Cryptographie basée sur les codes correcteurs d'erreurs et arithmétique

Laboratoire Hubert Curien, UMR CNRS 5516. Bâtiment F 18 rue du professeur Benoît Lauras 42000 Saint-Etienne France

pierre.louis.cayrel@univ-st-etienne.fr

16 Novembre 2011

Errorcorrecting codes

Encryption with codes

Signature with codes

Identification with codes

Secret-key crypto with codes

Open problems

Syndrome decoding problem

Input.

t

- : matrix of size $r \times n$
- S : vector of \mathbb{F}_2^r
 - : integer
- **Problem.** Does there exist a vector e of \mathbb{F}_2^n of weight t such that :

• Problem NP-complete

E.R. BERLEKAMP, R.J. MCELIECE and H.C. VAN TILBORG 1978

Errorcorrecting codes

Encryption with codes

Signature with codes

Identification with codes

Secret-key crypto with codes

Open problems

Errorcorrecting codes

Encryption with codes

Signature with codes

Identificatio with codes

Secret-key crypto with codes

Open problems What can we do with this problem ?

encryption

signature

identification

hash function

• stream cipher

Pierre-Louis CAYREL

Menu

Identification with codes

Secret-key crypto with codes

Errorcorrecting codes

Encryption with codes

Signature with codes

Identificatio with codes

Secret-key crypto with codes

Open problems

Error-correcting codes

Encryption with codes

Signature with code

Identification with codes

Secret-key crypto with code

Open problems

Errorcorrecting codes

Encryption with codes

Signature with codes

Identification with codes

Secret-key crypto with codes

Open problems

Error-correcting codes

- make possible the correction of errors when the communication is done on a noisy channel.
 - we add redundancy to the information transmitted.

$$c = \boxed{m \ r} \longrightarrow \boxed{\begin{array}{c} \text{Noise} \\ \downarrow e \\ \hline \text{Channel} \end{array}} \longrightarrow y = c + e$$

- by correcting the errors when the message is corrupted.
- stronger than a control of parity, they can detect and correct errors. We use them :
 - DVD,CD : reduce the effects of dust ...
 - Phone : improve the quality of the communication.
 - cryptography ?

Errorcorrecting codes

Encryption with codes

Signature with codes

Identificatio with codes

Secret-key crypto with codes

Open problems

Linear codes

- most used in error correction
- error correcting codes for which redundancy depends linearly on the information
- can be defined by a generator matrix :
 - c is a word of the code C if and only if :

Figure: \mathcal{G} : generator matrix in systematic form

The generator matrix \mathcal{G} :

- is a $r \times n$ matrix;
- rows of \mathcal{G} form a basis for the code \mathcal{C} .

Errorcorrecting codes

Encryption with codes

Signature with codes

Identificatio with codes

Secret-key crypto with codes

Open problems

Minimum distance

- The Hamming weight of a word *c* is the number of non-zero coordinates.
- The minimum distance *d* of a code is the minimum of the Hamming weight between two words of the code.
- It is also the smallest weight of a non-zero vector.

Errorcorrecting codes

Encryption with codes

Signature with codes

Identification with codes

Secret-key crypto with codes

Open problems

The parity check matrix \mathcal{H} is orthogonal to \mathcal{G} :

- it's a $r \times n$ matrix;
- it's the generator matrix of the dual;
- the code C is the kernel of H.
 - $c \in C$ if and only if $\mathcal{H}c = 0$.
- $s = H \cdot c' = H \cdot c + H \cdot e$ is the syndrome of the error.

Encryption with codes

Errorcorrecting codes

Encryption with codes

Signature with codes

Identificatior with codes

Secret-key crypto with codes

Open problems

Code based cryptosystems

- introduced at the same time than RSA by McEliece
- + advantages :
 - faster than RSA ;
 - not based on number theory problem (PQ secure) ;
 - does not need cryptoprocessors ;
 - based on hard problem (syndrome decoding problem ...)
- disadvantages :
 - size of public keys (few hundred bits...)

