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What is Side-Chanel Analysis (SCA)?

  

                                                                     Encryption                  Sensitive operation

               LOAD X ;       LOAD B ;          MV B ;             …                             

Plaintext P Secret K

Measured trace X

Z = C(P, K)

Leakages on intermediate computations allows divide & conquer strategy.
Example for

Classical cryptanalysis (brute force):
Side-Chanel Analysis (SCA):
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                                                                     Encryption                  Sensitive operation

               LOAD X ;       LOAD B ;          MV B ;             …                             

Plaintext P Secret K

Measured trace X

Z = C(P, K)

Leakages on intermediate computations allows divide & conquer strategy.
Example for AES with 8-bit architecture, with key length N = 128:

Classical cryptanalysis (brute force): 2128 ≫ #atoms in the Sun
SCA: 16 × 256
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Example for algorithm designed for n-bit architecture, with key length N :
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How does an SCA work

C

Key chunk k⋆

Plaintext pa

ya = C (pa, k⋆)

la

la
Model
Pr (Y | L)

0 1 . . .
Y

0 1 . . .

K

lb
lc

k̂

Successful attack iff k̂ = k⋆
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From scores to Metrics

If, the adversary gets:

Sensitive computation unpredictable
SCA not more powerful than cryptanalysis
Device fully secure

If, the adversary gets: Exact prediction of the sensitive computation
Success rate of 100% with one trace
Device not secure at all

In general, the adversary gets: How does this translate into
SCA security metrics ?
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Concrete SCA Metrics: the Success Rate (SR)

1 Na(β)
0

β
1

Na (log scale)

SR
(N

a)

SR: probability to succeed the attack within Na queries to the target

Secured device with prob. ≥ 1 − β, =⇒ refresh secret every Na(β) use ✓

Naive est. of Na(β) is expensive: complexity depends on Na(β) itself ✗

Loïc Masure Deep-Learning for Side-Channel Analysis 7 / 45



Introduction Deep Learning for SCA Overview of Topics Deep Learning Against Masking Conclusion References

Concrete SCA Metrics: the Success Rate (SR)

1 Na(β)
0

β
1

Na (log scale)

SR
(N

a)

SR: probability to succeed the attack within Na queries to the target
Secured device with prob. ≥ 1 − β, =⇒ refresh secret every Na(β) use ✓

Naive est. of Na(β) is expensive: complexity depends on Na(β) itself ✗

Loïc Masure Deep-Learning for Side-Channel Analysis 7 / 45



Introduction Deep Learning for SCA Overview of Topics Deep Learning Against Masking Conclusion References

Concrete SCA Metrics: the Success Rate (SR)

1 Na(β)
0

β
1

Na (log scale)

SR
(N

a)

SR: probability to succeed the attack within Na queries to the target
Secured device with prob. ≥ 1 − β, =⇒ refresh secret every Na(β) use ✓

Naive est. of Na(β) is expensive: complexity depends on Na(β) itself ✗

Loïc Masure Deep-Learning for Side-Channel Analysis 7 / 45



Introduction Deep Learning for SCA Overview of Topics Deep Learning Against Masking Conclusion References

Circumventing the Drawbacks of the Success Rate (SR)

Can we find surrogate metrics characterizing Na(β) ?

CPA 1

Using correlation coeff.

Na(β) ≈ f (β)
ρ2

Easy to estimate ρ ✓

Only for univariate, linear ✗

General case 2

Using the Mutual Information (MI),

Na(β) ≥ f (β)
MI (Y; L)

Mutual Information (MI)
generalizes ρ ✓

MI hard to estimate ✗

1Mangard, Oswald, and Popp, Power analysis attacks - revealing the secrets of smart cards
2Chérisey et al., “Best Information is Most Successful: Mutual Information and Success Rate in

Side-Channel Analysis”
Loïc Masure Deep-Learning for Side-Channel Analysis 8 / 45
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Why Estimating MI is hard ?

No unbiased estimator 3 ✗

Curse of dim. if bias > 0 ✗

The lower the MI, the harder ✗

=⇒ need for good estimators
with bias < 0

102 103 104 105 106 107 108

10−2

10−1

100

Figure: Bias (y-axis) vs. #traces (x-axis) for
D = 1, 2, 3, 4. Taken from4.

