

Computing over masked data with provable security

Loïc Masure (loic.masure@lirmm.fr)

Séminaire ECO, Montpellier, 3 Septembre 2024

Agenda

Introduction: SCA

The Core Problem: Make & Certify a Device as Secure

Masking

Security Analysis for a Single Encoding Computing on Masked Secrets Security Analysis over Computations

Content

Introduction: SCA

The Core Problem: Make & Certify a Device as Secure

Masking

Security Analysis for a Single Encoding

Computing on Masked Secrets

Security Analysis over Computations

Context : Side-Channel Analysis (SCA)

Context : Side-Channel Analysis (SCA)

Context : Side-Channel Analysis (SCA)

"Cryptographic algorithms don't run on paper, they run on physical devices" Msg -: N bits Black-box cryptanalysis: 2^{N} Ctx

Context : Side-Channel Analysis (SCA)

"Cryptographic algorithms don't run on paper, they run on physical devices" Msg - N bits Black-box cryptanalysis: 2^{N} Trace(Msg, -) Ctx

Content

Introduction: SCA

The Core Problem: Make & Certify a Device as Secure

Masking

Security Analysis for a Single Encoding

Computing on Masked Secrets

Security Analysis over Computations

Certification against SCA

Security graded w.r.t. attack complexity in terms of human, material, and financial means

Loïc Masure

Evaluate Security against Side-Channel Attacks

^aShamelessly stolen to O. Bronchain

^aShamelessly stolen to O. Bronchain

Attack approach (industry): Current security level \checkmark Future improvement \rightarrow reevaluation $\cancel{\times}$

^aShamelessly stolen to O. Bronchain

^aShamelessly stolen to O. Bronchain

Attack approach (industry): Current security level \checkmark Future improvement \rightarrow reevaluation X

Approach by *proofs* (academia): Rigorous approach ✓ Potentially conservative ✗

Attack approach (industry): Current security level \checkmark Future improvement \rightarrow reevaluation X

Approach by *proofs* (academia): Rigorous approach ✓ Potentially conservative ✗

^aShamelessly stolen to O. Bronchain

Today's agenda: evaluation by proofs

Content

Introduction: SCA

The Core Problem: Make & Certify a Device as Secure

Masking

Security Analysis for a Single Encoding Computing on Masked Secrets Security Analysis over Computations

Masking: what is that ?

Masking, a.k.a. *MPC on silicon*:¹² secret sharing over a finite field $(\mathbb{F}, \oplus, \otimes)$ Y(secret)

Masking: what is that ?

Masking, a.k.a. MPC on silicon:¹² secret sharing over a finite field $(\mathbb{F},\oplus,\otimes)$ Y(secret)

Masking: what is that ?

Masking, a.k.a. *MPC on silicon*:¹² secret sharing over a finite field $(\mathbb{F}, \oplus, \otimes)$ Y(secret)

¹Chari et al., "Towards Sound Approaches to Counteract Power-Analysis Attacks". ²Goubin and Patarin, "DES and Differential Power Analysis (The "Duplication" Method)". Loic Masure Computing over masked data with provable security

Content

Introduction: SCA

The Core Problem: Make & Certify a Device as Secure

Masking

Security Analysis for a Single Encoding

Computing on Masked Secrets

Security Analysis over Computations

In this model, for each intermediate computation, the adversary gets a probability distribution about its operands:

$$I \longrightarrow Pr(Y | L) \rightarrow y$$

In this model, for each intermediate computation, the adversary gets a probability distribution about its operands:

If, the adversary gets:

In this model, for each intermediate computation, the adversary gets a probability distribution about its operands:

$$I \quad M_{W}M_{W} - \Pr(Y \mid L) \rightarrow \boxed{y}$$

If, the adversary gets:

Very noisy Sensitive computation unpredictable

In this model, for each intermediate computation, the adversary gets a probability distribution about its operands:

If, the adversary gets:

In this model, for each intermediate computation, the adversary gets a probability distribution about its operands:

$$I \quad M_{W}M_{W} - \Pr(Y \mid L) \rightarrow \boxed{y}$$

If, the adversary gets:

Low-noise

Exact prediction of the sensitive computation

The Effect of Masking

Y(secret)

The Effect of Masking

Computing over masked data with provable security

THEOREM (MRS. GERBER'S LEMMA³)

Given $Y = Y_1 \oplus \ldots \oplus Y_d$, and each Y_i with (indep.) side information L_1, \ldots, L_d , then for $\eta^{-1} = 2 \log(2)$:

³Béguinot et al., "Removing the Field Size Loss from Duc et al.'s Conjectured Bound for Masked Encodings".

THEOREM (MRS. GERBER'S LEMMA³)

Given $Y = Y_1 \oplus \ldots \oplus Y_d$, and each Y_i with (indep.) side information L_1, \ldots, L_d , then for $\eta^{-1} = 2 \log(2)$:

$$\mathsf{MI}(\mathbf{Y}; \mathbf{L}) \leq \prod_{i=1}^{d} \frac{\mathsf{MI}(\mathbf{Y}_{i}; \mathbf{L}_{i})}{\eta} + \mathcal{O}\left(\prod_{i=1}^{d} \mathsf{MI}(\mathbf{Y}_{i}; \mathbf{L}_{i})^{2}\right) \text{ in } \mathbb{F}_{2^{n}}$$

³Béguinot et al., "Removing the Field Size Loss from Duc et al.'s Conjectured Bound for Masked Encodings".

THEOREM (MRS. GERBER'S LEMMA³)

Given $Y = Y_1 \oplus \ldots \oplus Y_d$, and each Y_i with (indep.) side information L_1, \ldots, L_d , then for $\eta^{-1} = 2 \log(2)$:

$$\mathsf{MI}(\mathbf{Y}; \mathbf{L}) \leq \prod_{i=1}^{d} \frac{\mathsf{MI}(\mathbf{Y}_{i}; \mathbf{L}_{i})}{\eta} + \mathcal{O}\left(\prod_{i=1}^{d} \mathsf{MI}(\mathbf{Y}_{i}; \mathbf{L}_{i})^{2}\right) \text{ in } \mathbb{F}_{2^{n}}$$

 \rightarrow Security $\propto \frac{1}{\mathsf{MI}(Y;\mathbf{L})} \implies$ increases **exponentially fast** with $d \checkmark$

³Béguinot et al., "Removing the Field Size Loss from Duc et al.'s Conjectured Bound for Masked Encodings".