Errorcorrecting codes

Encryption with codes

Signature with codes

Identificatio with codes

Secret-key crypto with codes

Open problems

cisco.

Point of View

Top 25 Technology Predictions By Dave Evans, Chief Futurist, Cisco IBSG Innovations Practice

- By 2029, 11 petabytes of storage will be available for \$100—equivalent to 600+ years of continuous, 24-hour-per-day, DVD-quality video. (Source: Cisco IBSG, 2009)
- In the next 10 years, we will see a 20-time increase in home networking speeds. (Source: Cisco IBSG, 2009)
- By 2013, wireless network traffic will reach 400 petabytes a month. Today, the entire global network transfers 9 exabytes per month. (Source: FCC Head Julius Genachowski)
- By the end of 2010, there will be a billion transistors per human—each costing one ten-millionth of a cent. (Sources: Intel Corporation; Cisco IBSG, 2006-2009; IBM)
- The Internet will evolve to perform instantaneous communication, regardless of distance. (Source: Cisco IBSG, 2009)
- The first commercial quantum computer will be available by mid-2020. (Source: Cisco IBSG, 2009)
- By 2020, a \$1,000 personal computer will have the raw processing power of a human brain. (Sources: Hans Moravec, Robotics Institute, Carnegie Mellon University, 1998; Cisco IBSG, 2006-2009)

Errorcorrecting codes

Encryption with codes

Signature with codes

Identification with codes

Secret-key crypto with codes

Open problems

How does the McEliece PKC work ?

- generate a code for which we have a decoding algorithm and G' the generator matrix.
 - this is the private key.
- transform \mathcal{G}' to obtain $\mathcal G$ which seems random.
 - this is the public key.
- encrypt a message *m* by computing :
 - $c' = m \times \mathcal{G} \oplus e$ with e a random vector of weight t.

Errorcorrecting codes

Encryption with codes

Signature with codes

Identification with codes

Secret-key crypto with codes

Open problems A dual construction using ${\mathcal H}$ instead of ${\mathcal G}$?

• Security equivalent to McEliece scheme.

• Private key :

- C a [n, r, d] code which corrects t errors,
- \mathcal{H}' a parity check matrix of \mathcal{C} ,
- a $r \times r$ invertible matrix Q,
- a $n \times n$ permutation matrix *P*.

• Public key : $\mathcal{H} = Q\mathcal{H}'P$.

• Encryption :

- $\phi_{n,t}: m \mapsto e$, with *e* of weight *t*.
- $e \mapsto y = \mathcal{H}e$

• Decryption : decode $Q^{-1}y = (Q^{-1}Q)\mathcal{H}'Pe$ in *Pe*, then $P^{-1}Pe$ gives *e*.

Errorcorrecting codes

Encryption with codes

Signature with codes

Identificatio with codes

Secret-key crypto with codes

Open problems

Arithmetic ?

- Encryption : $\mathcal{O}(n^2)$ binary operations : linear algebra, matrix-vector product
- Decryption : O(n²) binary operations : linear algebra, matrix-vector product and a bit more (root finding)
- Size of key : $r \times n$
- + very fast ;
- public key very big : about 500 000 bits for the original system!

Errorcorrecting codes

Encryption with codes

Signature with codes

Identification with codes

Secret-key crypto with codes

Open problems Hardware?

- Eisenbarth *et al.* "MicroEliece: McEliece for Embedded Devices", CHES'09.
- Shoufan *et al.* "A Novel Processor Architecture for McEliece Cryptosystem and FPGA Platforms", ASAP 2009
- Heyse. "Low-Reiter: Niederreiter Encryption Scheme for Embedded Microcontrollers", PQCrypto 2010
- Strenzke. "A Smart Card Implementation of the McEliece PKC", WISTP 2010
- Heyse. "CCA2 secure McEliece based on Quasi Dyadic Goppa Codes for Embedded Devices", PQCrypto 2011

