

Information Bounds and Convergence Rates for Side-Channel Security Evaluators

Loïc Masure Olivier Bronchain Gaëtan Cassiers François Durvaux Julien Hendrickx François-Xavier Standaert

Gardanne, May 18th

Table of Contents

Introduction

Why Profiling Complexity Matters

New Metrics

Speed of Convergence

White-vs.-Black Box

Conclusion

Content

Introduction

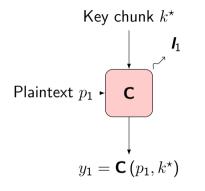
Why Profiling Complexity Matters

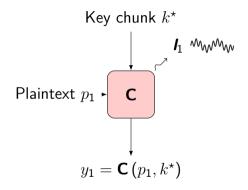
New Metrics

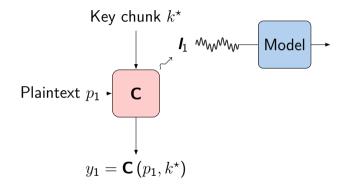
Speed of Convergence

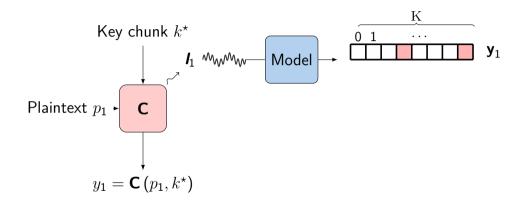
White-vs.-Black Box

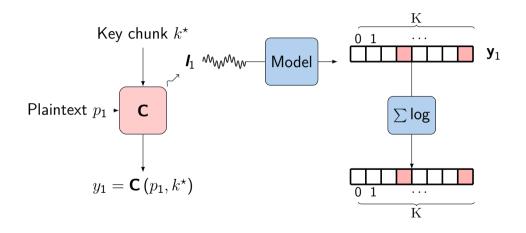
Conclusion

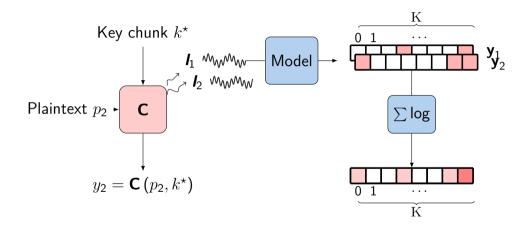


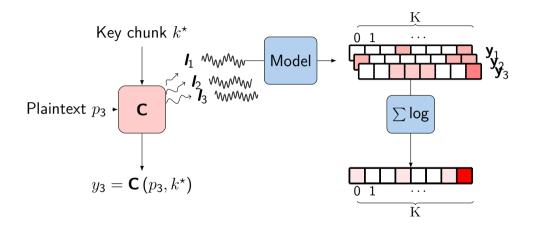


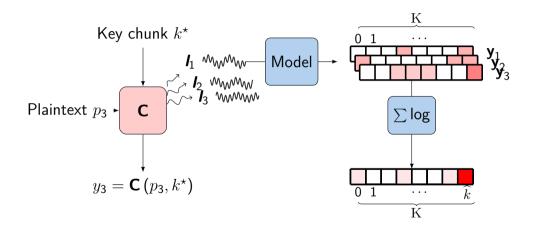




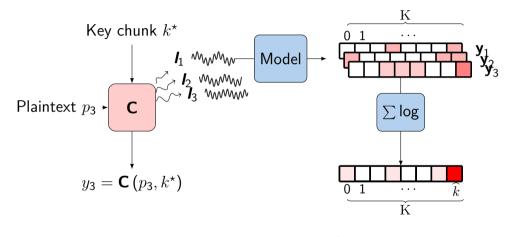








How an SCA works



Successful attack i.f.f. $\hat{k} = k^{\star}$

Loïc Masure

Optimal Adversary (security proofs): Unbounded profiling power

 $\begin{array}{l} \mbox{Optimal Adversary (security proofs):} \\ \mbox{Unbounded profiling power} \\ \implies \mbox{Pr}\left(Y \ | \ \textbf{L}\right) \end{array}$

Optimal Adversary (security proofs): Unbounded profiling power $\implies Pr(Y | L)$

Actual Adversary: Bounded profiling power

Optimal Adversary (security proofs): Unbounded profiling power $\implies Pr(Y | L)$ $\begin{array}{rl} \mbox{Actual Adversary:} \\ \mbox{Bounded profiling power} \\ \implies \mbox{ estimation with a model } F \end{array}$

