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Context : Side-Channel Analysis (SCA)

“Cryptographic algorithms don’t run on paper, they run on physical devices”

Enc

Ctx

Msg

: N bits

Black-box cryptanalysis: 2N
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Context : Side-Channel Analysis (SCA)

“Cryptographic algorithms don’t run on paper, they run on physical devices”
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Certification against SCA

Conceives a 
component

Evaluates 
Security Claims 

Delivers a Security 
Certification

Commercialises the 
certified product

Developer ITSEF ANSSI Developer

Loïc

Cécile

French Certification Scheme

Emmanuel

Security graded w.r.t. attack complexity in terms of human, material, and
financial means
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Evaluate Security against Side-Channel Attacks

Temps

At
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Security margin
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Deployment

•
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Provable bounds

a

aShamelessly stolen to O. Bronchain

Attack approach (industry):

Current security level 3

Future improvement → reevaluation 7

Approach by proofs (academia):
Rigorous approach 3

Potentially conservative 7

Today’s agenda: evaluation by proofs
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Masking: what is that ?

Masking, a.k.a. MPC on silicon:12 secret sharing over a finite field (F, ⊕, ⊗)
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1Chari et al., “Towards Sound Approaches to Counteract Power-Analysis Attacks”.
2Goubin and Patarin, “DES and Differential Power Analysis (The "Duplication" Method)”.

Loïc Masure Computing over masked data with provable security 9 / 42



Introduction: SCA The Core Problem: Make & Certify a Device as Secure Masking References

Masking: what is that ?

Masking, a.k.a. MPC on silicon:12 secret sharing over a finite field (F, ⊕, ⊗)
Y(secret)

⊕

Y1Y2 Yd. . .

L(Y2) = δ(Y2) + N L(Y1) = δ(Y1) + N L(Yd ) = δ(Yd ) + N

TeXtronics 1 − v.1.01

CH I CH II

Y-pos I Y-pos II
Volts/Div

V mV

50

.1
.2.5

1

2

5

10
20 5

10

20

Volts/Div

V mV

50

.1
.2.5

1

2

5

10
20 5

10

20

Power

On/Off

Focus

Intens

X-pos

Time/Div

s µ s

m s

.5
1

2

5

10

20

50
.1

.2.51
2

5

10

20

50

.1
.2

.5

1Chari et al., “Towards Sound Approaches to Counteract Power-Analysis Attacks”.
2Goubin and Patarin, “DES and Differential Power Analysis (The "Duplication" Method)”.

Loïc Masure Computing over masked data with provable security 9 / 42



Introduction: SCA The Core Problem: Make & Certify a Device as Secure Masking References

Masking: what is that ?

Masking, a.k.a. MPC on silicon:12 secret sharing over a finite field (F, ⊕, ⊗)
Y(secret)

⊕

Y1Y2 Yd. . .

L(Y2) = δ(Y2) + N L(Y1) = δ(Y1) + N L(Yd ) = δ(Yd ) + N

TeXtronics 1 − v.1.01

CH I CH II

Y-pos I Y-pos II
Volts/Div

V mV

50

.1
.2.5

1

2

5

10
20 5

10

20

Volts/Div

V mV

50

.1
.2.5

1

2

5

10
20 5

10

20

Power

On/Off

Focus

Intens

X-pos

Time/Div

s µ s

m s

.5
1

2

5

10

20

50
.1

.2.51
2

5

10

20

50

.1
.2

.5

1Chari et al., “Towards Sound Approaches to Counteract Power-Analysis Attacks”.
2Goubin and Patarin, “DES and Differential Power Analysis (The "Duplication" Method)”.