Encryption with codes

	Method	Platform	Throughput bits/sec
8-bit μC	Niederreiter encryption	ATxMega256@32MHz	119,889
	Niederreiter decryption	AT×Mega256@32MHz	1.066
	McEliece encryption	AT×Mega192@32MHz	3.889
	McEliece decryption	ATxMega192@32MHz	2.835
	QD-McEliece encryption	ATxMega256@32MHz	6.481
	QD-McEliece decryption	ATxMega256@32MHz	1.229
	ECC-P160	ATMega128@8MHz	197/788 ¹
	RSA-1024 2 ¹⁶ + 1	ATMega128@8MHz	2,381/9,524 ¹
	RSA-1024 random	ATMega128@8MHz	93/373 ¹
FPGA	Niederreiter encryption	Spartan-3 2000-5	14,814,815
	Niederreiter decryption	Spartan-3 2000-5	723,545
	McEliece encryption	Spartan-3AN 1400-5	1,626,517
	McEliece decryption	Spartan-3AN 1400-5	161,829
	ECC-P160	Spartan-3 1000-4	31,200
	RSA-1024 random	Spartan-3E 1500-5	20,275

¹ For a fair comparison with our implementations running at 32MHz, timings at lower frequencies were scaled accordingly.

Figure: from Heyse's slides

Signature with codes

Signature with codes

Errorcorrecting codes

Encryption with codes

Signature with codes

Identificatio with codes

Secret-key crypto with codes

Open problems

- PKC \rightarrow signature.
 - RSA yes
 - McEliece and Niederreiter no directly

Errorcorrecting codes

Encryption with codes

Signature with codes

Identification with codes

Secret-key crypto with codes

Open problems

• Problem: McEliece and Niederreiter not invertible.

 if we take y ∈ 𝔽ⁿ₂ random and a code C[n, k, d] for which we are able to decode d/2 errors, it is almost impossible to decode y in a word of C.

Solution:

• the hash value has to be decodable !

Errorcorrecting codes

Encryptior with codes

Signature with codes

Identification with codes

Secret-key crypto with codes

Open problems

Errorcorrecting codes

Encryptior with codes

Signature with codes

Identificatio with codes

Secret-key crypto with codes

Open problems

Errorcorrecting codes

Encryption with codes

Signature with codes

Identification with codes

Secret-key crypto with codes

Open problems

- *d* the message to sign, we compute M = h(d)
- *h* a hash function with values in \mathbb{F}_2^r
 - we search $e \in \mathbb{F}_2^n$ of given weight t with $h(M) = \mathcal{H}e$
- let γ be a decoding algorithm

I ← 0

- 2 while h(M|i) is not decodable do $i \leftarrow i+1$
- (3) compute $e = \gamma(h(M|i))$

Figure: CFS signature scheme

• signer sends $\{e, j\}$ such that $h(M|j) = \mathcal{H}e$

Errorcorrecting codes

Encryption with codes

Signature with codes

Identification with codes

Secret-key crypto with codes

Open problems

- we need a dense family of codes : Goppa codes
- binary Goppa codes
 - t small
 - the probability for a random element to be decodable (in a ball of radius *t* centered on the codewords) is $\approx \frac{1}{n}$
- we take $n = 2^m, m = 16, t = 9$.
- we have 1 chance over 9! = 362880 to have a decodable word.

Errorcorrecting codes

Encryption with codes

Signature with codes

Identification with codes

Secret-key crypto with codes

Open problems


```
   t!t^2m^3
   12 \times 10^{11} op. \approx 1 min on FPGA

   (t-1) \times m + log_2 t
   131 bits

   t^2m
   1 296 op.

   tm2^m
   1 MB
```

- cons :
 - decode several words (t!) before to find a good one
 - 70 times slower than RSA
 - t small leads to very big parameters
 - public key of 1 MB

 \Rightarrow new PK size : several MB, time to sign : several weeks ...

 solution : use structured codes (smaller public key size around 720 KB) and a GPU to have a signature in less than 2 minutes ...

Errorcorrecting codes

Encryption with codes

Signature with codes

Identificatio with codes

Secret-key crypto with codes

Open problems

Arithmetic ?