$\begin{array}{l} \mbox{Optimal Adversary (security proofs):} \\ \mbox{Unbounded profiling power} \\ \implies \mbox{Pr}\left(Y \ | \ \textbf{L}\right) \end{array}$

EVALUATOR/DEVELOPER What is the minimal amount of queries N_a^{\star} needed for the best adversary to succeed with proba. $\geq \beta$? Actual Adversary:Bounded profiling power \implies estimation with a model F

$\begin{array}{l} \mbox{Optimal Adversary (security proofs):} \\ \mbox{Unbounded profiling power} \\ \implies \mbox{Pr}\left(Y \ | \ \textbf{L}\right) \end{array}$

EVALUATOR/DEVELOPER What is the minimal amount of queries N_a^* needed for the best adversary to succeed with proba. $\geq \beta$?

Actual Adversary:

Bounded profiling power

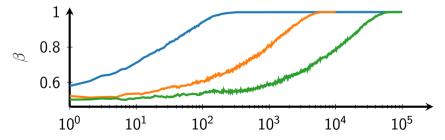
 \implies estimation with a model F

Adversary

What is the minimal amount of queries $N_a(F)$ needed for F to succeed with proba. $\geq \beta$?

Guessing Security Bounds with IT Metrics

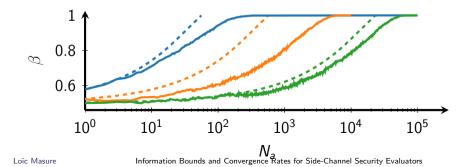
Estimating N_a^{\star} requires many traces, especially for high values



Guessing Security Bounds with IT Metrics

Estimating N_a^{\star} requires many traces, especially for high values Shortcut to evaluate the security against SCA [CHES 2019]:

$$\mathsf{N}^{\star}_{\mathsf{a}} \geq rac{\mathsf{cst}(eta)}{\mathsf{MI}\left(\mathrm{Y};\mathsf{L}
ight)}$$



Fact: any estimator for MI(Y; L) is *biased*

Fact: any estimator for MI(Y; L) is *biased* Bad news for statisticians ...

Fact: any estimator for MI(Y; L) is *biased* Bad news for statisticians ... Not necessarily for evaluators !

Fact: any estimator for MI(Y; L) is *biased* Bad news for statisticians ... Not necessarily for evaluators !

$$\begin{array}{c|c} \mathsf{IT}[\mathsf{bits}] & \mathsf{eHI: MI computed with} \\ \hline & & \mathsf{eHI: MI computed with} \\ \hline & & \mathsf{mpirical distribution} \\ \hline & & \mathsf{MI}(\mathrm{Y};\mathbf{L}) \to N_a^{\star} \\ \hline & & \mathsf{model and true distribution} \\ \hline & & \mathsf{PI} \sim \mathsf{cross-entropy between} \\ \hline & & \mathsf{model and true distribution} \\ \hline & & \mathsf{NI}(\mathrm{Y};\mathbf{L};F) \to N_a(F) \end{array}$$

IT metrics measure the attack complexity

Fact: any estimator for MI(Y; L) is *biased* Bad news for statisticians ... Not necessarily for evaluators !

$$\begin{array}{c|c} \mathsf{IT}[\mathsf{bits}] & \mathsf{eHI: MI computed with} \\ \hline & & \mathsf{eHI: MI computed with} \\ \hline & & \mathsf{mpirical distribution} \\ \hline & & \mathsf{MI}(\mathrm{Y};\mathbf{L}) \to N_a^{\star} \\ \hline & & \mathsf{model and true distribution} \\ \hline & & \mathsf{PI} \sim \mathsf{cross-entropy between} \\ \hline & & \mathsf{model and true distribution} \\ \hline & & \mathsf{PI} \sim \mathsf{cross-entropy between} \\ \hline & & \mathsf{model and true distribution} \\ \hline & & \mathsf{PI} \sim \mathsf{cross-entropy between} \\ \hline & & \mathsf{model and true distribution} \\ \hline & & \mathsf{PI} \sim \mathsf{cross-entropy between} \\ \hline & & \mathsf{model and true distribution} \\ \hline & & \mathsf{PI} \sim \mathsf{cross-entropy between} \\ \hline & & \mathsf{PI} \sim \mathsf{cross-entropy between} \\ \hline & & \mathsf{model and true distribution} \\ \hline & & \mathsf{PI} \sim \mathsf{cross-entropy between} \\ \hline & & \mathsf{PI} \sim \mathsf{cr$$

IT metrics measure the attack complexity What about the *profiling* complexity?

