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Context : Side-Channel Analysis (SCA)

“Cryptographic algorithms don’t run on paper, they run on physical devices”

Enc

Ctx

Msg

: N bits

Black-box cryptanalysis: 2N
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Context : Side-Channel Analysis (SCA)

“Cryptographic algorithms don’t run on paper, they run on physical devices”

CtxTrace(Msg, )

Msg

: N bits

Black-box cryptanalysis: 2N
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Evaluate Security against Side-Channel Attacks
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Provable bounds

a

aShamelessly stolen to O. Bronchain

Attack approach (industry):

Current security level ✓

Future improvement → reevaluation ✗

Approach by proofs (academia):
Rigorous approach ✓

Potentially conservative ✗

Today’s agenda: evaluation by proofs
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Statement of the Problem
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·2

×3

⊗A
A

A

B

C
D

L(A)
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L(C)
L(D)

For each wire X , a leakage function L(X ) is revealed to the adversary.
How informative L about A?
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The Noisy Leakage Model

l Pr[Y | L]
y

If, the adversary gets:

δ-noisy adversary
Any intermediate computation Y leaks L(Y) such that:

SD (Y; L) = E
L

TV

︸ ︷︷ ︸
Pr[Y | L]

, ︸ ︷︷ ︸
Pr[Y]


 ≤ δ

Main assumption: every observed leakage is δ-noisy
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Masking: what is that ?

Masking, a.k.a. MPC on silicon:12 secret sharing over a finite field (F,⊕,⊗)
Y(secret)
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1Chari et al., “Towards Sound Approaches to Counteract Power-Analysis Attacks”.
2Goubin and Patarin, “DES and Differential Power Analysis (The "Duplication" Method)”.
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The Effect of Masking
Y(secret)
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≡ Pr[Yi | Li ]

∗

≡ Pr[Y | L1, . . . , Ld ]

Masking ≡ convolutions !
SD (Y; L) ≤ 2dδd
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Computing over Masked Secrets

Idea to make a masked circuit

||

·2

×3

⊗A
A

A

B

C
D

· View your algorithm as a circuit
→ Made of not, and gates 3

→ Made of ⊕,⊗ gates 4

· Replace each gate by a masked gadget
· Et voilà !⋆⋆

For now, let’s assume the whole circuit to be probing secure: every subset of
d − 1 wires is independent from the secret.

4Ishai, Sahai, and Wagner, “Private Circuits: Securing Hardware against Probing Attacks”.
4Rivain and Prouff, “Provably Secure Higher-Order Masking of AES”.
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Security Proof for a Gadget

Consider a gadget with ℓ

δ-noisy

intermediate computations:
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·2
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A

A
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D

L(A)

L(A)

L(A)

L(B)

L(C)
L(D)

Data-processing Inequality
If for any x the leakage function L(x)

may be expressed as S (φ(x)), then:
advantage from L(x) ≤ advantage from φ(x)
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Reduction from Noisy Leakage to Random Probing

Lemma (Simulatability by Random Probing)
The leakage function L can be simulated from a random probing adversary:
φ(x) reveals x with probability ϵ = 1−∑l minx Pr[L(x) = l] ≤ δ · |F|.5

Random probing model: easier to analyze for leakage from computations

5Duc, Dziembowski, and Faust, “Unifying Leakage Models: From Probing Attacks to Noisy Leakage”.
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Security against a Random Probing Adversary

To succeed, at least d out of ℓ wires must be revealed to the adversary:

Pr[Adv. learns sth] ≤ Pr[At least d wires revealed]

Theorem (Chernoff Concentration Inequality6)
If ℓ wires, each independently revealed with proba. ϵ:

Pr[At least dwires revealed] ≤
(

e · ℓ · ϵ
d

)d

6Boucheron, Lugosi, and Massart, Concentration Inequalities: A Nonasymptotic Theory of
Independence, P.24, and Ex. 2.11.
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Putting all Together

In our context, ℓ ≤ O
(
d2
)

(for ⊗ gadget), and ϵ ≤ δ · |F|:

Theorem (Security Bound)
For a single gadget with ℓ ≤ O

(
d2
)

intermediate computations:

SD (k; L) ≤ (O (d) · δ · |F|)d

For the whole circuit C,

SD (k; L) ≤ (|C| · O (d) · δ · |F|)d
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Main Challenge

For the whole circuit C,

SD (k; L) ≤ (|C| · O (d) · |F| · δ)d

Main challenge: get rid of the three factors d , |C|, and |F|

d : Abdel’s thesis
|C|: this talk (a bit) and Melissa’s talk (more in depth)
|F|: this talk (a bit, work in progress)

A few numbers:

d(2, 3, 4, ..., 16)≪ |C|(≈ 103, 105), |F|(256, 223, 250)
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Content
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Setting

G3

G1

G2

G4

x⃗1

x⃗2

y

∂1 = {2, 3}, ∂2 = {3}, ∂3 = {4}, ∂4 = ∅

Figure: G1: SNI copy gadget, G2, G3: SNI gadgets, G4: NIo gadget.

∂i : set of all subsequent gadgets linked to Gi
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Strong Non-Interference8

Definition (t-Strong Non-Interference)
A gadget G is t-SNI

if any set W G of internal probes and any set JG of output
probes such that

∣∣∣W G
∣∣∣+ ∣∣∣JG

∣∣∣ ≤ t can be simulated with at most
∣∣∣IG
∣∣∣ ≤ ∣∣∣W G

∣∣∣
shares of each input sharing

G

x1

x2

y

A

→ Composable : circ. SNI iff all gadgets SNI
→ SNI =⇒ probing security
→ Extends to multiple outputs7

7Must be connected to different gadgets ✓
8Barthe et al., “Strong Non-Interference and Type-Directed Higher-Order Masking”.
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Non-Interference with Public Outputs10

Definition (t-NIo)
A gadget is t-NIo

if any set of t1 ≤ t internal probes and the output can be
jointly simulated from the output and at most t1 input shares

Gx1 y

A

→ Output assumed to be public anyway
→ Built from strong Refreshing 9

9Coron et al., High-order Polynomial Comparison and Masking Lattice-based Encryption
10Barthe et al., “Masking the GLP Lattice-Based Signature Scheme at Any Order”.
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Composition Theorem

Theorem
Assume: (1) Each output gadget (d − 1)-NIo;

(2) Each internal gadget
ti -SNI; (3) Each copy gadget connected to different gadgets; then, C is secure
with proba ≥ 1− η such that:

η ≤
|C|∑
i=1

Gi not output

(
e · |Gi |+

∑
j∈∂i |Gj |

ti + 1 · ϵ
)ti +1

.

Corollary
The d-share ISW compiler is |C| · (O (d) · |F| · δ)d -noisy leakage secure
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Proof Sketch

Apply SNI simulator gadget-wise, in reversed order, until complete or failure

G3

G1

G2

G4

x⃗1

x⃗2

y

A

Figure: G1: SNI copy gadget, G2, G3: SNI gadgets, G4: NIo gadget. ∂1 = {2, 3}, ∂2 = {3},
∂3 = {4}, ∂4 = ∅
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Proof Sketch

Failure may happen (simulation with abort)
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How Often Does It Fail?

Let badi : “simulation failure at step i”. This implies:

→ ti -SNI assumption of Gi not verified:
∣∣∣W Gi

∣∣∣+∑
j∈∂i

∣∣∣JGi
j

∣∣∣ ≥ ti

→ ∀j > i , tj -SNI assumption of Gj verified, thereby
∣∣∣JGi

j

∣∣∣ =
∣∣∣IGj

i

∣∣∣ ≤ ∣∣∣W Gj
∣∣∣11

Hence,

Pr[badi ] ≤ Pr
∣∣∣W Gi

∣∣∣+ ∑
j∈∂i

∣∣∣W Gj
∣∣∣ ≥ ti


Using the union bound:

η =
|C|∑
i=1

Gi not output

Pr[badi ]

11If Gj is an NIo output gadget, this is also verified.
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Concluding the Proof

Using Chernoff:

Pr
∣∣∣W Gi

∣∣∣+ ∑
j∈∂i

∣∣∣W Gj
∣∣∣ > ti

 = Pr
∣∣∣∣∣∣W Gi ∪

⋃
j∈∂i

W Gj

∣∣∣∣∣∣ ≥ ti + 1


≤
(

e · |Gi |+
∑

j∈∂i |Gj |
ti + 1 · ϵ

)ti +1
.
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Comparison with Previous Works

So far, trade-off was needed (see next talk):

→ Duc et al.:12 |C| · (O (d) · |F| · δ)d/2

→ Belaïd et al.:13 |C| · (O (1) · |F| · δ)≈d/3

→ Next talk: tighter and more generic way to compose

12Duc, Dziembowski, and Faust, “Unifying Leakage Models: From Probing Attacks to Noisy Leakage”.
13Taleb, “Secure and Verified Cryptographic Implementations in the Random Probing Model.

(Implémentations cryptographiques sûres et vérifiées dans le modèle random probing)”.
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Noisy-to-Random Reduction
Lemma (Simulatability by Random Probing14)
The leakage function L can be simulated from a random probing adversary:
φ(x) reveals x with probability ϵ = 1−∑l minx Pr[L(x) = l] ≤ δ · |F|.

→ Tight w.r.t. |F| ✗

→ Holds for any x ∈ F ⇐⇒ holds for any arbitrarily distributed r.v. X ←$ F

→ Equivalently, holds at the scale of the whole circuit, for any joint
distribution X1, . . . , Xℓ of the wires ✓✓

Is it too much ?

14Duc, Dziembowski, and Faust, “Unifying Leakage Models: From Probing Attacks to Noisy Leakage”.
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The Average Random Probing Model
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The Average Random Probing Model

· ARP (EC’24): φ(x) = x with proba. ϵx
· (EC’15): φ(x) reveals x with proba. ϵx , and some

internal randomness

NL RP

ϵRP = |F| · δ

δ ≈ ϵRP

ARP

ϵARP =
δ

ϵ RP
=
O

( √ ϵ ARP
)

DFS

ϵ DFS
=

δ

ϵARP =
Ω(|F| · δ)

14Blue: Duc, Dziembowski, and Faust, “Unifying Leakage Models: From Probing Attacks to Noisy
Leakage”,
Green: Dziembowski, Faust, and Skorski, “Noisy Leakage Revisited”,
Brown: Brian, Dziembowski, and Faust, “From Random Probing to Noisy Leakages Without Field-Size
Dependence”Loïc Masure A Decade of Masking Security Proofs 32 / 44
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Technical Results

Theorem (ARP-Simulability)
L is simulable in the {ϵx}x average random probing model iff15

1 ≤
∑

l

min
x ′:ϵx′<1

{
Pr[L(x ′) = l]

1− ϵx ′

}

Remark: if ϵx constant, we get back the RP lemma
Proof: see appendix

15One needs at least one ϵx < 1 for non-trivial simulation
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The Catastrophic Channel, a.k.a., the evil function16

l ∈ F
l

Equivalently:

Pr[L(x) = l] =
0 if x = l,

1
|F |−1 otherwise

Here, δ = 1
|F | , but ϵ = Ex [ϵx ] ≥ 1

2

Hence, ϵ
δ ≥ Ω (|F|) ✗

16Thus named by Gianluca Brian, as it appears as a worst-case in another of their works
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Deterministic Leakage Functions

We can characterize the optimal simulator:

x1

x2

x3

x4

x5

x6

l1

l2

l3

x1

x2

⊥

x6

ϵ = Ex [ϵx ] = 1− maxl |{x : L(x) = l}|
|F|

≤ 1−
E
l

[|{x : L(x) = l}|]

|F|
= δ
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Conclusion
Research strategy in masking security proofs:

· Always good to start tackling a problem by simpler sides
· Gives good intuitions
· Risk: forgetting the big picture (noisy leakage)

Main priority (IMHO):
→ Either improving reductions to random probing
→ Or working directly in the noisy leakage
No easy fix currently ...

Join us in this line of research !
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Reduction from Noisy Leakage to Random Probing (I)

Assume there exists such a simulator S,

we need to construct it for all inputs:

Pr[S (x) = l] = . . . , for all x
Pr[S (⊥) = l] = . . .