- Signature : matrix-vector product, hash-function (matrix-vector product we will see it later), decoding algorithm (root finding of polynomial over \mathbb{F}_q)
- Verification : a hash-function and a matrix vector-product
- Size of key : r × n (big)
- + very fast verification : a hash value and a matrix vector product ;
- + one of the smallest signature size : around 150 bits ;
- public key big : about 1MB for the original system!
- signing process very long : around 2 minutes with a GPU !

Errorcorrecting codes

Encryption with codes

Signature with codes

Identification with codes

Secret-key crypto with codes

Open problems

Error-correcting codes

Encryption with codes

Signature with code

Identification with codes

Secret-key crypto with code:

Open problems

Errorcorrecting codes

Encryption with codes

Signature with codes

Identification with codes

Secret-key crypto with codes

Open problems

• zero-knowledge,

• the security is based on the syndrome decoding problem.

- Errorcorrecting codes
- Encryption with codes
- Signature with codes
- Identification with codes
- Secret-key crypto with codes
- Open problems

- generate a random matrix \mathcal{H} of size $r \times n$
- we choose an integer t which is the weight
 - this is the public key (\mathcal{H}, t)
- each user receive e of n bits and weight t.
 - this is the private key
- each user compute : S = He.
 - just once for $\mathcal H$ fixed
 - S is public

Errorcorrecting codes

Encryption with codes

Signature with codes

Identification with codes

Secret-key crypto with codes

Open problems

• The protocol is on λ rounds and each of them is defined as follows.

Errorcorrecting codes

Encryption with codes

Signature with codes

Identification with codes

Secret-key crypto with codes

Open problems

A chooses y of n bits randomly and a permutation σ of $\{1, 2, ..., n\}$. A sends to $B : c_1, c_2, c_3$ such that :

$$c_1 = h(\sigma | \mathcal{H}y); c_2 = h(\sigma(y)); c_3 = h(\sigma(y \oplus e))$$

commitment

Errorcorrecting codes

Encryption with codes

Signature with codes

Identification with codes

Secret-key crypto with codes

Open problems

A chooses y of n bits randomly and a permutation σ of $\{1, 2, ..., n\}$. A sends to $B : c_1, c_2, c_3$ such that :

$$c_1 = h(\sigma | \mathcal{H}y); c_2 = h(\sigma(y)); c_3 = h(\sigma(y \oplus e))$$

commitment

challenge

B sends to A a random $b \in \{0, 1, 2\}$.

Identification with codes

Three possibilities:

• if b = 0: A reveals y and σ **3** if b = 1: A reveals $(y \oplus e)$ and σ

(a) if b = 2: A reveals $\sigma(y)$ and $\sigma(e)$

A chooses y of n bits randomly and a permutation σ of $\{1, 2, ..., n\}$. A sends to $B: c_1, c_2, c_3$ such that :

$$c_1 = h(\sigma | \mathcal{H}y); c_2 = h(\sigma(y)); c_3 = h(\sigma(y \oplus e))$$

if b = 0 : B checks that c1. c2 are correct (a) if b = 1: B checks that c_1, c_3 are correct (a) if b = 2 : B checks that c_2, c_3 are correct and that $\omega(\sigma(e)) = t$

Errorcorrecting codes

Encryption with codes

Signature with codes

Identification with codes

Secret-key crypto with codes

Open problems • for each round : probability to cheat is $\frac{2}{3}$.

• for a security of $\frac{1}{2^{80}}$, we need 150 rounds.

Errorcorrecting codes

Encryption with codes

Signature with codes

Identification with codes

Secret-key crypto with codes

Open problems Idea : Replace the random matrix \mathcal{H} by the parity check matrix of a certain family of codes : *the double-circulant codes*.

- Let ℓ be an integer.
- $\bullet\,$ a random double circulant matrix $\ell \times 2\ell \; \mathcal{H}$ is defined as :

 $\mathcal{H} = (I|A)$,

where A is a cyclic matrix, of the form :

where $(a_1, a_2, a_3, \cdots, a_\ell)$ is a random vector of \mathbb{F}_2^ℓ .