Content

Introduction

Why Profiling Complexity Matters

New Metrics

Speed of Convergence

White-vs.-Black Box

Conclusion

Loïc Masure

Why Profiling Complexity Matters?

Trace acquisition campaign: often the critical task (pprox several days) ...

Why Profiling Complexity Matters?

Trace acquisition campaign: often the critical task (\approx several days) But convergence of some metrics can be exponentially slow

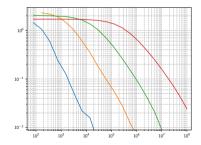


Figure: eHI – MI (y-axis) vs. N (x-axis) for D = 1 (blue), 2 (orange), 3 (green), and 4 (red).

Loïc Masure

Variants of **HI** Don't Work

Counter-example on a 2-bit masked variable:

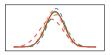


Figure: Plain: true Gaussian mixtures. Dashed: Gaussian templates.

Variants of **HI** Don't Work

Counter-example on a 2-bit masked variable:

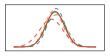
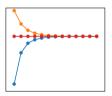


Figure: Plain: true Gaussian mixtures. Dashed: Gaussian templates.



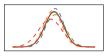
(a) SNR = 0.02

Figure: PI (blue), HI (orange) and MI (red) vs. # profiling traces .

Loïc Masure

Variants of **HI** Don't Work

Counter-example on a 2-bit masked variable:



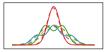
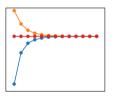


Figure: Plain: true Gaussian mixtures. Dashed: Gaussian templates.



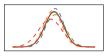
(a) SNR = 0.02

Figure: PI (blue), HI (orange) and MI (red) vs. # profiling traces .

Loïc Masure

Variants of **HI** Don't Work

Counter-example on a 2-bit masked variable:



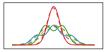


Figure: Plain: true Gaussian mixtures. Dashed: Gaussian templates.

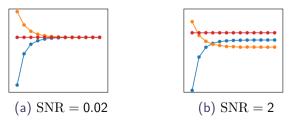
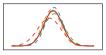
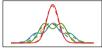


Figure: PI (blue), HI (orange) and MI (red) vs. # profiling traces .

Variants of **HI** Don't Work

Counter-example on a 2-bit masked variable:





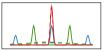


Figure: Plain: true Gaussian mixtures. Dashed: Gaussian templates.

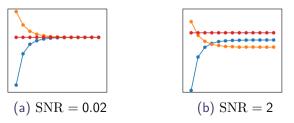
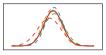


Figure: PI (blue), HI (orange) and MI (red) vs. # profiling traces .

Variants of **HI** Don't Work

Counter-example on a 2-bit masked variable:



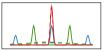


Figure: Plain: true Gaussian mixtures. Dashed: Gaussian templates.

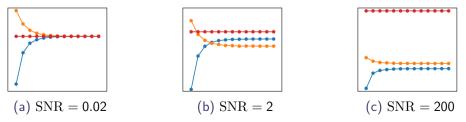


Figure: PI (blue), HI (orange) and MI (red) vs. # profiling traces .

Content

Introduction

Why Profiling Complexity Matters

New Metrics

Speed of Convergence

White-vs.-Black Box

Conclusion

Loïc Masure

Trade-off between evaluator and adversary point of view: restricts the adversary to a collection $\mathcal H$ of models

Trade-off between evaluator and adversary point of view: restricts the adversary to a collection \mathcal{H} of models (Gaussian templates, neural networks, ...)

Trade-off between evaluator and adversary point of view: restricts the adversary to a collection \mathcal{H} of models (Gaussian templates, neural networks, ...)

$\mathcal{H} ext{-}\operatorname{Adversary}$

What is the highest PI reached by the best model from ${\mathcal H}$ to succeed with proba. $\geq \beta ?$

$$\mathsf{LI}\left(\mathrm{Y};\boldsymbol{\mathsf{L}};\mathcal{H}\right) = \sup_{\mathsf{m}\in\mathcal{H}}\mathsf{PI}\left(\mathrm{Y};\boldsymbol{\mathsf{L}};\mathsf{m}\right) \leq \mathsf{MI}\left(\mathrm{Y};\boldsymbol{\mathsf{L}}\right)$$

Trade-off between evaluator and adversary point of view: restricts the adversary to a collection \mathcal{H} of models (Gaussian templates, neural networks, ...)