3Paninski, “Estimation of Entropy and Mutual Information”
4Masure et al., Information Bounds and Convergence Rates for Side-Channel Security Evaluators
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Gaussian Templates (GTs)6

l

Gaussian Templates (GTs)
y

Generative model built from Gaussian generative laws

Pr (Y = s | L = l) ≈ N (l , µs, Σs)∑
s′ N (l , µs′, Σs′) (1)

Does not scale well to multivariate leakage5 ✗

Relies on Gaussian hypothesis ✓

5Masure et al., Information Bounds and Convergence Rates for Side-Channel Security Evaluators.
6Chari, Rao, and Rohatgi, “Template Attacks”, Ches 2002 (2022 Test of Time Award)
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Deep Learning (DL) for SCA

l

Deep Neural Network (DNN)
y

More general model
F : L −→ P(Y)

l 7−→ y = F (l) ≈ Pr (Y | L = l) (2)

F (l): output of a Directed Acyclic Graph (DAG) of computation:
Each node: elementary function fi(·, θi)
θi : parameters fully describing fi

Shape of the DAG, nature of the classes of functions: architecture of the DNN.
Loïc Masure Deep-Learning for Side-Channel Analysis 12 / 45
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Training a DNN for Profiled SCA

Clone Device
(Open sample)

k⋆

p

y = C (p, k⋆)

F (l , θ)

Parameters θ

L (y, y)

L (): loss function to minimize
Use of gradient descent algorithm for minimization
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The Deep Learning (DL) hype in SCA

➔ Space 2016: DL breaks masking7

➔ Ches 2017: CNNs efficiently tackles
misalignment8

➔ Ches 2019: non-profiled attacks9

➔ De facto standard for evaluations
➔ Dedicated sessions in conferences

20
12

20
14

20
16

20
18

20
20

0

20

40

Year

#
Pa

pe
rs

DBLP
Scopus
e-print
TCHES

7Maghrebi, Portigliatti, and Prouff, “Breaking Cryptographic Implementations Using Deep Learning
Techniques”

8Cagli, Dumas, and Prouff, “Convolutional Neural Networks with Data Augmentation Against
Jitter-Based Countermeasures - Profiling Attacks Without Pre-processing”

9Timon, “Non-Profiled Deep Learning-based Side-Channel attacks with Sensitivity Analysis”
Loïc Masure Deep-Learning for Side-Channel Analysis 14 / 45
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Predicting the Online Attack Complexity
Back to the link between MI and Na(β)...

Tests on public datasets, using SOTA architectures10
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N
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PI

Key recovery

MCU, random delay: ϵ = 16%
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Key recovery

MCU, masking: ϵ = 16%
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Key recovery

FPGA (unprotected): ϵ = 18%
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f(β)
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Key recovery

T-table 32-bit (polymorphic): ϵ < 1%

0 50 100 150 200

Epoch

100

101

102

N
a

f(β)
PI

Key recovery

AES 8-bit (polymorphic): ϵ = 15%

10Masure, Dumas, and Prouff, “Gradient Visualization for General Characterization in Profiling Attacks”;
Kim et al., “Make Some Noise. Unleashing the Power of Convolutional Neural Networks for Profiled
Side-channel Analysis”.
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Towards SCA dedicated Architectures

DL-SCA mostly inspired by computer vision
Usually uses many layers, with small filters 11

D
W

Figure: A 2D receptive
field.12

11Simonyan and Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition”
12Inspired by Dumoulin and Visin, A guide to convolution arithmetic for deep learningLoïc Masure Deep-Learning for Side-Channel Analysis 17 / 45
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Convolution Arithmetics with 2D Data

A 2D receptive field of size D × D, captured by two
different settings.
# parameters: DW 2

W −1 ≈ DW
minimized by setting W small

D
W

Figure: 2 layers, W = 3.
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Convolution Arithmetics with 1D Data

A 1D receptive field of size D = 5, captured either by
one or two convolution layers.
# parameters: D W

W −1 ≈ D, independent of W
We don’t necessarily need to stack many layers
in SCA !13 14

Figure: 2 layers, W = 3.