• Store \mathcal{H} needs only ℓ bits.

Errorcorrecting codes

Encryption with codes

Signature with codes

Identification with codes

Secret-key crypto with codes

Open problems

- the minimum distance is the same as random matrices,
- the syndrom decoding is still hard,
- very interesting for implementation in low ressource devices.
- Let n equal 2ℓ
- Private data : the secret e of bit-length n.
- **Public data :** *n* bits (S of size ℓ and the first row of H, ℓ bits).
- at least $\ell = 347$ and t = 74 for a security of 2^{85}
- public and secret key sizes of n = 694 bits

Secret-key crypto with codes

Secret-key crypto with codes

Errorcorrecting codes

Encryption with codes

Signature with codes

Identification with codes

Secret-key crypto with codes

Open problems

Hash-function and pseudo-random number generator

DILBERT By Scott Adams

Errorcorrecting codes

Encryption with codes

Signature with codes

Identification with codes

Secret-key crypto with codes

Open problems

How to hash with codes ?

Errorcorrecting codes

Encryption with codes

Signature with codes

Identification with codes

Secret-key crypto with codes

Open problems

How to hash with codes ?

Errorcorrecting codes

Encryption with codes

Signature with codes

Identificatio with codes

Secret-key crypto with codes

Open problems

Errorcorrecting codes

Encryption with codes

Signature with codes

Identificatio with codes

Secret-key crypto with codes

Open problems

How to generate pseudo-random sequences ?

Errorcorrecting codes

Encryption with codes

Signature with codes

Identificatio with codes

Secret-key crypto with codes

Open problems

How to generate pseudo-random sequences ?

Errorcorrecting codes

Encryption with codes

Signature with codes

Identificatio with codes

Secret-key crypto with codes

Open problems

Error-correcting codes

Encryption with codes

Signature with code

Identification with codes

5

Secret-key crypto with codes

Errorcorrecting codes

Encryption with codes

Signature with codes

Identificatior with codes

Secret-key crypto with codes

Open problems

Encryption :

- Study of the QC/QD constructions ;
- Identity-based encryption.

Signature :

- FPGA implementation ;
- Smaller public keys.

Identification :

- 3-pass and soundness 1/2 ;
- Efficient implementation.

Secret-key :

- Fast schemes ;
- Study of side-channel attacks.

Errorcorrecting codes

Encryption with codes

Signature with codes

Identificatio with codes

Secret-key crypto with codes

Open problems

If you can't explain it **simply**, you don't understand it well enough.

- Albert Einstein

Errorcorrecting codes

Encryption with codes

Signature with codes

Identificatio with codes

Secret-key crypto with codes

Open problems

Back-up slides

• My publications in :

- encryption : page 49
- signature : page 50
- identification : page 53
- secret-key : page 55
- cryptanalysis : page 56
- others : page 57
- attack : page 58
- o constant weight encoder : page 60
- best weight : page 61

Errorcorrecting codes

Encryption with codes

Signature with codes

Identificatio with codes

Secret-key crypto with codes

Open problems

My contributions - Encryption

- Reducing Key Length of the McEliece Cryptosystem
 T. P. Berger, P.-L. Cayrel, P. Gaborit and A. Otmani
 AfricaCrypt 2009, LNCS 5580, pages 77-97, Springer-Verlag, 2009
 - McEliece/Niederreiter PKC: sensitivity to fault injection P.-L. Cayrel and P. Dusart FEAS 2010, IEEE
 - Implementation of the McEliece scheme based on compact (flexible) quasi-dyadic public keys *P.-L. Cayrel* and *G. Hoffman eSmart 2010 (not presented)*
 - Fault injection's sensitivity of the McEliece PKC P.-L. Cayrel and P. Dusart WEWoRC 2009, pages 84-88

