Information Bounds and Convergence Rates for
Side-Channel Security Evaluators

Loic Masure  Olivier Bronchain  Gaétan Cassiers  Francois Durvaux
Julien Hendrickx  Francois-Xavier Standaert

Gardanne, May 18"

B UCLouvain

Loic Information Bounds and Convergence Rates for Side-Channel Security Evaluators 1/28



Introduction  Why Profiling Complexity Matters New Metrics Speed of Convergence White-vs.-Black Box Conclusion

Table of Contents

Introduction

Why Profiling Complexity Matters

New Metrics

Speed of Convergence

White-vs.-Black Box

Conclusion

Loic Masure Information Bounds and Convergence Rates for Side-Channel Security Evaluators 2/28



Introduction Why Profiling Complexity Matters New Metrics Speed of Convergence White-vs.-Black Box Conclusion

Content

Introduction

Loic Masure Information Bounds and Convergence Rates for Side-Channel Security Evaluators 3/28



Introduction Why Profiling Complexity Matters New Metrics Speed of Convergence White-vs.-Black Box Conclusion

How an SCA works

Key chunk £*

h
r/‘

Plaintext p; C

y1 = C(p1, k*)

Loic Masure Information Bounds and Convergence Rates for Side-Channel Security Evaluators 4 /28



Introduction Why Profiling Complexity Matters New Metrics Speed of Convergence White-vs.-Black Box Conclusion

How an SCA works

Key chunk k&*

I, Mg
r/‘

Plaintext p; C

y1 = C(p1, k%)

Loic Masure Information Bounds and Convergence Rates for Side-Channel Security Evaluators 4 /28



Introduction Why Profiling Complexity Matters New Metrics Speed of Convergence White-vs.-Black Box Conclusion

How an SCA works

Key chunk k&*

h Model
o

Plaintext p;  C

y1 = C(p1, k%)

Loic Masure Information Bounds and Convergence Rates for Side-Channel Security Evaluators 4 /28



Introduction Why Profiling Complexity Matters New Metrics Speed of Convergence White-vs.-Black Box Conclusion

How an SCA works

Key chunk &* 01

I Model |~ CLLTTTTT
r/‘

Plaintext p;  C

y1 = C(p1, k%)

Loic Masure Information Bounds and Convergence Rates for Side-Channel Security Evaluators 4 /28



Introduction Why Profiling Complexity Matters New Metrics Speed of Convergence White-vs.-Black Box Conclusion

How an SCA works

Key chunk &* 01
h Model | - 1Lt 111

"

Plaintext p;  C @g

y1 = C(p1, k*) 0 1

Loic Masure Information Bounds and Convergence Rates for Side-Channel Security Evaluators 4 /28



Introduction Why Profiling Complexity Matters New Metrics Speed of Convergence White-vs.-Black Box Conclusion

How an SCA works

Key chunk &* 01

h Model~ I TTTTLT] Y.

by Wy

Plaintext p» » C @g

y2 = C(p2, k*) 0 1

Loic Masure Information Bounds and Convergence Rates for Side-Channel Security Evaluators 4 /28



Introduction Why Profiling Complexity Matters New Metrics Speed of Convergence White-vs.-Black Box Conclusion

How an SCA works

Key chunk &* 01

L Y
o by Wy 3
. i;MMMMM

Plaintext p3 » C > log

ys = C(ps, k*) |0|1| RER []

Loic Masure Information Bounds and Convergence Rates for Side-Channel Security Evaluators

428



Introduction Why Profiling Complexity Matters New Metrics Speed of Convergence White-vs.-Black Box Conclusion

How an SCA works

Key chunk &* 01

L Y
o by Wy 3
. i;MMMMM

Plaintext p3 » C > log

ys = C(ps, k*) |0|1| RER []

Loic Masure Information Bounds and Convergence Rates for Side-Channel Security Evaluators

428



Introduction Why Profiling Complexity Matters New Metrics Speed of Convergence White-vs.-Black Box Conclusion

How an SCA works

Key chunk k&*

K

I "’\'\AM"’\AN'ModeI L#F#?Fﬁyi

l b Wy . s
T

c Ej

ys = C(ps, k*) |0|1| RER -k

Plaintext p3 +

K

Successful attack i.f.f. k = k*

Loic Masure Information Bounds and Convergence Rates for Side-Channel Security Evaluators

