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Context : Side-Channel Analysis (SCA)

“Cryptographic algorithms don’t run on paper, they run on physical devices”

Enc

Ctx

Msg

: N bits

Black-box cryptanalysis: 2N
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Context : Side-Channel Analysis (SCA)
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Side Channel = Unintended Communication Channel

Example: the Washington Pizza Index1

Figure: Chicago Tribune, Jan. 16 1991, the day before Desert Storm operation began.
1Reality questioned: http://home.xnet.com/~warinner/pizzacites.html
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What is a Side Channel? A First Example

(a) A good old monitor (b) Reconstruction from EM field

Figure: An example from Koç, Cryptographic Engineering.
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An Exemplary SCA on Crypto

RSA: Modular exponentiation over large (≈ 2000-bit wide) integers

Square-and-Multiply:

Mk = M
∑

i ki ·2i =
∏

i
(Mki )2i

Step 0: MkN then square
Step 1: ×MkN−1 then square
. . .
Step i: ×MkN−i then square

Op. Guess
×M

kN = 1

square
square

kN−1 = 0

square

kN−2 = 0

×M

kN−3 = 1

square
×M

kN−4 = 1

square
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Can you guess the key from the Oscilloscope?

Figure: Power consumption. Illustration from Koç, Cryptographic Engineering
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Power Analysis on Symmetric Key

Power consumption: each bit xi of a data chunk X stored in a register2

xi = 0 =⇒ register voltage = 0
xi = 1 =⇒ register voltage 6= 0
Overall consumption of X is
proportional to hw(X ) = ∑

i xi
hw = Hamming Weight

2Mangard, Oswald, and Popp, Power analysis attacks - revealing the secrets of smart cards.
Loïc Masure Side-channel Analysis of Cryptographic Implementations 11 / 96
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Practical Attack on AES, with Correlation

In practice: LP ∝ hw(k ⊕ P) + N (0, σ2)

Distinguisher with a statistical test: for all key hypothesis k̂ = 0, 1, 2, . . .

ρ
k̂

=
Cov
P,N

(
LP, hw(k̂ ⊕ P)

)
√

Var
P,N

(LP) ·
√

Var
P,N

(
hw(k̂ ⊕ P)

)
0 0.2 0.4 0.6 0.8 1

0

0.5

1

hw(k̂ ⊕ P)

L P
[m

V]
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Practical Attack on AES, with Correlation
In practice: LP ∝ hw(k ⊕ P) + N (0, σ2)
Distinguisher with a statistical test: for all key hypothesis k̂ = 0, 1, 2, . . .
If k̂ = k?, then LP should be highly correlated with hw(k̂ ⊕ P)
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Practical Attack on AES, with Correlation
In practice: LP ∝ hw(k ⊕ P) + N (0, σ2)
Distinguisher with a statistical test: for all key hypothesis k̂ = 0, 1, 2, . . .
If k̂ 6= k?, then LP should be poorly correlated with hw(k̂ ⊕ P)
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Power Analysis on Symmetric Key

Power consumption: each bit xi of a data chunk X stored in a register3

Key guessed by a statistical test leveraging the correlation between the
Hamming weight of data and the power consumption

3Mangard, Oswald, and Popp, Power analysis attacks - revealing the secrets of smart cards.
Loïc Masure Side-channel Analysis of Cryptographic Implementations 13 / 96
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It’s Demo Time

Application of the Correlation Attack on a ChipWhisperer
CW = Target device (8-bit MCU) + Oscilloscope

· Q1: What is the attack complexity ?
One n-bit key chunk: O (2n)
N-bit full key: divide-and-conquer =⇒ O

(
N
n · 2n

)
≈ “quantum” break
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Counter-Measure

Q2: Can you find a simple counter-measure for this attack ?

→ Shuffling t independent operations (e.g., ARK or SubBytes)4 or
inserting t dummy operations5

→ Multiplies data complexity by t2: can you prove why ?
ρshuffling = ρ0

t

Data complexity: Na ∝ 1
ρ2

→ What can the adversary do? Integrated attack: ρshuffling,integrated = ρ√
t

4Rivain, Prouff, and Doget, “Higher-Order Masking and Shuffling for Software Implementations of
Block Ciphers”.