Loïc Masure Computing over masked data with provable security 9 / 42



Introduction: SCA The Core Problem: Make & Certify a Device as Secure Masking References

Content

Introduction: SCA

The Core Problem: Make & Certify a Device as Secure

Masking
Security Analysis for a Single Encoding
Computing on Masked Secrets
Security Analysis over Computations

Loïc Masure Computing over masked data with provable security 10 / 42



Introduction: SCA The Core Problem: Make & Certify a Device as Secure Masking References

The Noisy Leakage Model

In this model, for each intermediate computation, the adversary gets a
probability distribution about its operands:

l Pr (Y | L)
y

If, the adversary gets:
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The Noisy Leakage Model

In this model, for each intermediate computation, the adversary gets a
probability distribution about its operands:

l Pr (Y | L)
y

If, the adversary gets: Low-noise
Exact prediction of the sensitive computation
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The Effect of Masking
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≡ Pr (Yi | Li)

∗

≡ Pr (Y | L1, . . . , Ld)

Masking ≡ convolutions !
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Security on a Single Encoding

Theorem (Mrs. Gerber’s Lemma3)
Given Y = Y1 ⊕ . . . ⊕ Yd , and each Yi with (indep.) side information
L1, . . . , Ld , then for η−1 = 2 log(2):

MI (Y; L) ≤
d∏

i=1

MI (Yi ; Li)
η

+ O
 d∏

i=1
MI (Yi ; Li)2

 in F2n

→ Security ∝ 1
MI(Y;L) =⇒ increases exponentially fast with d 3

→ Independent of the adversary 3

3Béguinot et al., “Removing the Field Size Loss from Duc et al.’s Conjectured Bound for Masked
Encodings”.
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Convolution = Noise Amplification

Simulation, for F2n: L(Yi) = hw(Yi) + N (0; σ2), hw = Hamming weight
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Figure: MI (Y; L) vs. σ2, 2 ≤ d ≤ 6
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The Composition Paradigm

Idea to make a masked circuit

||

·2

×3

⊗A
A

A

B

C
D

· View your algorithm as a circuit
→ Made of not, and gates 4

→ Made of ⊕, ⊗ gates 5

· Replace each gate by a masked gadget
· Et voilà !

5Ishai, Sahai, and Wagner, “Private Circuits: Securing Hardware against Probing Attacks”.
5Rivain and Prouff, “Provably Secure Higher-Order Masking of AES”.
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Introduction: SCA The Core Problem: Make & Certify a Device as Secure Masking References

Desired Properties
Definition (t-privacy)
Any tuple of t intermediate values ⊥ secrets

Definition (Simulatability)
A set of probes P in a circuit C can be simulated with the input shares I if
there exists an algorithm S (the simulator) such that

P d= S(I)

⇐⇒ P⊥ all inputs except I

Definition (t-non-interference (NI))
C is t-NI if any set of t probes is simulatable by at most t shares of each input
For a circuit with d shares, d-NI =⇒ d-privacy6

6Not ⇐⇒ , see Bordes, “Security of symmetric primitives and their implementations”, Example 5.5
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Introduction: SCA The Core Problem: Make & Certify a Device as Secure Masking References

The Composability Issue

7NI is not always composable7

||

·2

×3

⊗A
A

A

B

C
D

Figure: Two probes on D may depend on three probes of A !

7Coron et al., “Higher-Order Side Channel Security and Mask Refreshing”.
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Introduction: SCA The Core Problem: Make & Certify a Device as Secure Masking References

Strong Non-Interference9

Definition (t-Strong Non-Interference)
A gadget is t-SNI if any set of t1 internal probes and t2 output probes can be
simulated with t1 shares of each input sharing, and

t = t1 + t2

→ SNI is composable 3

→ SNI =⇒ NI =⇒ privacy
Other composable notions: SNIu, PINI8, robust probing, glitch-extended, ...

8Cassiers and Standaert, “Trivially and Efficiently Composing Masked Gadgets With Probe Isolating
Non-Interference”.

9Barthe et al., “Strong Non-Interference and Type-Directed Higher-Order Masking”.
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Introduction: SCA The Core Problem: Make & Certify a Device as Secure Masking References

Masked addition gadget
Inputs:

JAK = (A1, . . . , Ad)
JBK = (B1, . . . , Bd)

Output:

JCK = (C1, . . . , Cd)

such that
∑

i
Ci =

(∑
i

Ai

)
⊕
(∑

i
Bi

)

SecAdd algorithm:

C1 = A1 ⊕ B1
...