13Zaid et al., “Methodology for Efficient CNN Architectures in Profiling Attacks”, Ches 2020
14Masure et al., “Deep Learning Side-Channel Analysis on Large-Scale Traces - A Case Study on a

Polymorphic AES”, Esorics 2020
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Sensitivity Analysis for P.o.Is Selection15
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(a) Characterization with SNR
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(b) Gradient Visualization
15Masure, Dumas, and Prouff, “Gradient Visualization for General Characterization in Profiling Attacks”;

Hettwer, Gehrer, and Güneysu, “Deep Neural Network Attribution Methods for Leakage Analysis and
Symmetric Key Recovery”.
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Sensitivity Analysis with misalignment
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(b) Band of PoIs ✓
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How to protect against SCA: Masking

C y

(a) Unprotected

C y1

y0

y2

⋆ y

(b) Masking with d + 1 = 3 shares
y = y0 ⋆ . . . ⋆ yd

Each non-trivial subset of share: independent of y

Loïc Masure Deep-Learning for Side-Channel Analysis 23 / 45



Introduction Deep Learning for SCA Overview of Topics Deep Learning Against Masking Conclusion References

The Effect of Masking

C y1

y0

y2

⋆ y

Masking amplifies the noise . . . exponentially with #shares
Independence =⇒ each separate leakage li statistically neutral w.r.t.
the secret y
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The Elephant in the Room

How to profile masked implementations ?

pY0 | l0

pY1 | l1

l0

l1

The natural way: divide & conquer
→ Pr (Y | L) decomposed as

collection of Pr (Yi | Li)

→ Each, modeled by mθi , trained with
Lyi

→ Use ⊛ to recombine
Worst-case adversary:
→ Aware of masking scheme
→ Access to random nonces
Too conservative ✗

Not realistic ✗
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The Elephant in the Room II

mθ Ly

l0

l1

The End-to-End Way:
→ Pr (Y | L) directly modeled by

mθ, trained with Ly

Uninformed Adversary:
→ Not aware of masking scheme
→ No access to random nonces
More realistic ✓

Maybe sub-optimal ✗
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Simulated Experiments

Learning Curves: MI estimation vs. data complexity
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Figure: First-order masking, SNR = 0.1
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Recap

Divide & conquer approach:
converges faster than black-box counter-parts16

data complexity ⊥ #shares, not for uninformed adversaries17!
Can we find a trade-off between both approaches ?

16Bronchain et al., “Efficient Profiled Side-Channel Analysis of Masked Implementations, Extended”.
17Masure et al., Information Bounds and Convergence Rates for Side-Channel Security Evaluators.
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Don’t Learn what You Already Know !

∗ Ly

mθ0

mθ1

l0

l1

→ Model still decomposed as
collection of Pr (Yi | Li)

→ Still recombined with ⊛ but ...
→ ... Training done jointly with Ly

Scheme-aware adversary:18

→ Aware of masking scheme
→ No access to random nonces

18Masure et al., “Don’t Learn What You Already Know: Grey-Box Modeling for Profiling Side-Channel
Analysis against Masking”, Ches 2023
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Scheme-Aware Spares Some Data Complexity

Scheme-aware Uninformed Worst-case
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Figure: Learning curves: MI estimation vs. data complexity.
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Drawback: the Plateau Effect of Masking
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Figure: Number of epochs required to properly train a model.
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An Explanation

Theorem (informal19)
Assume that each Li is i.i.d. standard Gaussian in Rp. Define the target
function hu (l) = ∏d

i=1 sign (u⊺li) , for some normalized hyperplane u. Let mθ

be a model, such that E
L

[
∥∇θ mθ∥2]

≤ G(θ)2. Then,

Eu

[∥∥∥∥∇θL (θ) − Eu [∇θL (θ)]
∥∥∥∥2]

≤ G(θ)2 · O


√√√√d log(p)
p

d

. (3)

The gradient almost takes the same direction, regardless of y !
19Shalev-Shwartz, Shamir, and Shammah, “Failures of Gradient-Based Deep Learning”, p. ICML 2017.
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Epilogue

How to tackle masking with DL remains unclear:
Gradient descent not suitable for higher orders
Efficient surrogate to gradient descent ?

=⇒ Then current evaluator run suboptimal attacks
No efficient surrogate to gradient descent ?

=⇒ Then intrinsic gap between worst-case approach and others

Loïc Masure Deep-Learning for Side-Channel Analysis 34 / 45
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