$\mathcal{H} ext{-}\operatorname{Adversary}$

What is the highest PI reached by the best model from ${\cal H}$ to succeed with proba. $\geq \beta ?$

$$\mathsf{LI}\left(\mathrm{Y};\boldsymbol{\mathsf{L}};\mathcal{H}\right) = \sup_{\mathsf{m}\in\mathcal{H}}\mathsf{PI}\left(\mathrm{Y};\boldsymbol{\mathsf{L}};\mathsf{m}\right) \leq \mathsf{MI}\left(\mathrm{Y};\boldsymbol{\mathsf{L}}\right)$$

LI: surrogate to MI

Loïc Masure

Trade-off between evaluator and adversary point of view: restricts the adversary to a collection \mathcal{H} of models (Gaussian templates, neural networks, ...)

$\mathcal{H} ext{-}\operatorname{Adversary}$

What is the highest PI reached by the best model from ${\mathcal H}$ to succeed with proba. $\geq \beta ?$

$$\mathsf{LI}\left(\mathrm{Y};\boldsymbol{\mathsf{L}};\mathcal{H}\right) = \sup_{\mathsf{m}\in\mathcal{H}}\mathsf{PI}\left(\mathrm{Y};\boldsymbol{\mathsf{L}};\mathsf{m}\right) \leq \mathsf{MI}\left(\mathrm{Y};\boldsymbol{\mathsf{L}}\right)$$

LI: surrogate to MI PI: natural lower bound of LI

Loïc Masure

Trade-off between evaluator and adversary point of view: restricts the adversary to a collection \mathcal{H} of models (Gaussian templates, neural networks, ...)

$\mathcal{H} ext{-}\operatorname{Adversary}$

What is the highest PI reached by the best model from ${\mathcal H}$ to succeed with proba. $\geq \beta ?$

$$\mathsf{LI}\left(\mathrm{Y};\boldsymbol{\mathsf{L}};\mathcal{H}\right) = \sup_{\mathsf{m}\in\mathcal{H}}\mathsf{PI}\left(\mathrm{Y};\boldsymbol{\mathsf{L}};\mathsf{m}\right) \leq \mathsf{MI}\left(\mathrm{Y};\boldsymbol{\mathsf{L}}\right)$$

LI: surrogate to MI PI: natural lower bound of LI What about an upper bound for LI?

Loïc Masure

Upper Bounds to LI

TRAINING INFORMATION (TI)

Any \mathcal{H} -adversary applying Empirical Risk Minimization (ERM) using a profiling set S_p :

$$\mathsf{TI}_{\mathcal{N}}\left(\mathrm{Y};\mathbf{L};\mathcal{A}
ight)=\max_{\mathsf{m}\in\mathcal{H}}\Delta^{\mathsf{m}}_{ ilde{\mathrm{e}}_{\mathcal{S}_{\mathcal{P}}}}$$

Upper Bounds to LI

TRAINING INFORMATION (TI)

Any \mathcal{H} -adversary applying Empirical Risk Minimization (ERM) using a profiling set S_p :

$$\mathsf{TI}_{N}(\mathrm{Y};\mathsf{L};\mathcal{A}) = \max_{\mathsf{m}\in\mathcal{H}}\Delta^{\mathsf{m}}_{\tilde{\mathrm{e}}_{\mathcal{S}_{p}}}$$

 \iff training loss when model pushed to fit the training set — w/o regularization, early-stopping, ...