THEOREM (MRS. GERBER'S LEMMA³)

Given $Y = Y_1 \oplus \ldots \oplus Y_d$, and each Y_i with (indep.) side information L_1, \ldots, L_d , then for $\eta^{-1} = 2 \log(2)$:

$$\mathsf{MI}(\mathbf{Y}; \mathbf{L}) \leq \prod_{i=1}^{d} \frac{\mathsf{MI}(\mathbf{Y}_{i}; \mathbf{L}_{i})}{\eta} + \mathcal{O}\left(\prod_{i=1}^{d} \mathsf{MI}(\mathbf{Y}_{i}; \mathbf{L}_{i})^{2}\right) \text{ in } \mathbb{F}_{2^{n}}$$

 \rightarrow Security $\propto \frac{1}{\mathsf{MI}(Y;\mathbf{L})} \implies$ increases **exponentially fast** with $d \checkmark$

ightarrow Independent of the adversary \checkmark

 $^{^{3}\}mathsf{B}\acute{e}\mathsf{guinot}$ et al., "Removing the Field Size Loss from Duc et al.'s Conjectured Bound for Masked Encodings".

Convolution = Noise Amplification

Simulation, for \mathbb{F}_{2^n} : $L(Y_i) = hw(Y_i) + \mathcal{N}(0; \sigma^2)$, hw = Hamming weight

Content

Introduction: SCA

The Core Problem: Make & Certify a Device as Secure

Masking

Security Analysis for a Single Encoding

Computing on Masked Secrets

Security Analysis over Computations
Idea to make a masked circuit

⁵Ishai, Sahai, and Wagner, "Private Circuits: Securing Hardware against Probing Attacks". ⁵Rivain and Prouff, "Provably Secure Higher-Order Masking of AES".

Idea to make a masked circuit

· View your algorithm as a circuit

Loïc Masure

Computing over masked data with provable security

⁵Ishai, Sahai, and Wagner, "Private Circuits: Securing Hardware against Probing Attacks". ⁵Rivain and Prouff, "Provably Secure Higher-Order Masking of AES".

Idea to make a masked circuit

 \cdot View your algorithm as a circuit \rightarrow Made of not, and gates 4

Loïc Masure

Computing over masked data with provable security

⁵Ishai, Sahai, and Wagner, "Private Circuits: Securing Hardware against Probing Attacks". ⁵Rivain and Prouff, "Provably Secure Higher-Order Masking of AES".

Idea to make a masked circuit

 \cdot View your algorithm as a circuit \rightarrow Made of not, and gates 4 \rightarrow Made of \oplus,\otimes gates 5

Loïc Masure

Computing over masked data with provable security

⁵Ishai, Sahai, and Wagner, "Private Circuits: Securing Hardware against Probing Attacks". ⁵Rivain and Prouff, "Provably Secure Higher-Order Masking of AES".

Idea to make a masked circuit

- · View your algorithm as a circuit
- \rightarrow Made of not, and gates 4
- \rightarrow Made of \oplus,\otimes gates 5
- \cdot Replace each gate by a masked gadget

⁵Rivain and Prouff, "Provably Secure Higher-Order Masking of AES".

⁵Ishai, Sahai, and Wagner, "Private Circuits: Securing Hardware against Probing Attacks".

Idea to make a masked circuit

- \cdot View your algorithm as a circuit
- \rightarrow Made of not, and gates 4
- \rightarrow Made of \oplus,\otimes gates 5
- Replace each gate by a masked *gadget*Et voilà !

⁵Rivain and Prouff, "Provably Secure Higher-Order Masking of AES".

⁵Ishai, Sahai, and Wagner, "Private Circuits: Securing Hardware against Probing Attacks".

DEFINITION (*t*-PRIVACY)

Any tuple of *t* intermediate values \perp secrets

 6 Not \iff , see Bordes, "Security of symmetric primitives and their implementations", Example 5.5 Loïc Masure Computing over masked data with provable security

DEFINITION (*t*-PRIVACY)

Any tuple of t intermediate values \perp secrets

DEFINITION (SIMULATABILITY)

A set of probes $\mathcal P$ in a circuit $\mathbb C$ can be simulated with the input shares $\mathcal I$ if there exists an algorithm $\mathcal S$ (the simulator) such that

$$\mathcal{P} \stackrel{d}{=} \mathcal{S}(\mathcal{I})$$

DEFINITION (*t*-PRIVACY)

Any tuple of t intermediate values \perp secrets

DEFINITION (SIMULATABILITY)

A set of probes \mathcal{P} in a circuit \mathbb{C} can be simulated with the input shares \mathcal{I} if there exists an algorithm \mathcal{S} (the *simulator*) such that

 $\mathcal{P} \stackrel{d}{=} \mathcal{S}(\mathcal{I})$

DEFINITION (*t*-NON-INTERFERENCE (NI))

 $\mathbb C$ is *t*-NI if *any* set of *t* probes is simulatable by *at most t* shares of each input

 $^{^{6}}$ Not \iff , see Bordes, "Security of symmetric primitives and their implementations", Example 5.5 Loïc Masure Computing over masked data with provable security

DEFINITION (*t*-PRIVACY)

Any tuple of t intermediate values \perp secrets

DEFINITION (SIMULATABILITY)

A set of probes $\mathcal P$ in a circuit $\mathbb C$ can be simulated with the input shares $\mathcal I$ if there exists an algorithm $\mathcal S$ (the simulator) such that

 $\mathcal{P} \stackrel{d}{=} \mathcal{S}(\mathcal{I})$

DEFINITION (*t*-NON-INTERFERENCE (NI))

 \mathbb{C} is *t*-NI if *any* set of *t* probes is simulatable by *at most t* shares of each input For a circuit with *d* shares, *d*-NI \implies *d*-privacy⁶

 $^{^{6}}$ Not \iff , see Bordes, "Security of symmetric primitives and their implementations", Example 5.5 Loïc Masure Computing over masked data with provable security

DEFINITION (*t*-PRIVACY)

Any tuple of t intermediate values \perp secrets

DEFINITION (SIMULATABILITY)

A set of probes \mathcal{P} in a circuit \mathbb{C} can be simulated with the input shares \mathcal{I} if there exists an algorithm \mathcal{S} (the *simulator*) such that

 $\mathcal{P} \stackrel{d}{=} \mathcal{S}(\mathcal{I}) \iff \mathcal{P} \bot$ all inputs except \mathcal{I}

DEFINITION (*t*-NON-INTERFERENCE (NI))

 \mathbb{C} is *t*-NI if *any* set of *t* probes is simulatable by *at most t* shares of each input For a circuit with *d* shares, *d*-NI \implies *d*-privacy⁶

 $^{^{6}}$ Not \iff , see Bordes, "Security of symmetric primitives and their implementations", Example 5.5 Loïc Masure Computing over masked data with provable security

XNI is not always composable⁷

Figure: Two probes on D may depend on three probes of A !