428



Introduction Why Profiling Complexity Matters New Metrics Speed of Convergence White-vs.-Black Box Conclusion

What is behind Ledel] -

Loic Masure Information Bounds and Convergence Rates for Side-Channel Security Evaluators 5/28



Introduction Why Profiling Complexity Matters New Metrics Speed of Convergence White-vs.-Black Box Conclusion

What is behind 7

Optimal Adversary (security proofs):
Unbounded profiling power

Loic Masure Information Bounds and Convergence Rates for Side-Channel Security Evaluators 5/28



Introduction Why Profiling Complexity Matters New Metrics Speed of Convergence White-vs.-Black Box Conclusion

What is behind 7

Optimal Adversary (security proofs):
Unbounded profiling power
= Pr(Y | L)

Loic Masure Information Bounds and Convergence Rates for Side-Channel Security Evaluators 5/28



Introduction Why Profiling Complexity Matters New Metrics Speed of Convergence White-vs.-Black Box Conclusion

What is behind 7

Optimal Adversary (security proofs): Actual Adversary:
Unbounded profiling power Bounded profiling power
— Pr(Y | L)

Loic Masure Information Bounds and Convergence Rates for Side-Channel Security Evaluators

5/ 28



Introduction Why Profiling Complexity Matters New Metrics Speed of Convergence White-vs.-Black Box Conclusion

What is behind 7

Optimal Adversary (security proofs): Actual Adversary:
Unbounded profiling power Bounded profiling power
= Pr(Y | L) — estimation with a model F

Loic Masure Information Bounds and Convergence Rates for Side-Channel Security Evaluators 5/28



Introduction Why Profiling Complexity Matters New Metrics Speed of Convergence White-vs.-Black Box Conclusion

What is behind ?

Optimal Adversary (security proofs): Actual Adversary:
Unbounded profiling power Bounded profiling power
= Pr(Y | L) — estimation with a model F

EVALUATOR/DEVELOPER
What is the amount of queries
N7 needed for the best adversary to
succeed with proba. > 37

Loic Masure Information Bounds and Convergence Rates for Side-Channel Security Evaluators 5/28



Introduction Why Profiling Complexity Matters New Metrics Speed of Convergence White-vs.-Black Box Conclusion

What is behind ?

Optimal Adversary (security proofs): Actual Adversary:

Unbounded profiling power Bounded profiling power

= Pr(Y | L) — estimation with a model F
EVALUATOR/DEVELOPER ADVERSARY
What is the amount of queries ~ What is the amount of queries
N needed for the best adversary to N,(F) needed for F to succeed with
succeed with proba. > 37 proba. > 37

Loic Masure Information Bounds and Convergence Rates for Side-Channel Security Evaluators 5/28



Introduction Why Profiling Complexity Matters New Metrics Speed of Convergence White-vs.-Black Box Conclusion

Guessing Security Bounds with I'T Metrics

Estimating \V} requires many traces, especially for high values

A 4

100 10! 102 103 104 10°

Loic Masure Information Bounds and ConvergNg, Rates for Side-Channel Security Evaluators 6 /28



Introduction Why Profiling Complexity Matters New Metrics Speed of Convergence White-vs.-Black Box Conclusion

Guessing Security Bounds with I'T Metrics

Estimating \V} requires many traces, especially for high values
Shortcut to evaluate the security against SCA [CHES 2019]:
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IT[bits
[bits] 5 . eHl: Ml computed with
""""" eHly (Y;L) — N, (F) empirical distribution

Pl ~ cross-entropy between
MI(Y;L Nx
(YiL) = I model and true distribution

—————————— PI(Y;L; F) — N.(F)

IT metrics measure the attack complexity
What about the profiling complexity?
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Why Profiling Complexity Matters?

Trace acquisition campaign: often the critical task (= several days) ...
... But convergence of some metrics can be exponentially slow

Figure: eHl — MI (y-axis) vs. N (x-axis) for D = 1 (blue), 2 (orange), 3 (green), and 4 (red).
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Figure: Plain: true Gaussian mixtures. Dashed: Gaussian templates.