TI behaves like the empirical HI

TI behaves like the empirical HI

$\mathsf{MI}\left(\mathrm{Y};\boldsymbol{\mathsf{L}}\right) \leq \quad \mathbb{E}\left[\mathsf{eHI}_{\mathsf{N}}\left(\mathrm{Y};\boldsymbol{\mathsf{L}}\right)\right] \quad \leq \mathbb{E}\left[\mathsf{eHI}_{\mathsf{N}-1}(\mathrm{Y};\boldsymbol{\mathsf{L}})\right]$

TI behaves like the empirical HI

$$\begin{split} \mathsf{MI}\left(\mathrm{Y};\boldsymbol{\mathsf{L}}\right) &\leq \quad \mathbb{E}\left[\mathsf{eHI}_{N}\left(\mathrm{Y};\boldsymbol{\mathsf{L}}\right)\right] \quad \leq \mathbb{E}\left[\mathsf{eHI}_{N-1}(\mathrm{Y};\boldsymbol{\mathsf{L}})\right] \\ \mathsf{LI}\left(\mathrm{Y};\boldsymbol{\mathsf{L}};\mathcal{H}\right) &\leq \quad \mathbb{E}\left[\mathsf{TI}_{N}\left(\mathrm{Y};\boldsymbol{\mathsf{L}};\mathcal{A}\right)\right] \quad \leq \mathbb{E}\left[\mathsf{TI}_{N-1}\left(\mathrm{Y};\boldsymbol{\mathsf{L}};\mathcal{A}_{\mathcal{H}}\right)\right] \end{split}$$

TI behaves like the empirical HI

 $\begin{aligned} \mathsf{MI}\left(\mathrm{Y};\mathsf{L}\right) &\leq \quad \mathbb{E}\left[\mathsf{eHI}_{N}\left(\mathrm{Y};\mathsf{L}\right)\right] \quad \leq \mathbb{E}\left[\mathsf{eHI}_{N-1}(\mathrm{Y};\mathsf{L})\right] \\ \mathsf{LI}\left(\mathrm{Y};\mathsf{L};\mathcal{H}\right) &\leq \quad \mathbb{E}\left[\mathsf{TI}_{N}\left(\mathrm{Y};\mathsf{L};\mathcal{A}\right)\right] \quad \leq \mathbb{E}\left[\mathsf{TI}_{N-1}\left(\mathrm{Y};\mathsf{L};\mathcal{A}_{\mathcal{H}}\right)\right] \end{aligned}$

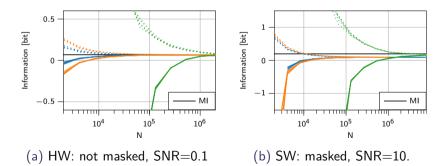


Figure: Convergence of information metrics. Dotted lines: TI. Solid lines: PI.

Content

Introduction

Why Profiling Complexity Matters

New Metrics

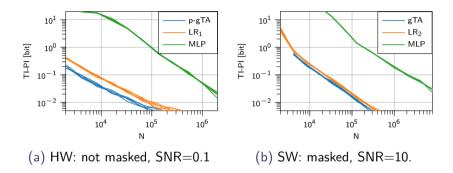
Speed of Convergence

White-vs.-Black Box

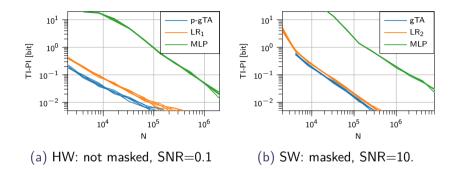
Conclusion

Loïc Masure

Simulated Experiments I



Simulated Experiments I



No curse of dimensionality, trend $\propto \frac{1}{N}$ Can we infer the profiling complexity *N*, without acquiring *N* traces ?

Simulated Experiments II

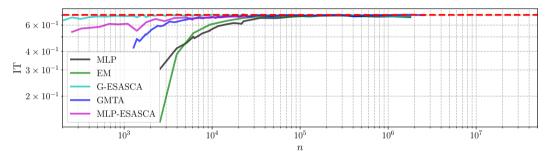


Figure: Learning curves, 1-o masking, 4-bit target, SNR = 10.

Simulated Experiments II

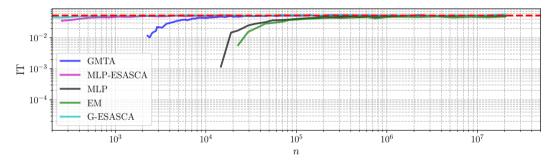


Figure: Learning curves, 1-o masking, 4-bit target, SNR = 1.

Simulated Experiments II

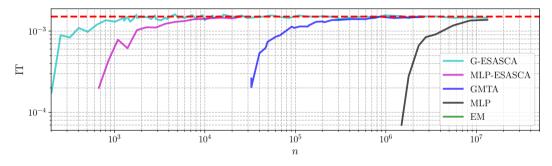


Figure: Learning curves, 1-o masking, 4-bit target, SNR = 0.1.