Errorcorrecting codes

Encryption with codes

Signature with codes

Identificatio with codes

Secret-key crypto with codes

Open problems

My contributions - Signature - I

** Identity-based Identification and Signature Schemes using Error Correcting Codes

P.-L. Cayrel, P. Gaborit and M. Girault Identity-Based Cryptography, chapter 8, 2009

*** A New Efficient Threshold Ring Signature Scheme based on Coding Theory

C. Aguilar Melchor, P.-L. Cayrel, P. Gaborit and F. Laguillaumie IEEE Trans. Inf. Theory, number 57(7), pages 4833-4842, 2011

- Quasi Dyadic CFS Signature Scheme
 P.S.L.M. Barreto, P.-L. Cayrel, R. Misoczki and R. Niebuhr
 InsCrypt 2010, LNCS 6584, pages 336-349, Springer-Verlag, 2010
- * A Lattice-Based Threshold Ring Signature Scheme P.-L. Cayrel, R. Lindner, M. Rückert and R. Silva LatinCrypt 2010, LNCS 6212, pages 255-272, Springer-Verlag, 2010

Errorcorrecting codes

Encryption with codes

Signature with codes

Identificatio with codes

Secret-key crypto with codes

Open problems

My contributions - Signature - II

** A New Efficient Threshold Ring Signature Scheme based on Coding Theory

C. Aguilar Melchor, P.-L. Cayrel and P. Gaborit PQCrypto 2008, LNCS 5299, pages 1-16, Springer-Verlag, 2008

*** Secure Implementation of the Stern Signature Scheme for Low-Resource Devices

P.-L. Cayrel, P. Gaborit and E. Prouff CARDIS 2008, LNCS 5189, pages 191-205, Springer-Verlag, 2008

- Multi-Signature Scheme based on Coding Theory M. Meziani and P.-L. Cayrel ICCCIS 2010, pages 186-192
- Dual Construction of Stern-based Signature Schemes P.-L. Cayrel and S. M. El Yousfi Alaoui ICCCIS 2010, pages 369-374

My contributions - Signature - III

 An improved threshold ring signature scheme based on error correcting codes
 P.-L. Cayrel and S. M. El Yousfi Alaoui
 WISSec 2010 (not presented)

Identity-based identification and signature schemes using correcting codes P.-L. Cayrel, P. Gaborit and M. Girault

WCC 2007, pages 69-78

Codebased crvpto

Encryption with codes

Signature with codes

Identification with codes

Secret-key crypto with codes

Open problems

Errorcorrecting codes

Encryption with codes

Signature with codes

Identificatio with codes

Secret-key crypto with codes

Open problems

My contributions - Identification - I

- Improved identity-based identification and signature schemes using Quasi-Dyadic Goppa codes
 S. M. El Yousfi Alaoui, P.-L. Cayrel and M. Meziani ISA 2011, CCIS 200, pages 146-155, Springer-Verlag, 2011
- A zero-knowledge identification scheme based on the q-ary Syndrome Decoding problem
 P.-L. Cayrel, P. Véron and S. M. El Yousfi Alaoui
 SAC 2010, LNCS 6544, pages 171-186, Springer-Verlag, 2010
- Improved Zero-knowledge Identification with Lattices P.-L. Cayrel, R. Lindner, M. Rückert and R. Silva ProvSec 2010, LNCS 6402, pages 1-16, Springer-Verlag, 2010
- ** A Lattice-Based Batch Identification Scheme R. Silva, P.-L. Cayrel and R. Lindner ITW 2011, IEEE

Errorcorrecting codes

Encryption with codes

Signature with codes

Identification with codes

Secret-key crypto with codes

Open problems

My contributions - Identification - II

- Lattice-based Zero-knowledge Identification with Low Communication Cost *R. Silva, P.-L. Cayrel and R. Lindner* SBSEG 2011
- New results on the Stern identification and signature scheme P.-L. Cayrel Bulletin of the Transilvania University of Brasov, pages 1-4
- * Efficient implementation of code-based identification/signatures schemes

P.-L. Cayrel, S. M. El Yousfi Alaoui, Felix Günther, Gerhard Hoffmann and Holger Rother