⁷Coron et al., "Higher-Order Side Channel Security and Mask Refreshing". Loïc Masure Computing over masked data with provable security

XNI is not always composable⁷

Figure: Two probes on D may depend on three probes of A !

⁷Coron et al., "Higher-Order Side Channel Security and Mask Refreshing". Loïc Masure Computing over masked data with provable security

XNI is not always composable⁷

Figure: Two probes on D may depend on three probes of A !

⁷Coron et al., "Higher-Order Side Channel Security and Mask Refreshing".

XNI is not always composable⁷

Figure: Two probes on D may depend on three probes of A !

⁷Coron et al., "Higher-Order Side Channel Security and Mask Refreshing". Loïc Masure Computing over masked data with provable security

XNI is not always composable⁷

Figure: Two probes on D may depend on three probes of A !

⁷Coron et al., "Higher-Order Side Channel Security and Mask Refreshing". Loïc Masure Computing over masked data with provable security

Strong Non-Interference⁹

DEFINITION (*t*-STRONG NON-INTERFERENCE)

A gadget is t-SNI if any set of t_1 internal probes and t_2 output probes can be simulated with t_1 shares of each input sharing, and

$$t=t_1+t_2$$

- ightarrow SNI is composable \checkmark
- \rightarrow SNI \implies NI \implies privacy

Other composable notions: SNIu, PINI⁸, robust probing, glitch-extended, ...

⁸Cassiers and Standaert, "Trivially and Efficiently Composing Masked Gadgets With Probe Isolating Non-Interference".

⁹Barthe et al., "Strong Non-Interference and Type-Directed Higher-Order Masking".

Inputs:

$$\llbracket A \rrbracket = (A_1, \ldots, A_d)$$

 $\llbracket B \rrbracket = (B_1, \ldots, B_d)$

Output:

$$\llbracket C \rrbracket = (C_1, \ldots, C_d)$$

$$\sum_{i} C_{i} = \left(\sum_{i} A_{i}\right) \oplus \left(\sum_{i} B_{i}\right)$$

Inputs:

SecAdd algorithm:

$$\llbracket A \rrbracket = (A_1, \ldots, A_d)$$
$$\llbracket B \rrbracket = (B_1, \ldots, B_d)$$

 $C_1 = A_1 \oplus B_1$ \vdots $C_d = A_d \oplus B_d$

Output:

$$\llbracket C \rrbracket = (C_1, \ldots, C_d)$$

$$\sum_{i} C_{i} = \left(\sum_{i} A_{i}\right) \oplus \left(\sum_{i} B_{i}\right)$$

Inputs:

SecAdd algorithm:

- $\begin{bmatrix} A \end{bmatrix} = (A_1, \dots, A_d) \\ \begin{bmatrix} B \end{bmatrix} = (B_1, \dots, B_d) \\ C_d = A_d \oplus B_d$
 - $\llbracket C \rrbracket = (C_1, \ldots, C_d)$

NI, but not SNI X

$$\sum_{i} C_{i} = \left(\sum_{i} A_{i}\right) \oplus \left(\sum_{i} B_{i}\right)$$

Inputs:

SecAdd algorithm:

 $\llbracket A \rrbracket = (A_1, \ldots, A_d)$ $C_1 = A_1 \oplus B_1$ $\llbracket B \rrbracket = (B_1, \ldots, B_d)$:

Output:

 $[\![C]\!] = (C_1, \ldots, C_d)$

such that

$$\sum_{i} C_{i} = \left(\sum_{i} A_{i}\right) \oplus \left(\sum_{i} B_{i}\right)$$

$$C_d = A_d \oplus B_d$$

 NI, but not SNI X \cdot t-NI + t-SNI refresh \implies t-SNI

Inputs:

SecAdd algorithm:

 $[\![A]\!] = (A_1, \ldots, A_d)$ $C_1 = A_1 \oplus B_1$ $\llbracket B \rrbracket = (B_1, \ldots, B_d)$

Output:

$$\llbracket C \rrbracket = (C_1, \ldots, C_d)$$

$$\sum_{i} C_{i} = \left(\sum_{i} A_{i}\right) \oplus \left(\sum_{i} B_{i}\right)$$

$$\vdots$$

 $C_d = A_d \oplus B_d$

- NI, but not SNI X
- \cdot t-NI + t-SNI refresh \implies t-SNI
- · Generalization: share-wise application of any affine map

Inputs:

$$\llbracket A \rrbracket = (A_1, \ldots, A_d)$$

 $\llbracket B \rrbracket = (B_1, \ldots, B_d)$

Output:

$$\llbracket C \rrbracket = (C_1, \ldots, C_d)$$

$$\sum_{i} C_{i} = \left(\sum_{i} A_{i}\right) \otimes \left(\sum_{i} B_{i}\right)$$

Inputs:

$\llbracket A \rrbracket = (A_1, \ldots, A_d)$ $\llbracket B \rrbracket = (B_1, \ldots, B_d)$

Output:

$$\llbracket C \rrbracket = (C_1, \ldots, C_d)$$

$$\begin{array}{lll} C_1 = & (A_1 \otimes B_1 &) \oplus (A_1 \otimes B_2 &) \oplus (A_1 \otimes B_3 \\ C_2 = & (A_2 \otimes B_1 &) \oplus (A_2 \otimes B_2 &) \oplus (A_2 \otimes B_3 \\ C_3 = & (A_3 \otimes B_1 &) \oplus (A_3 \otimes B_2 &) \oplus (A_3 \otimes B_3 \end{array}$$

Correct, but not 2-NI. Why ?

$$\sum_{i} C_{i} = \left(\sum_{i} A_{i}\right) \otimes \left(\sum_{i} B_{i}\right)$$

Inputs:

$\llbracket A \rrbracket = (A_1, \ldots, A_d)$ $\llbracket B \rrbracket = (B_1, \ldots, B_d)$