5Coron and Kizhvatov, “An Efficient Method for Random Delay Generation in Embedded Software”.
Loïc Masure Side-channel Analysis of Cryptographic Implementations 15 / 96
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Contradicting Goals

For correlation attacks, we usually target AddRoundKey or the SubBytes
(bijective between each other)

· Q3: What’s the “best” target ?
→ When targeting hw(k ⊕ P), k? and k? undistinguishable: ghost peaks
→ Problem solved when targeting hw(Sbox[k ⊕ P])

Contradicting goal: Sbox brings confusion to thwart cryptanalysis, but helps
side-channel analysis6

6Prouff, “DPA Attacks and S-Boxes”.
Loïc Masure Side-channel Analysis of Cryptographic Implementations 16 / 96
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Certification against SCA

Conceives a 
component

Evaluates 
Security Claims 

Delivers a Security 
Certification

Commercialises the 
certified product

Developer ITSEF ANSSI Developer

Loïc

Cécile

French Certification Scheme

Emmanuel

Security graded w.r.t. attack complexity in terms of human, material, and
financial means
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Evaluate Security against Side-Channel Attacks

Temps

At
ta

ck
Co

m
pl

ex
ity

Attacks, SotA
•• •

Security margin

•

Deployment

•
• • ? ?? ?

Provable bounds

a

aShamelessly stolen to O. Bronchain

Attack approach (industry):

Current security level 3

Future improvement → reevaluation 7

Approach by proofs (academia):
Rigorous approach 3

Potentially conservative 7

Agenda: evaluation by attack (today), evaluation by proofs (tomorrow)
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How to Evaluate Efficiently? Interlude
A good evaluator E 6= A good adversary A

Evaluating = guessing how much the best A must pay to succeed7

· Naive way: instantiate all possible A from the literature (CPA, DoM,
stochastic attacks, template attacks, ...) 7

· Smarter way: yet another D&C approach 3

→ Characterize analytically the best A
→ Decompose each attack step
→ Quantify the complexity of each step

=⇒ Finding evaluation shortcuts

7Analogy with real estate
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Assessing an Attack: the Success Rate8

1 Na(β)
0

β
1

Na (log scale)

SR
(N

a)

· SR: probability to succeed the attack within Na queries to the target

· Allows to compare attacks: A1 <
β

A2 iff for a fixed Na(β) > Na(β)

· Q4 [full key to D&C]: Prove that Na(β, full) = Na(β
n

|K| , word)

8In the following, we focus on data complexity only. All known attacks are computationally efficient.
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Assessing an Attack: the Guessing Entropy

0 Na(τ)
0
τ

|K|

Na (log scale)

GE
(N

a)

· GE: average rank of the right key, among all key hypotheses

· Allows to quantify the key remaining enumeration work
· Q5 [full key to D&C]:9 Prove that Na(τ, full) ≥ Na(τ

n
|K| , word)

9David and Wool, A Bounded-Space Near-Optimal Key Enumeration Algorithm for Multi-Dimensional
Side-Channel Attacks.
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Optimal Attack: Maximum Likelihood10

k?

Plaintext p1

y1 = C (p1, k?)

l1

l1 Pr (Y | L)
0 1 . . .

K

y1

∑ log

0 1 . . .

K

l2

y2

l3

y3

k̂

Problem: Pr (Y | L) unknown (device-dependent)

10Heuser, Rioul, and Guilley, “Good Is Not Good Enough - Deriving Optimal Distinguishers from
Communication Theory”.
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Security Certification
Deep Learning Attacks
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Security Analysis over Computations
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Deep Learning (DL) for SCA

l

Deep Neural Network (DNN)
y

General way to modelize, i.e., to convert leakage into probabilities
F : L −→ P(Y)

l 7−→ y = F (l) ≈ Pr (Y | L = l) (1)

F (l): output of a Directed Acyclic Graph (DAG) of computation:
Each node: elementary function fi(·, θi)
θi : parameters fully describing fi

