégé par WDDL Cryptoprocesseur Protégé par Masquage Booléen

Cartographie EM par Corrélations Croisées

Fonction de corrélation croisée normalisée 2D

$$\Gamma^{2D}_{M,N}(p,q) = \frac{\operatorname{cov}(M, N_{(-p,-q)})}{\sum\limits_{p+\inf(N_{X_M}, N_{X_N})^{-1}q+\inf(N_{Y_M}, N_{Y_N})^{-1}}} \\ = \frac{\sum\limits_{x=p}^{\sum} \sum\limits_{y=q}^{y=q} (M(x,y) - \overline{M(x,y)}) \cdot (N(x-p,y-q) - \overline{N(x,y)})}{\sqrt{\sum\limits_{x=0}^{N_{X_M}} \sum\limits_{y=0}^{N_{Y_M}} (M(x,y) - \overline{M(x,y)})^2} \cdot \sqrt{\sum\limits_{x=0}^{N_{X_N}} \sum\limits_{y=0}^{N_{Y_N}} (N(x-p,y-q) - \overline{N(x,y)})^2}}$$

2

イロト イヨト イヨト イヨト

Cryptoprocesseur non Protégé Cryptoprocesseur Protégé par WDDL Cryptoprocesseur Protégé par Masquage Booléen

Cartographie EM par Corrélations Croisées

Zones principales identifiées par corrélations croisées pour le cryptoprocesseur 3DES non protégé.
 Introduction
 Cryptoprocesseur non Protégé

 Attaques par Cartographie EM de Cryptoprocesseurs 3DES Conclusion et Perspectives
 Cryptoprocesseur Protégé par WDDL

 Cryptoprocesseur Protégé par Masquage Booléen

Performance des attaques sur le cryptoprocesseur 3DES non protégé, en milliers de chiffrement

Analyse	S 1	S2	S 3	S4	S5	S6	S7	S8	Gain
CPA (globale)	478,7	197,0	464,1	614,7	418,9	709,1	348,3	134,0	÷ 1
CEMA globale	4,9	7,5	16,6	16,8	23,6	14,9	30,2	13,7	÷ 23
CEMA temporelle	1,9	7,6	1,5	3,8	2,1	1,2	1,2	0,2	÷ 93
CEMA fréquentielle	2,9	6,2	1,1	4,7	3,1	0,7	1,5	0,6	÷ 114
CEMA horloge 20 MHz		44,4	34,3		28,7				-

>100 000 chiffrements.

Cartographie EM pour la Cryptanalyse Physique

Cryptoprocesseur non Protégé Cryptoprocesseur Protégé par WDDL Cryptoprocesseur Protégé par Masquage Booléen

Logique Double-rail à Précharge

Schéma d'une porte logique ET en WDDL.

3

・ロン ・回 と ・ ヨ と ・ ヨ と …

Cryptoprocesseur non Protégé Cryptoprocesseur Protégé par WDDL Cryptoprocesseur Protégé par Masquage Booléen

Logique Double-rail à Précharge

Chronogrammes de fonctionnement d'une porte logique ET en WDDL.

32/43

3

イロト イヨト イヨト イヨト

Cryptoprocesseur non Protégé Cryptoprocesseur Protégé par WDDL Cryptoprocesseur Protégé par Masquage Booléen

Floorplan du SoPC EveSoc programmé dans un Stratix

Cartographie EM pour la Cryptanalyse Physique

Э

・ロト ・回ト ・ヨト ・ヨトー

Cryptoprocesseur non Protégé Cryptoprocesseur Protégé par WDDL Cryptoprocesseur Protégé par Masquage Booléen

Attaque par Analyse Fréquentielle

Distribution de la composante fréquentielle à 4,333 MHz au-dessus du cryptoprocesseur 3DES WDDL.

Cryptoprocesseur non Protégé Cryptoprocesseur Protégé par WDDL Cryptoprocesseur Protégé par Masquage Booléen

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Performance des attaques sur le cryptoprocesseur 3DES WDDL, en milliers de chiffrement

Analyse	S1	S2	S 3	S 4	S5	S6	S7	S8	Gain
CEMA HD 4 bit 3DES simple	2,6	5,4	1,4	4,9	3,1	3,6	2,8	0,6	$\times 1$
CEMA HW 1 bit 3DES WDDL	62,9	32,8	45,3	14,6	27,1	3,8	37,1	27,6	\times 12

Gain en sécurité : 12

Masquage à base de partage de secret

Un bit sensible *b* qui doit rester secret est séparé en plusieurs parts : un bit masqué b_m et *d* bits de masque $m_1, m_2, ..., m_d$ aléatoires, reliés entre eux par une relation de groupe * : $b = b_m * m_1 * m_2...$

Attaques d'Ordre Élevée

Combiner les instants de fuites $L(t_i)$ où sont manipulés la valeur masquée et les différents masques (produit, valeur absolue de la différence, valeur absolue de la différence élevée à une puissance, sinus, ...).

イロト イヨト イヨト イヨト

Cryptoprocesseur non Protégé Cryptoprocesseur Protégé par WDDL Cryptoprocesseur Protégé par Masquage Booléen

Chemin de données de notre implémentation 3DES protégée par masquage booléen

Cartographie EM pour la Cryptanalyse Physique

2

Cryptoprocesseur non Protégé Cryptoprocesseur Protégé par WDDL Cryptoprocesseur Protégé par Masquage Booléen

Placement des registres LR (bleue) et MLMR (rouge)

Cartographie EM pour la Cryptanalyse Physique

38/43

< ロ > < 回 > < 回 > < 回 >

Cryptoprocesseur non Protégé Cryptoprocesseur Protégé par WDDL Cryptoprocesseur Protégé par Masquage Booléen

Cartes obtenues par corrélations croisées

La complexité passe de C_{625}^2 dans notre cas à $C_{11}^2 = 55$.

Sommaire

1 Introduction

- 2 Attaques par Cartographie EM de Cryptoprocesseurs 3DES
 Cryptoprocesseur non Protégé
 - Cryptoprocesseur Protégé par WDDL
 - Cryptoprocesseur Protégé par Masquage Booléen

3 Conclusion et Perspectives

Conclusion

- 3 méthodes de localisation proposées
 - Temporelle : nécessite la connaissance des phases d'activité
 - Fréquentielle : nécessite de modéliser l'activité pour trouver une fréquence cible
 - Corrélations croisées
- Amélioration de la force des attaques
- 1 attaque du 2e ordre spatiale

- Corrélation : à reproduire dans le domaine fréquentiel
- WDDL : analyse à reproduire avec P&R vraiment différentiel
- Masquage : analyse à reproduire sans P&R

Merci pour votre attention, des questions ?

Cartographie EM pour la Cryptanalyse Physique

43/43