Output:

$$\llbracket C \rrbracket = (C_1, \ldots, C_d)$$

$$\begin{array}{lll} \mathbf{C}_1 = & (A_1 \otimes B_1 &) \oplus (A_1 \otimes B_2 &) \oplus (A_1 \otimes B_3 \\ \mathbf{C}_2 = & (A_2 \otimes B_1 &) \oplus (A_2 \otimes B_2 &) \oplus (A_2 \otimes B_3 \\ \mathbf{C}_3 = & (A_3 \otimes B_1 &) \oplus (A_3 \otimes B_2 &) \oplus (A_3 \otimes B_3 \end{array}$$

Correct, but not 2-NI. Why ?

$$\sum_{i} C_{i} = \left(\sum_{i} A_{i}\right) \otimes \left(\sum_{i} B_{i}\right)$$

Inputs:

$$\llbracket A \rrbracket = (A_1, \ldots, A_d)$$
$$\llbracket B \rrbracket = (B_1, \ldots, B_d)$$

Output:

$$\llbracket C \rrbracket = (C_1, \ldots, C_d)$$

SecMult algorithm:

$$C_{1} = (A_{1} \otimes B_{1}) \oplus (A_{1} \otimes B_{2} \oplus R_{1}) \oplus (A_{1} \otimes B_{3} \oplus R_{2})$$

$$C_{2} = (A_{2} \otimes B_{1} \oplus R_{1}) \oplus (A_{2} \otimes B_{2}) \oplus (A_{2} \otimes B_{3} \oplus R_{3})$$

$$C_{3} = (A_{3} \otimes B_{1} \oplus R_{2}) \oplus (A_{3} \otimes B_{2} \oplus R_{3}) \oplus (A_{3} \otimes B_{3})$$

 \cdot SecMult is (d-1)-SNI 🗸

$$\sum_{i} C_{i} = \left(\sum_{i} A_{i}\right) \otimes \left(\sum_{i} B_{i}\right)$$

Inputs:

$$\llbracket A \rrbracket = (A_1, \ldots, A_d)$$
$$\llbracket B \rrbracket = (B_1, \ldots, B_d)$$

Output:

$$\llbracket C \rrbracket = (C_1, \ldots, C_d)$$

such that

$$\sum_{i} C_{i} = \left(\sum_{i} A_{i}\right) \otimes \left(\sum_{i} B_{i}\right)$$

 ${\it SecMult\ algorithm:}$

$$\begin{array}{ll} C_1 = & (A_1 \otimes B_1 &) \oplus (A_1 \otimes B_2 \oplus R_1) \oplus (A_1 \otimes B_3 \oplus R_2) \\ C_2 = & (A_2 \otimes B_1 \oplus R_1) \oplus (A_2 \otimes B_2 &) \oplus (A_2 \otimes B_3 \oplus R_3) \\ C_3 = & (A_3 \otimes B_1 \oplus R_2) \oplus (A_3 \otimes B_2 \oplus R_3) \oplus (A_3 \otimes B_3 &) \end{array}$$

· SecMult is
$$(d - 1)$$
-SNI ✓
· If $\llbracket B \rrbracket = (1, 0, ..., 0)$, then
SecMult($\llbracket A \rrbracket, \llbracket B \rrbracket) = \text{Refresh}(\llbracket A \rrbracket)$ ✓

Content

Introduction: SCA

The Core Problem: Make & Certify a Device as Secure

Masking

Security Analysis for a Single Encoding

Computing on Masked Secrets

Security Analysis over Computations

Recall on Noisy Leakage Model

$$I \longrightarrow Pr(Y | L) \rightarrow y$$

Recall on Noisy Leakage Model

$$I \xrightarrow{M_{W}} Pr(Y | L) \rightarrow y$$

If, the adversary gets:

Recall on Noisy Leakage Model

$$I \longrightarrow Pr(Y | L) \rightarrow y$$

If, the adversary gets:

Very noisy leakage Y indistinguishable from blind guess

Recall on Noisy Leakage Model

$$I \longrightarrow Pr(Y | L) \rightarrow y$$

If, the adversary gets:

Recall on Noisy Leakage Model

$$I \longrightarrow Pr(Y | L) \rightarrow y$$

If, the adversary gets:

Low-noise leakage Exact prediction for $\boldsymbol{\mathrm{Y}}$

Recall on Noisy Leakage Model

$$I \sim V \to V$$

δ -noisy adversary

Any intermediate computation Y leaks L(Y) such that:

$$\mathsf{SD}(\mathbf{Y}; \mathbf{L}) = \mathbb{E}\left[\mathsf{TV}\left(\underbrace{\square}_{\mathsf{Pr}(\mathbf{Y} \mid \mathbf{L})}, \underbrace{\square}_{\mathsf{Pr}(\mathbf{Y})} \right)\right] \leq \delta$$

Security Proof for a Gadget

Consider a gadget with ℓ intermediate computations:

Security Proof for a Gadget

Consider a gadget with $\ell \delta$ -noisy intermediate computations:

Security Proof for a Gadget

Consider a gadget with $\ell \delta$ -noisy intermediate computations:

LEMMA (SIMULATABILITY BY RP) The leakage function L can be simulated from a random probing adversary: $\varphi(x)$ exactly reveals x with probability $\epsilon = 1 - \sum_{l} \min_{x} \Pr(L(x) = l) \le \delta \cdot |\mathbb{F}|.^{a}$

^aDuc, Dziembowski, and Faust, "Unifying Leakage Models: From Probing Attacks to Noisy Leakage".