Shape of the DAG, nature of the classes of functions: architecture of the DNN.
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Profiled SCA = Supervised Learning Problem
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L (): loss function to minimize, with gradient descent
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The Deep Learning (DL) hype in SCA

Ô Space 2016: DL breaks masking11

Ô Ches 2017: CNNs efficiently tackles
misalignment12

Ô Ches 2019: non-profiled attacks13

Ô De facto standard for evaluations
Ô Dedicated sessions in conferences

20
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20
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20
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20
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20
20

0

20

40

Year

#
Pa

pe
rs

DBLP
Scopus
e-print
TCHES

11Maghrebi, Portigliatti, and Prouff, “Breaking Cryptographic Implementations Using Deep Learning
Techniques”

12Cagli, Dumas, and Prouff, “Convolutional Neural Networks with Data Augmentation Against
Jitter-Based Countermeasures - Profiling Attacks Without Pre-processing”

13Timon, “Non-Profiled Deep Learning-based Side-Channel attacks with Sensitivity Analysis”
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Use Case: SCA against code polymorphism I
Implementation of AES from mbedTLS on ARM-Cortex M4 architecture

T-table implementation with 32 bit variables
100, 000 traces acquired for each target (≤ a day)

50
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E
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Time (µs)

0.002
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S
N

R

Figure: Two examples of traces (blue) and the Signal-to-Noise Ratio (SNR) (red)

No SNR peak =⇒ a layman attacker fails, even with Na = 105 traces
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Use Case:SCA against code polymorphism II14

100 101 102 103 104 105

Na

0.0

0.2

0.4

0.6

0.8

1.0

S
R β = 90%

Figure: Layman Attacker with Re-alignment

14Masure et al., “Deep Learning Side-Channel Analysis on Large-Scale Traces - A Case Study on a
Polymorphic AES”.

Loïc Masure Side-channel Analysis of Cryptographic Implementations 31 / 96



Introduction: SCA The Core Problem: Make & Certify a Device as Secure Masking What about Post-Quantum? Perspectives References

Use Case:SCA against code polymorphism II14
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Figure: Attacker with Re-alignment and a Clone device

14Masure et al., “Deep Learning Side-Channel Analysis on Large-Scale Traces - A Case Study on a
Polymorphic AES”.
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Use Case:SCA against code polymorphism II14
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Figure: Attacker without Re-alignment but with a Clone device and deep learning
14Masure et al., “Deep Learning Side-Channel Analysis on Large-Scale Traces - A Case Study on a

Polymorphic AES”.
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Post-Mortem Sensitivity Analysis
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Figure: Gradient Visualization against code polymorphism

Forensics: “Where does my leakage come from”?
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Expensive Metrics to Estimate

Needs to estimate the whole Success Rate (SR) curve to derive Na(β)

1 Na(β)
0

β
1

Na (log scale)

SR
(N

a)

Naive est. of Na(β) expensive:
Requires Nv ≥ Na(β) 3

Complexity O (Nest · Nv ) 7

Cheaper alternative: re-sampling
Requires Nv � Na(β) 3

Biased method 3

Wish: find a shortcut to estimate Na(β)
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Shortcut

Solution: characterize the predictions of the adversary’s model

l Pr (Y | L)
y

If, the adversary gets:

δ-noisy adversary
All the Probability Mass Functions (p.m.f.s) accessed by the adversary are
δ-close15 to the uniform:

D
(

,
)

≤ δ

15D: Kullback - Leibler (KL) divergence, total variation, Euclidean norm, ...
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Shortcut
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l Pr (Y | L)
y

If, the adversary gets: Low-noise leakage
Exact prediction: Na(β) = 1

δ-noisy adversary
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A First Attempt: the Statistical Distance (SD)
Definition (Statistical Distance (SD))
Statistical Distance (SD) upper bounds the probability to distinguish two
leakage distributions given two different keys (useful for cryptographers):

SD (Y; L) = E
L

[
TV

(
pY | L; pY

)]
, where TV (p; m) = 1

2
∑
y∈Y

|p (y) − m (y)|

Lemma (Tensorization)
Denote SD (Y; L) by δ, then the following bounds are tight (Q6: prove it):16