WEWoRC 2011, pages 65-69

 New results on the Stern identification and signature scheme P.-L. Cayrel Colloque Franco Roumain de Mathématiques Appliquées page 53

Errorcorrecting codes

Encryption with codes

Signature with codes

Identificatio with codes

Secret-key crypto with codes

Open problems

My contributions - Secret-key

• 2SC: an Efficient Code-based Stream Cipher M. Meziani, P.-L. Cayrel and S. M. El Yousfi Alaoui ISA 2011, CCIS 200, pages 111-122, Springer-Verlag, 2011

 GPU Implementation of the Keccak Hash Function Family P.-L. Cayrel, G. Hoffmann and M. Schneider ISA 2011, CCIS 200, pages 33-42, Springer-Verlag, 2011

• Hash Functions Based on Coding Theory M. Meziani, S. M. El Yousfi Alaoui and P.-L. Cayrel WCCCS 2011, pages 32-37

Errorcorrecting codes

Encryption with codes

Signature with codes

Identificatio with codes

Secret-key crypto with codes

Open problems

My contributions - Cryptanalysis

E.

- ****** On Kabatianskii-Krouk-Smeets Signatures
 - P.-L. Cayrel, A. Otmani and D. Vergnaud WAIFI 2007, LNCS 4547, pages 237-251, Springer-Verlag, 2007
 - Improving the efficiency of GBA against certain structured cryptosystems

R.Niebuhr, P.-L. Cayrel and J. Buchmann WCC 2011, pages 163-172

• Attacking code/lattice-based cryptosystems using Partial Knowledge

R.Niebuhr, P.-L. Cayrel, S. Bulygin and J. Buchmann InsCrypt 2010, Science Press of China

 On lower bounds for Information Set Decoding over Fq R. Niebuhr, P.-L. Cayrel, S. Bulygin and J. Buchmann SCC 2010, pages 143-157

Encryption with codes

Signature with codes

Identification with codes

Secret-key crypto with codes

Open problems

My contributions - Others

- ** Quasi-cyclic codes as codes over rings of matrices
 P.-L. Cayrel, C. Chabot and A. Necer
 Finite Fields and their Applications, number 16(2), pages 100-115, 2010
- Recent progress in code-based cryptography
 - **P.-L. Cayrel**, S. M. El Yousfi Alaoui, G. Hoffmann, M. Meziani and R. Niebuhr

ISA 2011, CCIS 200, pages 21-32, Springer-Verlag, 2011

- Post-Quantum Cryptography: Code-based Signatures P.-L. Cayrel and M. Meziani ISA 2010, LNCS 6059, pages 82-99, Springer-Verlag, 2010
- Side channels attacks in code-based cryptography *P.-L. Cayrel* and *F. Strenzke COSADE 2010, pages 24-28*
- Improved algorithm to find equations for algebraic attacks for combiners with memory
 F. Armknecht, P.-L. Cayrel, P. Gaborit and O. Ruatta
 BFCA 2007, pages 81-98

Errorcorrecting codes

Encryption with codes

Signature with codes

Identificatio with codes

Secret-key crypto with codes

Open problems

Information Set Decoding

Errorcorrecting codes

Encryption with codes

Signature with codes

Identificatio with codes

Secret-key crypto with codes

Open problems

Information Set Decoding

Errorcorrecting codes

Encryption with codes

Signature with codes

Identificatio with codes

Secret-key crypto with codes

Open problems

$\phi: m \mapsto x$ with x of weight t

This application is called a constant weight encoder.

Enumerative coding:

$$\phi^{-1}: \qquad W_{n,t} \qquad \longrightarrow \left[0, \binom{n}{t}\right]$$
$$(i_0, i_1, \dots, i_{t-1}) \quad \longmapsto \binom{i_0}{1} + \binom{i_1}{2} + \dots + \binom{i_{t-1}}{t}$$

Errorcorrecting codes

Encryption with codes

Signature with codes

Identificatio with codes

Secret-key crypto with codes

Open problems

How to choose the weight for an optimal complexity ?