Security Proof for a Gadget

Consider a gadget with $\ell \delta$ -noisy intermediate computations:

We may reduce to an adversary observing $\varphi(X)$ instead of $S(\varphi(X))$ (Data Processing Inequality)

Proof of the Core Lemma (I)

Assume there exists such a simulator \mathcal{S} ,

Assume there exists such a simulator S, we need to construct it for all inputs:

$$\Pr(\mathcal{S}(x) = l) = \dots, \text{ for all } x$$

$$\Pr(\mathcal{S}(\bot) = l) = \dots$$

Constraints:

Assume there exists such a simulator \mathcal{S} , we need to construct it for all inputs:

$$\Pr(\mathcal{S}(x) = l) = \dots, \text{ for all } x$$

$$\Pr(\mathcal{S}(\bot) = l) = \dots$$

Constraints:

 \rightarrow For all input x, Pr ($\mathcal{S}(x)$) should be a p.m.f. (2 $\cdot |\mathbb{F}|$ (in)equations)

Assume there exists such a simulator \mathcal{S} , we need to construct it for all inputs:

$$\Pr(\mathcal{S}(x) = l) = \dots, \text{ for all } x$$

$$\Pr(\mathcal{S}(\bot) = l) = \dots$$

Constraints:

- \rightarrow For all input x, Pr ($\mathcal{S}(x)$) should be a p.m.f. (2 $\cdot |\mathbb{F}|$ (in)equations)
- \rightarrow For the input \perp , Pr ($\mathcal{S}(\perp)$) should be a p.m.f. (2 (in)equations)

Assume there exists such a simulator \mathcal{S} , we need to construct it for all inputs:

$$\Pr(\mathcal{S}(x) = l) = \dots, \text{ for all } x$$

$$\Pr(\mathcal{S}(\bot) = l) = \dots$$

Constraints:

- \rightarrow For all input x, Pr ($\mathcal{S}(x)$) should be a p.m.f. (2 $\cdot |\mathbb{F}|$ (in)equations)
- \rightarrow For the input \perp , Pr ($\mathcal{S}(\perp)$) should be a p.m.f. (2 (in)equations)
- \rightarrow For any x, l, $\Pr(\mathcal{S}(\varphi(x)) = l) = \Pr(L(x) = l) (|\mathbb{F}| \times |\mathcal{L}| \text{ equations})$

Let us start from the last constraint. For any x and any l:

 $\Pr(L(x) = l) = \Pr(\mathcal{S}(\varphi(x)) = l)$

Let us start from the last constraint. For any x and any l:

$$\begin{aligned} \Pr(\mathcal{L}(x) = l) &= \Pr(\mathcal{S}(\varphi(x)) = l) \\ &= \Pr(\varphi(x) = x) \cdot \Pr(\mathcal{S}(x) = l) + \Pr(\varphi(x) = \bot) \cdot \Pr(\mathcal{S}(\bot) = l) \end{aligned}$$

Let us start from the last constraint. For any x and any l:

$$\begin{aligned} \Pr(\mathcal{L}(x) = l) &= \Pr(\mathcal{S}(\varphi(x)) = l) \\ &= \Pr(\varphi(x) = x) \cdot \Pr(\mathcal{S}(x) = l) + \Pr(\varphi(x) = \bot) \cdot \Pr(\mathcal{S}(\bot) = l) \\ &= \epsilon \cdot \Pr(\mathcal{S}(x) = l) + (1 - \epsilon) \cdot \Pr(\mathcal{S}(\bot) = l) \end{aligned}$$

Let us start from the last constraint. For any x and any l:

$$\begin{aligned} \Pr(\mathcal{L}(x) = l) &= \Pr(\mathcal{S}(\varphi(x)) = l) \\ &= \Pr(\varphi(x) = x) \cdot \Pr(\mathcal{S}(x) = l) + \Pr(\varphi(x) = \bot) \cdot \Pr(\mathcal{S}(\bot) = l) \\ &= \epsilon \cdot \Pr(\mathcal{S}(x) = l) + (1 - \epsilon) \cdot \Pr(\mathcal{S}(\bot) = l) \end{aligned}$$

Hence,

Should not depend on X

$$0 \leq \Pr(\mathcal{S}(\perp) = l) = \overline{\Pr(\operatorname{L}(x) = l) - \epsilon \cdot \Pr(\mathcal{S}(x) = l)}$$

Let us start from the last constraint. For any x and any l:

$$\begin{aligned} \Pr(\mathcal{L}(x) &= l) &= & \Pr(\mathcal{S}(\varphi(x)) = l) \\ &= & \Pr(\varphi(x) = x) \cdot \Pr(\mathcal{S}(x) = l) + \Pr(\varphi(x) = \bot) \cdot \Pr(\mathcal{S}(\bot) = l) \\ &= & \epsilon \cdot \Pr(\mathcal{S}(x) = l) + (1 - \epsilon) \cdot \Pr(\mathcal{S}(\bot) = l) \end{aligned}$$

Hence,

$$0 \leq \Pr(\mathcal{S}(\bot) = l) = \frac{\Pr(L(x) = l) - \epsilon \cdot \Pr(\mathcal{S}(x) = l)}{1 - \epsilon} = \frac{\pi(l)}{1 - \epsilon} \quad (1)$$

Let us start from the last constraint. For any x and any l:

$$\begin{aligned} \Pr(\mathcal{L}(x) &= l) &= \Pr(\mathcal{S}(\varphi(x)) = l) \\ &= \Pr(\varphi(x) = x) \cdot \Pr(\mathcal{S}(x) = l) + \Pr(\varphi(x) = \bot) \cdot \Pr(\mathcal{S}(\bot) = l) \\ &= \epsilon \cdot \Pr(\mathcal{S}(x) = l) + (1 - \epsilon) \cdot \Pr(\mathcal{S}(\bot) = l) \end{aligned}$$

Hence,

$$0 \leq \Pr(\mathcal{S}(\perp) = l) = \frac{\Pr(\operatorname{L}(x) = l) - \epsilon \cdot \Pr(\mathcal{S}(x) = l)}{1 - \epsilon} = \frac{\pi(l)}{1 - \epsilon} \quad (1)$$

$$0 \leq \Pr(\mathcal{S}(x) = l) = \frac{\Pr(\operatorname{L}(x) = l) - \pi(l)}{\epsilon} \quad (2)$$

Let us start from the last constraint. For any x and any l:

$$\begin{aligned} \Pr(\mathcal{L}(x) &= l) &= \Pr(\mathcal{S}(\varphi(x)) = l) \\ &= \Pr(\varphi(x) = x) \cdot \Pr(\mathcal{S}(x) = l) + \Pr(\varphi(x) = \bot) \cdot \Pr(\mathcal{S}(\bot) = l) \\ &= \epsilon \cdot \Pr(\mathcal{S}(x) = l) + (1 - \epsilon) \cdot \Pr(\mathcal{S}(\bot) = l) \end{aligned}$$

Hence,

$$0 \leq \Pr(\mathcal{S}(\perp) = l) = \frac{\Pr(\operatorname{L}(x) = l) - \epsilon \cdot \Pr(\mathcal{S}(x) = l)}{1 - \epsilon} = \frac{\pi(l)}{1 - \epsilon} \quad (1)$$

$$0 \leq \Pr(\mathcal{S}(x) = l) = \frac{\Pr(\operatorname{L}(x) = l) - \pi(l)}{\epsilon} \quad (2)$$

Is there any ϵ such that \geq and \geq are valid?