Constraints:
→ For all input x , Pr[S (x)] should be a p.m.f.
→ For the input ⊥, Pr[S (⊥)] should be a p.m.f.
→ For any x , l, Pr[S (φ(x)) = l] = Pr[L(x) = l]
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Reduction from Noisy Leakage to Random Probing (II)
Let us start from the last constraint. For any x and any l:

Pr[L(x) = l] = Pr[S (φ(x)) = l]

= Pr[φ(x) = x ] · Pr[S (x) = l] + Pr[φ(x) = ⊥] · Pr[S (⊥) = l]
= ϵ · Pr[S (x) = l] + (1− ϵ) · Pr[S (⊥) = l]

Hence,

0 ≤ Pr[S (⊥) = l] =

Should not depend on x︷ ︸︸ ︷
Pr[L(x) = l]− ϵ · Pr[S (x) = l]

1− ϵ
= π(l)

1− ϵ
(1)

0 ≤ Pr[S (x) = l] = Pr[L(x) = l]− π(l)
ϵ

(2)

Is there any ϵ such that ≥ and ≥ are valid?
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Reduction from Noisy Leakage to RP (III)

Is there any ϵ such that ≥ and ≥ are valid?

From (3), and (4), we get
0 ≤ π(l) ≤ Pr[L(x) = l] for any x

In other words,
0 ≤ π(l) ≤ minx Pr[L(x) = l]

Furthermore, summing (3) over l, by definition of probability distributions,∑
l

π(l) =
∑

l

Pr[L(x) = l]︸ ︷︷ ︸
=1

−ϵ ·
∑

l

Pr[S (x) = l]︸ ︷︷ ︸
=1

= 1− ϵ

Hence,

to have the smallest ϵ,

ϵ = 1−
∑

l

π(l) ≥ 1−
∑

l

minx Pr[L(x) = l]
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Reduction to Average Random Probing (I)
For any x and any l:

Pr[L(x) = l] = Pr[S (φ(x)) = l]

= Pr[φ(x) = x ] · Pr[S (x) = l] + Pr[φ(x) = ⊥] · Pr[S (⊥) = l]
= ϵx · Pr[S (x) = l] + (1− ϵx) · Pr[S (⊥) = l]

Hence, provided that ϵx < 1,

0 ≤ Pr[S (⊥) = l] =

Should not depend on x︷ ︸︸ ︷
Pr[L(x) = l]− ϵx · Pr[S (x) = l]

1− ϵx
= π(l, x)

1− ϵx
(3)

0 ≤ Pr[S (x) = l] = Pr[L(x) = l]− π(l, x)
ϵx

(4)

Is there any ϵ such that ≥ and ≥ are valid?
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Reduction from Noisy Leakage to RP (III)

Is there any ϵ such that ≥ and ≥ are valid?

From (3), and (4), we get
0 ≤ π(l, x) ≤ Pr[L(x) = l] for any x

So (3) gives

Pr[S (⊥) = l] ≤ Pr[L(x) = l]
1− ϵx

for any x s.t. ϵx < 1

In other words,

0 ≤ Pr[S (⊥) = l] ≤ min
x ′:ϵx′<1

{
Pr[L(x ′) = l]

1− ϵx ′

}
And (3) also gives

0 ≤ π(l, x) ≤ (1− ϵx) · min
x ′:ϵx′<1

{
Pr[L(x ′) = l]

1− ϵx ′

}
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Characterization of ARP-simulable Leakages

Furthermore, summing (3) over l, by definition of probability distributions,∑
l

π(l, x) =
∑

l

Pr[L(x) = l]︸ ︷︷ ︸
=1

−ϵx ·
∑

l

Pr[S (x) = l]︸ ︷︷ ︸
=1

= 1− ϵx

Hence, the following result

Theorem (ARP-Simulability)
L is simulable in the {ϵx}x average random probing model iff17

1 ≤
∑

l

min
x ′:ϵx′<1

{
Pr[L(x ′) = l]

1− ϵx ′

}

17One needs at least one ϵx < 1 for non-trivial simulation
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