Ω
(

β

δ

)
≤ Na(β) ≤ O

(
β

δ2

)

16Lower bound: tensorization of SD. Upper bound: Chernoff inequality (+ Slud’s for tightness).
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A Second Attempt: the Mutual Information (MI)

Definition (Mutual Information (MI))

MI (Y; L) = E
L

[
D(pY | L ‖ pY)

]
, where D(p ‖ m) =

∑
y∈Y

p (y) log
(

p (y)
m (y)

)

Lemma (Fano Inequality)
Denote MI (Y; L) by δ, then the following inequality is tight (Shannon’s
coding theorem):17

f (β)
δ

≤ Na(β)
17Cover and Thomas, Elements of information theory (2. ed.)
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Use Cases with Univariate Leakage, Gaussian Noise

Leakage model of shape L = δ(Y) + N
→ Upper bound of MI from Signal-to-Noise Ratio (SNR)

Na(β) ≥ f (β)
MI (Y; L)

→ Generalizes the data complexity for correlation attack:

Ncorr
a ≈ 28

ρ2
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Reduction to MI estimation

Estimating a Mutual Information is generally hard:

7 No unbiased estimator18

7 Empirical estimator:
→ Positively biased in average 3

→ Suffers from curse of dimensionality19 7

Definition (Perceived Information (PI))

18Paninski, “Estimation of Entropy and Mutual Information”.
19Masure et al., “Information Bounds and Convergence Rates for Side-Channel Security Evaluators”.
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Reduction to MI estimation

Estimating a Mutual Information is generally hard:
7 No unbiased estimator18

7 Empirical estimator:
→ Positively biased in average 3

→ Suffers from curse of dimensionality19 7

Definition (PI)

PI (Y; L; θ) = E
L

[D(F (L, θ) ‖ pY)] ≤ MI (Y; L)
18Paninski, “Estimation of Entropy and Mutual Information”.
19Masure et al., “Information Bounds and Convergence Rates for Side-Channel Security Evaluators”.
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Examples
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PI and other Surrogates

PI can be well20 estimated/optimized over the open sample:
· Estimation error ε = O

(poly(H)
Np

)
, where

→ Np = #profiling traces
→ H: class of models (neural network, #parameters, ...)

· We want the estimation error ε / MI (Y; L) =⇒

Np(ε) ≥ Ω
(

poly(H)
MI (Y; L)

)
' Na(β)

→ “Profiling is a costly as attacking”

20Ito, Ueno, and Homma, “Perceived Information Revisited: New Metrics to Evaluate Success Rate of
Side-Channel Attacks”, Might suffer from inconsistencies in rare cases.
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Wrap-Up

Side-Channel Analysis is a threat as powerful (but cheaper) as quantum
computers
Need to assess the security level against SCA in an affordable manner
=⇒ evaluation shortcuts

Tomorrow: presentation of masking, how to implement it, security analysis
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Preuves de Sécurité pour Masquage

Preuve

Repr. abstraite de
l’implémentation

σ2

Param. de bruit

Partage de secret
(d parts)

S
Niv. de sécurité

“Toute attaque nécessite S observations ”
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Masking: what is that ?

Masking, a.k.a. MPC on silicon:2122 secret sharing over a finite field (F, ⊕, ⊗)
Y(secret)

⊕

Y1Y2 Yd. . .

L(Y2) = δ(Y2) + N L(Y1) = δ(Y1) + N L(Yd ) = δ(Yd ) + N

TeXtronics 1 − v.1.01
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m s
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21Chari et al., “Towards Sound Approaches to Counteract Power-Analysis Attacks”.
22Goubin and Patarin, “DES and Differential Power Analysis (The "Duplication" Method)”.
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The Noisy Leakage Model

In this model, for each intermediate computation, the adversary gets a
probability distribution about its operands:

l Pr (Y | L)
y

If, the adversary gets:
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The Noisy Leakage Model