Loïc Masure

Computing over masked data with provable security

Proof of the Core Lemma (III)

Is there any ϵ such that \geq and \geq are valid?

Is there any ϵ such that \geq and \geq are valid? From (1), and (2), we get $0 \leq \pi(l) \leq \Pr(L(x) = l)$ for any x

Is there any ϵ such that \geq and \geq are valid? From (1), and (2), we get $0 \leq \pi(l) \leq \Pr(L(x) = l)$ for any x

In other words,

$$0 \leq \pi(l) \leq \min_{x} \Pr(\mathcal{L}(x) = l)$$

Is there any ϵ such that \geq and \geq are valid? From (1), and (2), we get

$$0 \leq \pi(l) \leq \Pr(L(x) = l)$$
 for any x

In other words,

$$0 \leq \pi(l) \leq \min_{x} \Pr(\mathcal{L}(x) = l)$$

Furthermore, summing (1) over l, by definition of probability distributions,

$$\sum_{l} \pi(l) = \underbrace{\sum_{l} \Pr(\mathcal{L}(x) = l)}_{=1} - \epsilon \cdot \underbrace{\sum_{l} \Pr(\mathcal{S}(x) = l)}_{=1}$$

Is there any ϵ such that \geq and \geq are valid? From (1), and (2), we get

$$0 \leq \pi(l) \leq \Pr(L(x) = l)$$
 for any x

In other words,

$$0 \leq \pi(l) \leq \min_{x} \Pr(\mathcal{L}(x) = l)$$

Furthermore, summing (1) over l, by definition of probability distributions,

$$\sum_{l} \pi(l) = \underbrace{\sum_{l} \Pr(\mathcal{L}(x) = l)}_{=1} - \epsilon \cdot \underbrace{\sum_{l} \Pr(\mathcal{S}(x) = l)}_{=1} = 1 - \epsilon$$

Is there any ϵ such that \geq and \geq are valid? From (1), and (2), we get

$$0 \leq \pi(l) \leq \Pr(L(x) = l)$$
 for any x

In other words,

$$0 \leq \pi(l) \leq \min_{x} \Pr(\mathcal{L}(x) = l)$$

Furthermore, summing (1) over l, by definition of probability distributions,

$$\sum_{l} \pi(l) = \underbrace{\sum_{l} \Pr(\mathcal{L}(x) = l)}_{=1} - \epsilon \cdot \underbrace{\sum_{l} \Pr(\mathcal{S}(x) = l)}_{=1} = 1 - \epsilon$$

Hence,

$$\epsilon = 1 - \sum_{l} \pi(l) \ge 1 - \sum_{l} \min_{x} \Pr\left(\operatorname{L}(x) = l\right)$$

Loïc Masure

Computing over masked data with provable security

Is there any ϵ such that \geq and \geq are valid? From (1), and (2), we get

$$0 \leq \pi(l) \leq \Pr(L(x) = l)$$
 for any x

In other words,

$$0 \leq \pi(l) \leq \min_{x} \Pr(\mathcal{L}(x) = l)$$

Furthermore, summing (1) over l, by definition of probability distributions,

$$\sum_{l} \pi(l) = \underbrace{\sum_{l} \Pr\left(\mathcal{L}(x) = l\right)}_{=1} - \epsilon \cdot \underbrace{\sum_{l} \Pr\left(\mathcal{S}(x) = l\right)}_{=1} = 1 - \epsilon$$

Hence, to have the smallest ϵ ,

$$\epsilon = 1 - \sum_{l} \pi(l) = 1 - \sum_{l} \min_{x} \Pr(\mathbf{L}(x) = l)$$

Computing over masked data with provable security

Is there any ϵ such that \geq and \geq are valid? From (1), and (2), we get

$$0 \leq \pi(l) \leq \Pr(L(x) = l)$$
 for any x

In other words,

$$0 \leq \pi(l) \leq \min_{x} \Pr(\mathcal{L}(x) = l)$$

Furthermore, summing (1) over l, by definition of probability distributions,

$$\sum_{l} \pi(l) = \underbrace{\sum_{l} \Pr(\mathcal{L}(x) = l)}_{=1} - \epsilon \cdot \underbrace{\sum_{l} \Pr(\mathcal{S}(x) = l)}_{=1} = 1 - \epsilon$$

Hence, to have the smallest ϵ ,

$$\epsilon = 1 - \sum_{l} \pi(l) = 1 - \sum_{l} \min_{x} \Pr(\operatorname{L}(x) = l) \le \delta \cdot |\mathbb{F}|$$
 (Q11: prove it)

Security against a Random Probing Adversary

To succeed, at least d out of ℓ wires must be revealed to the adversary:

 $Pr(Adv. \text{ learns sth}) \leq Pr(At \text{ least } d \text{ wires revealed})$

¹⁰Boucheron, Lugosi, and Massart, *Concentration Inequalities: A Nonasymptotic Theory of Independence*, P.24, and Ex. 2.11.

Security against a Random Probing Adversary

To succeed, at least d out of ℓ wires must be revealed to the adversary:

 $Pr(Adv. \text{ learns sth}) \leq Pr(At \text{ least } d \text{ wires revealed})$

THEOREM (CHERNOFF CONCENTRATION INEQUALITY) If ℓ wires, each independently revealed with proba. ϵ :

$$\Pr\left(At \text{ least } d \text{ wires revealed}\right) \leq \left(\frac{e \cdot \ell \cdot \epsilon}{d}\right)^d$$

¹⁰Boucheron, Lugosi, and Massart, *Concentration Inequalities: A Nonasymptotic Theory of Independence*, P.24, and Ex. 2.11.

Security against a Random Probing Adversary

To succeed, at least d out of ℓ wires must be revealed to the adversary:

 $Pr(Adv. \text{ learns sth}) \leq Pr(At \text{ least } d \text{ wires revealed})$

THEOREM (CHERNOFF CONCENTRATION INEQUALITY) If ℓ wires, each independently revealed with proba. ϵ :

$$\mathsf{Pr}\left(\mathsf{At} \; \mathsf{least} \; \mathsf{d} \, \mathsf{wires} \; \mathsf{revealed}
ight) \leq \left(rac{\mathbf{e} \cdot \ell \cdot \epsilon}{d}
ight)^d$$

Q11: Prove the inequality from a particular case of Chernoff inequality¹⁰

¹⁰Boucheron, Lugosi, and Massart, *Concentration Inequalities: A Nonasymptotic Theory of Independence*, P.24, and Ex. 2.11.