(a) SNR = 0.02 (b) SNR = 2
Figure: PI (blue), HI (orange) and MI (red) vs. # profiling traces .
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(c) SNR = 200

Figure: Pl (blue), HI (orange) and MI (red) vs. # profiling traces .
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What is the highest Pl reached by the best model from H to succeed with
proba. > 37

LI(Y;L;H) = sup PI(Y;L;m) < MI(Y;L)

meH

LIl: surrogate to Ml
Pl: natural lower bound of LI What about an upper bound for LI?
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TRAINING INFORMATION (TT)

Any H-adversary applying Empirical Risk Minimization (ERM) using a
profiling set Sp:
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Upper Bounds to LI

TRAINING INFORMATION (TT)

Any H-adversary applying Empirical Risk Minimization (ERM) using a
profiling set Sp:
TIn(Y; L A) = max Ag"sp

<= training loss when model pushed to fit the training set — w/o
regularization, early-stopping, ...
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(a) HW: not masked, SNR=0.1 (b) SW: masked, SNR=10.

Figure: Convergence of information metrics. Dotted lines: TI. Solid lines: PI.
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(a) HW: not masked, SNR=0.1 (b) SW: masked, SNR=10.

No curse of dimensionality, trend o %
Can we infer the profiling complexity N, without acquiring N traces ?
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Figure: Learning curves, 1-o masking, 4-bit target, SNR = 10.
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Figure: Learning curves, 1-o masking, 4-bit target, SNR = 1.
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Speed of Convergence

Bounds on the Convergence Rate

First result: Pl converges to LI with
a convergence rate O (CSt,E,H)) where
cst is polynomial in the dimensions of

H = much tighter lower bound
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Bounds on the Convergence Rate

Second result: Training Information
(Tl) converges at most twice as slow
as Pl = tight upper bound
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Speed of Convergence

Bounds on the Convergence Rate

Third result: convergence bounds for
Template Attacks:

Classical TA: O (QNDQ)

Pooled TA: O (%) (at least for
Q = 2)
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Profiling with Masking in White-Box
Masking: C(p, k*) = y1 * ¥2

White-Box: the adversary knows the random shares during profiling

—> each leakage profiled separately ... then scores are recombined
L
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Profiling with Masking in Black-Box

Masking: C(p, k*) = y1 * ¥2

Black-Box profiling: the adversary does not know the random shares
hL
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Profiling with Masking in Black-Box

Masking: C(p, k*) = y1 * ¥2

Black-Box profiling: the adversary does not know the random shares

= directly profiles Pr(Y | L) with a single model

L
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Simulated Experiments 11
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Figure: First-order masking, SNR = 0.1

White-box models converge faster than black-box counter-parts
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Simulated Experiments 11
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Figure: Second-order masking, SNR =1

White-box models converge faster than black-box counter-parts
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Simulated Experiments 11

White-box models converge faster than black-box counter-parts
Can we theoretically explain all these observations?
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Profiling Complexity of Black vs. White Box

Sound model ~ model with Pl > 02
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LI—Pl = Mi e L
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Sound model ~ model with PI > 0° T 02
Ok if the profiling complexity N o< 25 > + § ot
LI—Pl = Mi e L
£ ° / —MI
“Not always, see [cryptoeprint:2021:1216]. =01 — v T
10 10° 10°
N

Example with masking:

Black-Box
Profiles Y directly

Loic Masure Information Bounds and Convergence Rates for Side-Channel Security Evaluators 25 /28



Introduction  Why Profiling Complexity Matters New Metrics Speed of Convergence White-vs.-Black Box Conclusion

Profiling Complexity of Black vs. White Box

0.3
Sound model ~ model with PI > 0° T 02
Ok if the profiling complexity N o< 25 > + § ot
LI—Pl = Mi e L
£ ° / —MI
“Not always, see [cryptoeprint:2021:1216]. =01 — v T
10 10° 10°
N

Example with masking:

Black-Box White-Box

Profiles Y directly Profiles each share separately

Loic Masure Information Bounds and Convergence Rates for Side-Channel Security Evaluators 25 /28



Introduction  Why Profiling Complexity Matters New Metrics Speed of Convergence White-vs.-Black Box Conclusion