Bounds on the Convergence Rate

First result: PI converges to LI with a convergence rate $\widetilde{O}\left(\frac{cst(\mathcal{H})}{N}\right)$, where *cst* is polynomial in the dimensions of $\mathcal{H} \implies$ much tighter lower bound Bounds on the Convergence Rate

Second result: Training Information (TI) converges at most twice as slow as PI \implies tight upper bound

Bounds on the Convergence Rate

Third result: convergence bounds for Template Attacks:

Classical TA: $\mathcal{O}\left(\frac{QD^2}{N}\right)$ Pooled TA: $\mathcal{O}\left(\frac{QD}{N}\right)$ (at least for Q = 2)

Content

Introduction

Why Profiling Complexity Matters

New Metrics

Speed of Convergence

White-vs.-Black Box

Conclusion

Loïc Masure

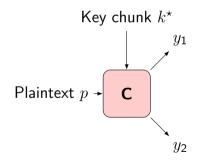
Profiling with Masking in White-Box

Masking: $\mathbf{C}(p, k^{\star}) = y_1 \star y_2$

Profiling with Masking in White-Box

Masking: $\mathbf{C}(p, k^{\star}) = y_1 \star y_2$

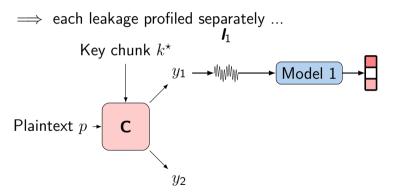
White-Box: the adversary knows the random shares during profiling



Profiling with Masking in White-Box

Masking: $\mathbf{C}(p, k^{\star}) = y_1 \star y_2$

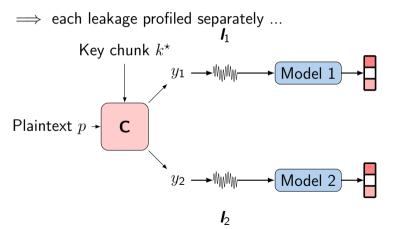
White-Box: the adversary knows the random shares during profiling



Profiling with Masking in White-Box

Masking: $\mathbf{C}(p, k^{\star}) = y_1 \star y_2$

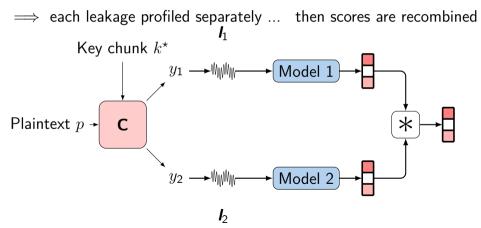
White-Box: the adversary knows the random shares during profiling



Profiling with Masking in White-Box

Masking:
$$\mathbf{C}(p, k^{\star}) = y_1 \star y_2$$

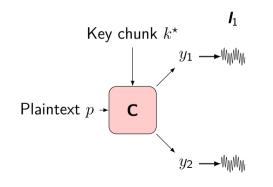
White-Box: the adversary knows the random shares during profiling



Profiling with Masking in Black-Box

Masking: $\mathbf{C}(p, k^{\star}) = y_1 \star y_2$

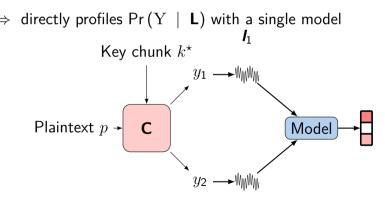
Black-Box profiling: the adversary does not know the random shares



Profiling with Masking in Black-Box

Masking: $\mathbf{C}(p, k^{\star}) = y_1 \star y_2$

Black-Box profiling: the adversary does not know the random shares



Simulated Experiments III

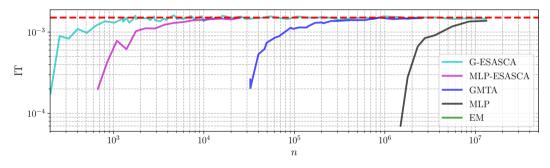


Figure: First-order masking, SNR = 0.1

White-box models converge faster than black-box counter-parts

Loïc Masure

Simulated Experiments III

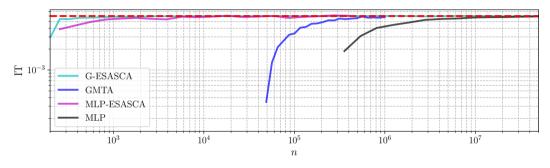


Figure: Second-order masking, SNR = 1

White-box models converge faster than black-box counter-parts

Loïc Masure

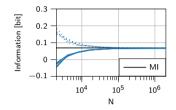
Simulated Experiments III

White-box models converge faster than black-box counter-parts Can we theoretically explain all these observations?