Cd = Ad ⊕ Bd

· NI, but not SNI 7

· t-NI + t-SNI refresh =⇒ t-SNI 3

· Generalization: share-wise application of any
affine map
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Introduction: SCA The Core Problem: Make & Certify a Device as Secure Masking References

Masked multiplication gadget
Inputs:

JAK = (A1, . . . , Ad)
JBK = (B1, . . . , Bd)

Output:

JCK = (C1, . . . , Cd)

such that
∑

i
Ci =

(∑
i

Ai

)
⊗
(∑

i
Bi

)

BadMult algorithm:

C1 = (A1 ⊗ B1 ) ⊕ (A1 ⊗ B2

⊕R1

) ⊕ (A1 ⊗ B3

⊕R2

)
C2 = (A2 ⊗ B1

	R1

) ⊕ (A2 ⊗ B2 ) ⊕ (A2 ⊗ B3

⊕R3

)
C3 = (A3 ⊗ B1

	R2

) ⊕ (A3 ⊗ B2

	R3

) ⊕ (A3 ⊗ B3 )

Correct, but not 2-NI. Why ?

· SecMult is (d − 1)-SNI 3

· If JBK = (1, 0, . . . , 0), then
SecMult(JAK, JBK) = Refresh(JAK) 3
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Content

Introduction: SCA

The Core Problem: Make & Certify a Device as Secure

Masking
Security Analysis for a Single Encoding
Computing on Masked Secrets
Security Analysis over Computations
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Recall on Noisy Leakage Model

l Pr (Y | L)
y

If, the adversary gets:

δ-noisy adversary
Any intermediate computation Y leaks L(Y) such that:

SD (Y; L) = E
L

TV

︸ ︷︷ ︸
Pr(Y | L)

, ︸ ︷︷ ︸
Pr(Y)


 ≤ δ
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Recall on Noisy Leakage Model

l Pr (Y | L)
y

If, the adversary gets: Low-noise leakage
Exact prediction for Y

δ-noisy adversary
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Security Proof for a Gadget

Consider a gadget with `

δ-noisy

intermediate computations:

X1

X2

...

X`
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Consider a gadget with ` δ-noisy intermediate computations:

X1

X2

...

X`

L(X1)

L(X2)

L(X`)
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Security Proof for a Gadget

Consider a gadget with ` δ-noisy intermediate computations:

X1

X2

...

X`

S (ϕ(X1))

S (ϕ(X2))

S (ϕ(X`))

Lemma (Simulatability by RP)
The leakage function L can be simulated from
a random probing adversary: ϕ(x) exactly
reveals x with probability
ε = 1 −∑

l minx Pr (L(x) = l) ≤ δ · |F|.a

aDuc, Dziembowski, and Faust, “Unifying Leakage Models:
From Probing Attacks to Noisy Leakage”.
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Security Proof for a Gadget

Consider a gadget with ` δ-noisy intermediate computations:

X1

X2

...

X`

ϕ(X1)

ϕ(X2)

ϕ(X`)

We may reduce to an adversary observing
ϕ(X ) instead of S (ϕ(X )) (Data Processing
Inequality)
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Introduction: SCA The Core Problem: Make & Certify a Device as Secure Masking References

Proof of the Core Lemma (I)

Assume there exists such a simulator S,

we need to construct it for all inputs:

Pr (S (x) = l) = . . . , for all x
Pr (S (⊥) = l) = . . .