Putting all Together

In our context, $\ell \leq \mathcal{O}\left(d^2\right)$ (for \otimes gadget), and $\epsilon \leq \delta \cdot |\mathbb{F}|$:

THEOREM (SECURITY BOUND)

For a single gadget with $\ell \leq \mathcal{O}\left(d^2\right)$ intermediate computations:

$$\mathsf{SD}(k; \mathbf{L}) \leq \mathcal{O}\left(\left(7e \cdot d \cdot \delta \cdot |\mathbb{F}|\right)^d\right)$$

¹¹*t*-Region-probing secure: NI, with *t* probes from *each* gadget

Putting all Together

In our context, $\ell \leq \mathcal{O}\left(d^2\right)$ (for \otimes gadget), and $\epsilon \leq \delta \cdot |\mathbb{F}|$:

THEOREM (SECURITY BOUND)

For a single gadget with $\ell \leq \mathcal{O}\left(d^2\right)$ intermediate computations:

$$\mathsf{SD}(k; \mathbf{L}) \leq \mathcal{O}\left(\left(7e \cdot d \cdot \delta \cdot |\mathbb{F}|\right)^d\right)$$

For the whole circuit \mathbb{C} ,

$$\mathsf{SD}(k; \mathbf{L}) \leq \mathcal{O}\left(\left(7e \cdot |\mathbf{C}| \cdot d \cdot \delta \cdot |\mathbf{F}|\right)^d\right)$$

¹¹*t*-Region-probing secure: NI, with *t* probes from *each* gadget

Putting all Together

In our context, $\ell \leq \mathcal{O}\left(d^2\right)$ (for \otimes gadget), and $\epsilon \leq \delta \cdot |\mathbb{F}|$:

THEOREM (SECURITY BOUND)

For a single gadget with $\ell \leq \mathcal{O}\left(d^2\right)$ intermediate computations:

$$\mathsf{SD}(k; \mathbf{L}) \leq \mathcal{O}\left(\left(7e \cdot d \cdot \delta \cdot |\mathbb{F}|\right)^d\right)$$

For the whole circuit $\mathbb{C},\,d/2\text{-region probing}^{11}$ security implies

$$\mathsf{SD}\left(k;\mathsf{L}
ight) \leq \mathcal{O}\left(\left|\mathbb{C}
ight|\left(\mathsf{7}e\cdot d\cdot\delta\cdot\left|\mathbb{F}
ight|
ight)^{d/2}
ight)$$

¹¹*t*-Region-probing secure: NI, with *t* probes from *each* gadget

Wrap-Up of the Proof

Wrap-Up of the Proof

Wrap-Up of the Proof

Wrap-Up of the Proof

Bad leakage rate $\approx d \cdot |\mathbb{F}| \times ...$

Wrap-Up of the Proof

Bad *leakage rate* $\approx d \cdot |\mathbb{F}| \times ...$ but new reduction through *Average probing*¹²

¹²Brian, Dziembowski, and Faust, "From Random Probing to Noisy Leakages Without Field-Size Dependence".

¹³Dziembowski, Faust, and Skorski, "Noisy Leakage Revisited". Computing over masked data with provable security

Wrap-Up of the Proof

Bad *leakage rate* $\approx d \cdot |\mathbb{F}| \times ...$ but new reduction through *Average probing*¹²

Problem: Gap with the definition of $ARP^{13} \times$

¹²Brian, Dziembowski, and Faust, "From Random Probing to Noisy Leakages Without Field-Size Dependence".

¹³Dziembowski, Faust, and Skorski, "Noisy Leakage Revisited". Computing over masked data with provable security

Perspectives

· Fixing the reduction through Average Probing (work in progress)

 14 Belaïd, Rivain, and Taleb, "On the Power of Expansion: More Efficient Constructions in the Random Probing Model".

Perspectives

- \cdot Fixing the reduction through Average Probing (work in progress)
- · New constructions with leakage rates indep. of d^{14}

¹⁴Belaïd, Rivain, and Taleb, "On the Power of Expansion: More Efficient Constructions in the Random Probing Model".
- \cdot Fixing the reduction through Average Probing (work in progress)
- · New constructions with leakage rates indep. of d^{14}
- · Masking PQC, e.g., Kyber:

¹⁴Belaïd, Rivain, and Taleb, "On the Power of Expansion: More Efficient Constructions in the Random Probing Model".

- \cdot Fixing the reduction through Average Probing (work in progress)
- · New constructions with leakage rates indep. of d^{14}
- · Masking PQC, e.g., Kyber:
 - \star Unefficient masking through decomposition into circuit $\pmb{\times}$

¹⁴Belaïd, Rivain, and Taleb, "On the Power of Expansion: More Efficient Constructions in the Random Probing Model".

- \cdot Fixing the reduction through Average Probing (work in progress)
- · New constructions with leakage rates indep. of d^{14}
- · Masking PQC, e.g., Kyber:
 - \star Unefficient masking through decomposition into circuit \pmb{X}
 - \star Needs bigger gadgets with other paradigm: pre-computation tables \checkmark

¹⁴Belaïd, Rivain, and Taleb, "On the Power of Expansion: More Efficient Constructions in the Random Probing Model".

- \cdot Fixing the reduction through Average Probing (work in progress)
- · New constructions with leakage rates indep. of d^{14}
- · Masking PQC, *e.g.*, Kyber:
 - \star Unefficient masking through decomposition into circuit \pmb{X}
 - * Needs bigger gadgets with other paradigm: pre-computation tables \checkmark \implies wider gap between *d*-probing and ϵ -RP \checkmark

¹⁴Belaïd, Rivain, and Taleb, "On the Power of Expansion: More Efficient Constructions in the Random Probing Model".

- \cdot Fixing the reduction through Average Probing (work in progress)
- · New constructions with leakage rates indep. of d^{14}
- · Masking PQC, *e.g.*, Kyber:
 - \star Unefficient masking through decomposition into circuit $\pmb{\times}$
 - * Needs bigger gadgets with other paradigm: pre-computation tables \checkmark \implies wider gap between *d*-probing and ϵ -RP \checkmark
 - ★ Masking-friendly schemes, e.g., Raccoon ? ✓

¹⁴Belaïd, Rivain, and Taleb, "On the Power of Expansion: More Efficient Constructions in the Random Probing Model".