In this model, for each intermediate computation, the adversary gets a
probability distribution about its operands:

l Pr (Y | L)
y

If, the adversary gets: Very noisy
Sensitive computation unpredictable
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The Noisy Leakage Model

In this model, for each intermediate computation, the adversary gets a
probability distribution about its operands:

l Pr (Y | L)
y

If, the adversary gets: Low-noise
Exact prediction of the sensitive computation
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The Effect of Masking
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The Secret Power of Convolutions

Central Limit Theorem: Assume real-valued random variables Yi

Pr (Y1) Pr (Y2) Pr (Y3) Pr (Y4)

∗ ∗ ∗

Pr (Y1 + Y2 + Y3 + Y4)

Then the sum is (approximately) distributed like a Gaussian23

Interesting property of Gaussian: maximizes the entropy (i.e., uncertainty)24

23With mild assumptions, but we’ll get back to that ...
24Out of all Probability Density Functions (p.d.f.s) of same mean and variance
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CLT also Works in Finite Groups/Fields !

Shares

“hw 0/1”

∗

Yi ∈ R Yi ∈ F
Limit Gaussian Uniform

Entropy Maximized Maximized
Fast Fourier Transform also apply over finite fields !
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CLT also Works in Finite Groups/Fields !

Shares “hw = 1”

“hw 0/1”

“hw 2/3”

∗

Yi ∈ R Yi ∈ F
Limit Gaussian Uniform

Entropy Maximized Maximized
Fast Fourier Transform also apply over finite fields !
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Quantitative version of CLT

Theorem (Mrs. Gerber’s Lemma25)
Given Y = Y1 ⊕ . . . ⊕ Yd , and each Yi with (indep.) side information
L1, . . . , Ld , then for η−1 = 2 log(2):

MI (Y; L) ≤
d∏

i=1

MI (Yi ; Li)
η

+ O
 d∏

i=1
MI (Yi ; Li)2

 in F2n

→ Security ∝ 1
MI(Y;L) =⇒ increases exponentially fast with d 3

→ Independent of the adversary 3

25Béguinot et al., “Removing the Field Size Loss from Duc et al.’s Conjectured Bound for Masked
Encodings”.
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Convolution = Noise Amplification

Simulation, for F2n: L(Yi) = hw(Yi) + N (0; σ2), hw = Hamming weight
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Figure: MI (Y; L) vs. σ2, 2 ≤ d ≤ 6
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Masking in a Low-Noise Setting

Does masking always work in a low-noise setting ?
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Figure: MI(Y ; Trace) vs. σ2, 2 ≤ d ≤ 6

Observation:
Secret always leaks > 1 bit, regardless of d
Explanation:
lsb(Y1⊕. . .⊕Yd) = lsb(Y1)⊕. . .⊕lsb(Yd)
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Masking in a Low-Noise Setting

Does masking always work in a low-noise setting ?
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Figure: MI(Y ; Trace) vs. σ2, 2 ≤ d ≤ 6

Observation:
Secret always leaks > 1 bit, regardless of d
Explanation:
hw(Y1 ⊕ . . .⊕Yd) = ∑

i hw(Yi)−2 ·
(

. . .
)

Parity of hw(Y): cosets of F2n

Corollary: parallelism is no cure either
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Explanation:
Parity of hw(Y): cosets of F2n

Shares

“hw even”

∗
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Conditions for Sound Masking
What conditions the distributions of each share must fit?

“Central Limit Theorem” (qualitative)26

Conv. to uniform ⇐⇒ support not contained in any non-trivial coset of F

In R : mild assumption
→ Only Z and Q (and their respective subgroups)
→ Negligible measure over R
In finite F: no longer mild in finite fields ...

26Stromberg, “Probabilities on a Compact Group”.
Loïc Masure Side-channel Analysis of Cryptographic Implementations 55 / 96
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Two Solutions
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Two Solutions

Solution 1: Make sure to leak < 1 bit per share:
· Support of PMF always larger than any coset
· Work with any F (usually chosen to fit the cipher) 3

· Leakage-dependent: not always verified 7
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Two Solutions

Solution 2: Choose F without any non-trivial subgroup, i.e., Fp , p prime:
· No assumption on the leakage 3

· Major change of paradigm:
Fix F masking-friendly first,
Then build crypto upon it 3
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Comparing Binary and Prime Fields: a Simulation
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(a) F27
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(b) F27−1

Figure: Comparing binary and prime fields.