Sound model \approx model with $\mathsf{PI}>0^a$

Sound model \approx model with PI > 0^a Ok if the profiling complexity $N \propto \frac{1}{LI-PI} \ge \frac{1}{MI}$

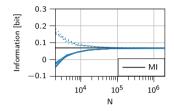
^aNot always, see [cryptoeprint:2021:1216].



Sound model \approx model with PI > 0^a Ok if the profiling complexity $N \propto \frac{1}{LI-PI} \ge \frac{1}{MI}$

^aNot always, see [cryptoeprint:2021:1216].

Example with masking:



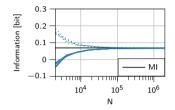
Sound model \approx model with PI > 0^a Ok if the profiling complexity $N \propto \frac{1}{LI-PI} \ge \frac{1}{MI}$

^aNot always, see [cryptoeprint:2021:1216].

Example with masking:

Black-Box

Profiles Y directly



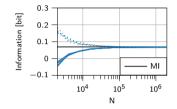
Sound model \approx model with PI > 0^a Ok if the profiling complexity $N \propto \frac{1}{U-PI} \ge \frac{1}{M}$

^aNot always, see [cryptoeprint:2021:1216].

Example with masking:

Black-Box

Profiles Y directly



White-Box Profiles each share *separately*

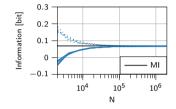
Sound model \approx model with PI > 0^a Ok if the profiling complexity $N \propto \frac{1}{U-PI} \ge \frac{1}{MI}$

^aNot always, see [cryptoeprint:2021:1216].

Example with masking:

Black-Box

 $\begin{array}{l} \mbox{Profiles Y directly} \\ \mbox{MI}\left(Y; \textbf{L}\right) \propto \frac{1}{\sigma^{2d}} \\ \mbox{Prof. complexity} \approx \mbox{Att.} \\ \mbox{complexity} \end{array}$



White-Box Profiles each share *separately*

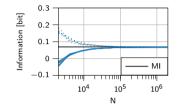
Sound model \approx model with PI > 0^a Ok if the profiling complexity $N \propto \frac{1}{U-PI} \ge \frac{1}{MI}$

^aNot always, see [cryptoeprint:2021:1216].

Example with masking:

Black-Box

 $\begin{array}{l} \mbox{Profiles Y directly} \\ \mbox{MI}\left(Y; {\bf L}\right) \propto \frac{1}{\sigma^{2d}} \\ \mbox{Prof. complexity} \approx \mbox{Att.} \\ \mbox{complexity} \end{array}$



White-Box Profiles each share *separately* $MI(Y_i; \mathbf{L}_i) \propto \frac{1}{\sigma^2}$ Prof. complexity \approx Att. complexity *without* masking

Content

Introduction

Why Profiling Complexity Matters

New Metrics

Speed of Convergence

White-vs.-Black Box

Conclusion

Loïc Masure

We provide to the SCA evaluator some theoretical insights to assess the *profiling* complexity

We provide to the SCA evaluator some theoretical insights to assess the *profiling* complexity

HI can be replaced by a tighter metric: TI

We provide to the SCA evaluator some theoretical insights to assess the *profiling* complexity

HI can be replaced by a tighter metric: TI

We explain why profiling in black-box may be much more difficult than in white-box, especially in presence of noise

We provide to the SCA evaluator some theoretical insights to assess the *profiling* complexity

HI can be replaced by a tighter metric: TI

We explain why profiling in black-box may be much more difficult than in white-box, especially in presence of noise

Open question: what about black-box profiling in low-noise settings (*e.g.* ASCAD datasets)?

We provide to the SCA evaluator some theoretical insights to assess the *profiling* complexity

HI can be replaced by a tighter metric: TI

We explain why profiling in black-box may be much more difficult than in white-box, especially in presence of noise

Open question: what about black-box profiling in low-noise settings (e.g. ASCAD datasets)?

Some evidences discussed in [cryptoeprint:2022:493]

References