Constraints:
→ For all input x , Pr (S (x)) should be a p.m.f. (2 · |F| (in)equations)
→ For the input ⊥, Pr (S (⊥)) should be a p.m.f. (2 (in)equations)
→ For any x , l, Pr (S (ϕ(x)) = l) = Pr (L(x) = l) (|F| × |L| equations)
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Introduction: SCA The Core Problem: Make & Certify a Device as Secure Masking References

Proof of the Core Lemma (II)
Let us start from the last constraint. For any x and any l:

Pr (L(x) = l) = Pr (S (ϕ(x)) = l)

= Pr (ϕ(x) = x) · Pr (S (x) = l) + Pr (ϕ(x) = ⊥) · Pr (S (⊥) = l)
= ε · Pr (S (x) = l) + (1 − ε) · Pr (S (⊥) = l)

Hence,

0 ≤ Pr (S (⊥) = l) =

Should not depend on x︷ ︸︸ ︷
Pr (L(x) = l) − ε · Pr (S (x) = l)

1 − ε
= π(l)

1 − ε
(1)

0 ≤ Pr (S (x) = l) = Pr (L(x) = l) − π(l)
ε

(2)

Is there any ε such that ≥ and ≥ are valid?
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Proof of the Core Lemma (III)

Is there any ε such that ≥ and ≥ are valid?

From (1), and (2), we get
0 ≤ π(l) ≤ Pr (L(x) = l) for any x

In other words,
0 ≤ π(l) ≤ minx Pr (L(x) = l)

Furthermore, summing (1) over l, by definition of probability distributions,∑
l

π(l) =
∑

l

Pr (L(x) = l)︸ ︷︷ ︸
=1

−ε ·
∑

l

Pr (S (x) = l)︸ ︷︷ ︸
=1

= 1 − ε

Hence,

to have the smallest ε,

ε = 1 −
∑

l

π(l) ≥ 1 −
∑

l

minx Pr (L(x) = l) ≤ δ · |F| (Q11: prove it)
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Security against a Random Probing Adversary

To succeed, at least d out of ` wires must be revealed to the adversary:

Pr (Adv. learns sth) ≤ Pr (At least d wires revealed)

Theorem (Chernoff Concentration Inequality)
If ` wires, each independently revealed with proba. ε:

Pr (At least dwires revealed) ≤
(

e · ` · ε

d

)d

Q11: Prove the inequality from a particular case of Chernoff inequality10

10Boucheron, Lugosi, and Massart, Concentration Inequalities: A Nonasymptotic Theory of
Independence, P.24, and Ex. 2.11.
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Putting all Together

In our context, ` ≤ O
(
d2
)

(for ⊗ gadget), and ε ≤ δ · |F|:

Theorem (Security Bound)
For a single gadget with ` ≤ O

(
d2
)

intermediate computations:

SD (k; L) ≤ O
(
(7e · d · δ · |F|)d)

For the whole circuit C,

d/2-region probing11 security implies

SD (k; L) ≤ O
(
(7e · |C| · d · δ · |F|)d)

11t-Region-probing secure: NI, with t probes from each gadget
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Wrap-Up of the Proof

Bad leakage rate ≈ d · |F| 7... but new reduction through Average probing12

3

Problem: Gap with the definition of ARP13 7

δ-NL

ε-RP

d-out-of-`-Probing

∆-sec∆ =
(

e·`·ε
d

)d
ε-ARP ε = √

η

12Brian, Dziembowski, and Faust, “From Random Probing to Noisy Leakages Without Field-Size
Dependence”.

13Dziembowski, Faust, and Skorski, “Noisy Leakage Revisited”.
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Perspectives

· Fixing the reduction through Average Probing (work in progress)

· New constructions with leakage rates indep. of d14

· Masking PQC, e.g., Kyber:
? Unefficient masking through decomposition into circuit 7

? Needs bigger gadgets with other paradigm: pre-computation tables 3

=⇒ wider gap between d-probing and ε-RP 7

? Masking-friendly schemes, e.g., Raccoon ? 3

14Belaïd, Rivain, and Taleb, “On the Power of Expansion: More Efficient Constructions in the Random
Probing Model”.
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Pointers

Interested ?
Coron’s keynote at Cardis 23 on masking lattice-based cryptography
Cassiers’ keynote at Cosade 23 on masking composability
Nicolas Bordes’ thesis with nice examples of probing notions.

Loïc Masure Computing over masked data with provable security 32 / 42

https://surfdrive.surf.nl/files/index.php/s/5b9sbUel8rCi8Kt
https://www.cosade.org/cosade24/slides/keynote_cosade24_gc.pdf
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