Loïc Masure Side-channel Analysis of Cryptographic Implementations 57 / 96



Introduction: SCA The Core Problem: Make & Certify a Device as Secure Masking What about Post-Quantum? Perspectives References

Content
Introduction: SCA
The Core Problem: Make & Certify a Device as Secure

Security Certification
Deep Learning Attacks
Use Case: Polymorphic Implementation
More Evaluation Shortcuts

Masking
Security Analysis for a Single Encoding
Computing on Masked Secrets
Security Analysis over Computations

What about Post-Quantum?
PerspectivesLoïc Masure Side-channel Analysis of Cryptographic Implementations 58 / 96
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Threshold Probing Model
Definition (t-privacy)
Any tuple of t intermediate values ⊥ secrets

Definition (Simulatability)
A set of probes P in a circuit C can be simulated with the input shares I if
there exists an algorithm S (the simulator) such that

P d= S(I)

⇐⇒ P⊥ all inputs except I

Definition (t-non-interference (NI))
C is t-NI if any set of t probes is simulatable by at most t shares of each input
Q8: For a circuit with d shares, prove that d-NI =⇒ d-privacy27

27Not ⇐⇒ , see Bordes, “Security of symmetric primitives and their implementations”, Example 5.5
Loïc Masure Side-channel Analysis of Cryptographic Implementations 59 / 96
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The Composition Paradigm

Idea to make a circuit NI:

· View your algorithm as a logical/arithmetical circuit
→ Logical circuit made of not, and gates28

→ Arithmetical circuit made of ⊕, ⊗ gates29

· Replace each gate by a masked gadget NI
· Et voilà !

Issue: NI is not composable30 7Q8: example on white board

28Ishai, Sahai, and Wagner, “Private Circuits: Securing Hardware against Probing Attacks”.
29Rivain and Prouff, “Provably Secure Higher-Order Masking of AES”.
30Coron et al., “Higher-Order Side Channel Security and Mask Refreshing”.
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Strong Non-Interference32

Definition (t-Strong Non-Interference)
A gadget is t-SNI if any set of t1 internal probes and t2 output probes can be
simulated with t1 shares of each input sharing, and

t = t1 + t2

→ SNI =⇒ NI =⇒ privacy
Other composable notions: SNIo, PINI31, robust probing, glitch-extended, ...

31Cassiers and Standaert, “Trivially and Efficiently Composing Masked Gadgets With Probe Isolating
Non-Interference”.

32Barthe et al., “Strong Non-Interference and Type-Directed Higher-Order Masking”.
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Masked addition gadget
Inputs:

JAK = (A1, . . . , Ad)
JBK = (B1, . . . , Bd)

Output:

JCK = (C1, . . . , Cd)

such that
∑

i
Ci =

(∑
i

Ai

)
⊕
(∑

i
Bi

)

SecAdd algorithm:

C1 = A1 ⊕ B1
...

Cd = Ad ⊕ Bd

· NI, but not SNI 7

· t-NI + t-SNI refresh =⇒ t-SNI 3

· Generalization: share-wise application of any
affine map
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Masked multiplication gadget
Inputs:

JAK = (A1, . . . , Ad)
JBK = (B1, . . . , Bd)

Output:

JCK = (C1, . . . , Cd)

such that
∑

i
Ci =

(∑
i

Ai

)
⊗
(∑

i
Bi

)

BadMult algorithm:

C1 = (A1 ⊗ B1 ) ⊕ (A1 ⊗ B2

⊕R1

) ⊕ (A1 ⊗ B3

⊕R2

)
C2 = (A2 ⊗ B1

	R1

) ⊕ (A2 ⊗ B2 ) ⊕ (A2 ⊗ B3

⊕R3

)
C3 = (A3 ⊗ B1

	R2

) ⊕ (A3 ⊗ B2

	R3

) ⊕ (A3 ⊗ B3 )

Correct, but not 2-NI. Q7: Why ?