Pointers

Interested ?

Coron's keynote at CARDIS 23 on masking lattice-based cryptography Cassiers' keynote at COSADE 23 on masking composability Nicolas Bordes' thesis with nice examples of probing notions.

References I

 Barthe, G. et al. "Strong Non-Interference and Type-Directed Higher-Order Masking". In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. CCS '16. Vienna, Austria: Association for Computing Machinery, 2016, pp. 116129. ISBN: 9781450341394. DOI: 10.1145/2976749.2978427. URL: https://doi.org/10.1145/2976749.2978427.

References II

 Béguinot, J. et al. "Removing the Field Size Loss from Duc et al.'s Conjectured Bound for Masked Encodings". In: Constructive Side-Channel Analysis and Secure Design - 14th International Workshop, COSADE 2023, Munich, Germany, April 3-4, 2023, Proceedings. Ed. by E. B. Kavun and M. Pehl. Vol. 13979. Lecture Notes in Computer Science. Springer, 2023, pp. 86–104. DOI: 10.1007/978-3-031-29497-6_5. URL: https://doi.org/10.1007/978-3-031-29497-6_5.

References III

- Belaïd, S., M. Rivain, and A. R. Taleb. "On the Power of Expansion: More Efficient Constructions in the Random Probing Model". In: Advances in Cryptology EUROCRYPT 2021 40th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021, Proceedings, Part II. Ed. by A. Canteaut and F. Standaert. Vol. 12697. Lecture Notes in Computer Science. Springer, 2021, pp. 313–343. DOI: 10.1007/978–3–030–77886–6_11. URL: https://doi.org/10.1007/978–3–030–77886–6_11.
- Bordes, N. "Security of symmetric primitives and their implementations". Theses. Université Grenoble Alpes [2020-....], Dec. 2021. URL: https://theses.hal.science/tel-03675249.

References IV

Boucheron, S., G. Lugosi, and P. Massart. Concentration Inequalities: A Nonasymptotic Theory of Independence. Oxford University Press, 2013. ISBN: 9780191747106. URL:

https://books.google.fr/books?id=O3yoAQAACAAJ.

 Brian, G., S. Dziembowski, and S. Faust. "From Random Probing to Noisy Leakages Without Field-Size Dependence". In: Advances in Cryptology -EUROCRYPT 2024 - 43rd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Zurich, Switzerland, May 26-30, 2024, Proceedings, Part IV. Ed. by M. Joye and G. Leander. Vol. 14654. Lecture Notes in Computer Science. Springer, 2024, pp. 345–374. DOI: 10.1007/978-3-031-58737-5_13. URL: https://doi.org/10.1007/978-3-031-58737-5_13.

References V

- Cassiers, G. and F.-X. Standaert. "Trivially and Efficiently Composing Masked Gadgets With Probe Isolating Non-Interference". In: IEEE Transactions on Information Forensics and Security 15 (2020), pp. 2542–2555. DOI: 10.1109/TIFS.2020.2971153.
- Chari, S. et al. "Towards Sound Approaches to Counteract Power-Analysis Attacks". In: Advances in Cryptology - CRYPTO '99, 19th Annual International Cryptology Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings. Ed. by M. J. Wiener. Vol. 1666. Lecture Notes in Computer Science. Springer, 1999, pp. 398–412. ISBN: 3-540-66347-9. DOI: 10.1007/3-540-48405-1_26. URL: https://doi.org/10.1007/3-540-48405-1_26.

References VI

Coron, J. et al. "Higher-Order Side Channel Security and Mask Refreshing". In: Fast Software Encryption - 20th International Workshop, FSE 2013, Singapore, March 11-13, 2013. Revised Selected Papers. Ed. by S. Moriai, Vol. 8424, Lecture Notes in Computer Science, Springer, 2013. pp. 410-424. DOI: 10.1007/978-3-662-43933-3\ 21. URL: https://doi.org/10.1007/978-3-662-43933-3\ 21. Duc, A., S. Dziembowski, and S. Faust. "Unifying Leakage Models: From Probing Attacks to Noisy Leakage". In: J. Cryptology 32.1 (2019), pp. 151–177. DOI: 10.1007/s00145-018-9284-1. URL: https://doi.org/10.1007/s00145-018-9284-1.

References VII

Dziembowski, S., S. Faust, and M. Skorski. "Noisy Leakage Revisited". In: Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II. Ed. by E. Oswald and M. Fischlin. Vol. 9057. Lecture Notes in Computer Science. Springer, 2015, pp. 159–188. DOI: 10.1007/978-3-662-46803-6_6. URL: https://doi.org/10.1007/978-3-662-46803-6_6.

References VIII

Goubin, L. and J. Patarin. "DES and Differential Power Analysis (The "Duplication" Method)". In: Cryptographic Hardware and Embedded Systems, First International Workshop, CHES'99, Worcester, MA, USA, August 12-13, 1999, Proceedings. Ed. by Ç. K. Koç and C. Paar. Vol. 1717. Lecture Notes in Computer Science. Springer, 1999, pp. 158–172. DOI: 10.1007/3-540-48059-5_15. URL: https://doi.org/10.1007/3-540-48059-5_15.

References IX

 Ishai, Y., A. Sahai, and D. A. Wagner. "Private Circuits: Securing Hardware against Probing Attacks". In: Advances in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003, Proceedings. Ed. by D. Boneh. Vol. 2729. Lecture Notes in Computer Science. Springer, 2003, pp. 463–481. DOI: 10.1007/978-3-540-45146-4_27. URL: https://doi.org/10.1007/978-3-540-45146-4_27.

References X

 Rivain, M. and E. Prouff. "Provably Secure Higher-Order Masking of AES". In: Cryptographic Hardware and Embedded Systems, CHES 2010, 12th International Workshop, Santa Barbara, CA, USA, August 17-20, 2010. Proceedings. Ed. by S. Mangard and F. Standaert. Vol. 6225. Lecture Notes in Computer Science. Springer, 2010, pp. 413–427. DOI: 10.1007/978-3-642-15031-9_28. URL: https://doi.org/10.1007/978-3-642-15031-9_28.