Profiling Complexity of Black vs. White Box

0.3
Sound model ~ model with Pl > 0° T
. . . 1 1 =
Ok if the profiling complexity N o T=p = Mi £
“Not always, see [cryptoeprint:2021:1216]. T =0 AT
10* 10° 100
N

Example with masking:

Black-Box White-Box
Profiles Y directly
MI(Y;L) o -3
Prof. complexity ~ Att.
complexity

Profiles each share separately

Loic Masure Information Bounds and Convergence Rates for Side-Channel Security Evaluators 25 /28



Introduction  Why Profiling Complexity Matters New Metrics Speed of Convergence White-vs.-Black Box Conclusion

Profiling Complexity of Black vs. White Box

0.3
Sound model ~ model with Pl > 0° a e
Ok if the profiling complexity N o< /25 > 7 g 0::/
“Not always, see [cryptoeprint:2021:1216]. = oa AN Tu'\\\/‘“
10 10° 10°
N
Example with masking:
Black-Box White-Box
Profiles Y directly Profiles each share separately
MI(Y;L) o -3 MI(Y;; L) o< &
Prof. complexity ~ Att. Prof. complexity ~ Att.
complexity complexity without masking

Loic Masure Information Bounds and Convergence Rates for Side-Channel Security Evaluators

25 / 28



Introduction Why Profiling Complexity Matters New Metrics Speed of Convergence White-vs.-Black Box Conclusion

Content

Conclusion

Loic Masure Information Bounds and Convergence Rates for Side-Channel Security Evaluators 26 / 28



Introduction Why Profiling Complexity Matters New Metrics Speed of Convergence White-vs.-Black Box Conclusion

Conclusion

Loic Masure Information Bounds and Convergence Rates for Side-Channel Security Evaluators 27 / 28



Introduction  Why Profiling Complexity Matters New Metrics Speed of Convergence White-vs.-Black Box Conclusion

Conclusion

We provide to the SCA evaluator some theoretical insights to assess the
profiling complexity

Loic Masure Information Bounds and Convergence Rates for Side-Channel Security Evaluators 27 / 28



Introduction  Why Profiling Complexity Matters New Metrics Speed of Convergence White-vs.-Black Box Conclusion

Conclusion

We provide to the SCA evaluator some theoretical insights to assess the
profiling complexity

HI can be replaced by a tighter metric: Tl

Loic Masure Information Bounds and Convergence Rates for Side-Channel Security Evaluators 27 / 28



Introduction  Why Profiling Complexity Matters New Metrics Speed of Convergence White-vs.-Black Box Conclusion

Conclusion

We provide to the SCA evaluator some theoretical insights to assess the
profiling complexity

HI can be replaced by a tighter metric: Tl

We explain why profiling in black-box may be much more difficult than in
white-box, especially in presence of noise

Loic Masure Information Bounds and Convergence Rates for Side-Channel Security Evaluators 27 /28



Introduction  Why Profiling Complexity Matters New Metrics Speed of Convergence White-vs.-Black Box Conclusion

Conclusion

We provide to the SCA evaluator some theoretical insights to assess the
profiling complexity

HI can be replaced by a tighter metric: Tl

We explain why profiling in black-box may be much more difficult than in
white-box, especially in presence of noise

Open question: what about black-box profiling in low-noise settings (e.g.
ASCAD datasets)?

Loic Masure Information Bounds and Convergence Rates for Side-Channel Security Evaluators 27 /28



Conclusion

Conclusion

We provide to the SCA evaluator some theoretical insights to assess the
profiling complexity

HI can be replaced by a tighter metric: Tl

We explain why profiling in black-box may be much more difficult than in
white-box, especially in presence of noise

Open question: what about black-box profiling in low-noise settings (e.g.
ASCAD datasets)?

Some evidences discussed in [cryptoeprint:2022:493]

Loic Masure Information Bounds and Convergence Rates for Side-Channel Security Evaluators 27 /28



Introduction Why Profiling Complexity Matters New Metrics Speed of Convergence White-vs.-Black Box Conclusion

References

Loic Masure Information Bounds and Convergence Rates for Side-Channel Security Evaluators 28 /28



	Introduction
	Why Profiling Complexity Matters
	New Metrics
	Speed of Convergence
	White-vs.-Black Box
	Conclusion