· SecMult is (d − 1)-SNI 3

· If JBK = (1, 0, . . . , 0), then
SecMult(JAK, JBK) = Refresh(JAK) 3
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Content
Introduction: SCA
The Core Problem: Make & Certify a Device as Secure

Security Certification
Deep Learning Attacks
Use Case: Polymorphic Implementation
More Evaluation Shortcuts

Masking
Security Analysis for a Single Encoding
Computing on Masked Secrets
Security Analysis over Computations

What about Post-Quantum?
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Recall on Noisy Leakage Model

Yesterday:

l Pr (Y | L)
y

If, the adversary gets:

δ-noisy adversary
Any intermediate computation Y leaks L(Y) such that:

SD (Y; L) = E
L

TV

︸ ︷︷ ︸
Pr(Y | L)

, ︸ ︷︷ ︸
Pr(Y)


 ≤ δ
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Recall on Noisy Leakage Model

Yesterday:

l Pr (Y | L)
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Security Proof for a Gadget

Consider a gadget with `

δ-noisy

intermediate computations:

X1

X2

...

X`
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Security Proof for a Gadget

Consider a gadget with ` δ-noisy intermediate computations:

X1

X2

...

X`

S (ϕ(X1))

S (ϕ(X2))

S (ϕ(X`))

Lemma (Simulatability by RP)
The leakage function L can be simulated from
a random probing adversary: ϕ(x) exactly
reveals x with probability
ε = 1 −∑

l minx Pr (L(x) = l) ≤ δ · |F|.a

aDuc, Dziembowski, and Faust, “Unifying Leakage Models:
From Probing Attacks to Noisy Leakage”.
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Security Proof for a Gadget

Consider a gadget with ` δ-noisy intermediate computations:

X1

X2

...

X`

ϕ(X1)

ϕ(X2)

ϕ(X`)

We may reduce to an adversary observing
ϕ(X ) instead of S (ϕ(X )) (Data Processing
Inequality)
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Proof of the Core Lemma (I)

Assume there exists such a simulator S,

we need to construct it for all inputs:

Pr (S (x) = l) = . . . , for all x
Pr (S (⊥) = l) = . . .

Constraints:
→ For all input x , Pr (S (x)) should be a p.m.f. (2 · |F| (in)equations)
→ For the input ⊥, Pr (S (⊥)) should be a p.m.f. (2 (in)equations)
→ For any x , l, Pr (S (ϕ(x)) = l) = Pr (L(x) = l) (|F| × |L| equations)
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Proof of the Core Lemma (II)
Let us start from the last constraint. For any x and any l:
Pr (L(x) = l) = Pr (S (ϕ(x)) = l)

= Pr (ϕ(x) = x) · Pr (S (x) = l) + Pr (ϕ(x) = ⊥) · Pr (S (⊥) = l)
= ε · Pr (S (x) = l) + (1 − ε) · Pr (S (⊥) = l)

Hence,

0 ≤ Pr (S (⊥) = l) =

Should not depend on x︷ ︸︸ ︷
Pr (L(x) = l) − ε · Pr (S (x) = l)

1 − ε
= π(l)

1 − ε
(2)

0 ≤ Pr (S (x) = l) = Pr (L(x) = l) − π(l)
ε

(3)

Is there any ε such that ≥ and ≥ are valid?
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Proof of the Core Lemma (III)

Is there any ε such that ≥ and ≥ are valid?

From (2), and (3), we get
0 ≤ π(l) ≤ Pr (L(x) = l) for any x

In other words,
0 ≤ π(l) ≤ minx Pr (L(x) = l)

Furthermore, summing (2) over l, by definition of probability distributions,∑
l

π(l) =
∑

l

Pr (L(x) = l)︸ ︷︷ ︸
=1

−ε ·
∑

l

Pr (S (x) = l)︸ ︷︷ ︸
=1

= 1 − ε

Hence,

to have the smallest ε,

ε = 1 −
∑

l

π(l) ≥ 1 −
∑

l

minx Pr (L(x) = l) ≤ δ · |F| (Q11: prove it)
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Security against a Random Probing Adversary

To succeed, at least d out of ` wires must be revealed to the adversary:

Pr (Adv. wins) ≤ Pr (At least d wires revealed)

Theorem (Chernoff Concentration Inequality)
If ` wires, each independently revealed with proba. ε:

Pr (At least dwires revealed) ≤
(

e · ` · ε

d

)d

Q11: Prove the inequality from a particular case of Chernoff inequality33

33Boucheron, Lugosi, and Massart, Concentration Inequalities: A Nonasymptotic Theory of
Independence, P.24, and Ex. 2.11.
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Putting all Together

In our context, ` ≤ O
(
d2
)

(for ⊗ gadget), and ε ≤ δ · |F|:

Theorem (Security Bound)
For a single gadget with ` ≤ O

(
d2
)

intermediate computations:

SD (k; L) ≤ O
(
(7e · d · δ · |F|)d)

For the whole circuit C,

d/2-region probing34 security implies

SD (k; L) ≤ O
(
(7e · |C| · d · δ · |F|)d)

34t-Region-probing secure: NI, with t probes from each gadget
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Remarks on the Proof

· “Exponential” security 3

· Bad leakage rate τ = 7e · d · |F| 7, but:
→ The |F| factor is a proof artifact35 3

→ New constructions with better (even constant) leakage rates36 3

35Brian, Dziembowski, and Faust, “From Random Probing to Noisy Leakages Without Field-Size
Dependence”.

36Belaïd, Rivain, and Taleb, “On the Power of Expansion: More Efficient Constructions in the Random
Probing Model”.
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Content
Introduction: SCA
The Core Problem: Make & Certify a Device as Secure

Security Certification
Deep Learning Attacks
Use Case: Polymorphic Implementation
More Evaluation Shortcuts
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Security Analysis for a Single Encoding
Computing on Masked Secrets
Security Analysis over Computations

What about Post-Quantum?
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Masking Post-Quantum Cryptography: Kyber

· Basic arithmetic over Zq, with q prime
3 Friendly with arithmetic masking

· Fujisaki-Okamoto transform:
7 Needs to convert masks A2B: complexity O

(
d2 log(d)

)
7 Needs to convert masks B2A: complexity O

(
d2
)

7 Needs to mask hash functions: very expensive
Slow ops unmasked (NTT) become “fast” with higher-order masking 3

Fast ops unmasked (rejection in Dilithium) become slow with higher-order
masking 7

Alternative masking-friendly signature schemes proposed (Raccoon) 3
Loïc Masure Side-channel Analysis of Cryptographic Implementations 74 / 96



Introduction: SCA The Core Problem: Make & Certify a Device as Secure Masking What about Post-Quantum? Perspectives References

Content
Introduction: SCA
The Core Problem: Make & Certify a Device as Secure

Security Certification
Deep Learning Attacks
Use Case: Polymorphic Implementation
More Evaluation Shortcuts

Masking
Security Analysis for a Single Encoding
Computing on Masked Secrets
Security Analysis over Computations

What about Post-Quantum?
PerspectivesLoïc Masure Side-channel Analysis of Cryptographic Implementations 75 / 96



Introduction: SCA The Core Problem: Make & Certify a Device as Secure Masking What about Post-Quantum? Perspectives References

Conclusion
Challenges for masking generally:
→ Improving the reduction from noisy leakage to probing security
→ Can we prove directly in the noisy model ?
→ What about non-independent leakage randomness ?

Challenges for masking in PQC:
→ Analysis in the RP/noisy model: current implementations deviate from the

arithmetic circuit 3

→ Having masking-friendly primitives
→ Make masked Bike affordable
→ Masking MQ-like: not thoroughly explored yet ...
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Pointers

Interested ?
Coron’s keynote at Cardis 23 on masking lattice-based cryptography
Cassiers’ keynote at Cosade 23 on masking composability
Nicolas Bordes’ thesis with nice examples of probing notions.
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