

# A Decade of Masking Security Proofs

#### Loïc Masure



WRACH, 23 Avril 2025, Roscoff





Agenda

Context: SCA & Security Evaluation

Masking

Background & Intuitions

Provably Secure Masking

Composition in the Random Probing Model

Tight Reduction

Conclusion

#### Content

#### Context: SCA & Security Evaluation

Masking

Background & Intuitions

Provably Secure Masking

Composition in the Random Probing Model

Tight Reduction

Conclusion

Context : Side-Channel Analysis (SCA)



Context : Side-Channel Analysis (SCA)



Context : Side-Channel Analysis (SCA)

"Cryptographic algorithms don't run on paper, they run on physical devices" Msg -: N bits Black-box cryptanalysis:  $2^{N}$ Ctx

Context : Side-Channel Analysis (SCA)

"Cryptographic algorithms don't run on paper, they run on physical devices" Msg -: N bits Black-box cryptanalysis:  $2^{N}$ Trace(Msg, -) Ctx

# Evaluate Security against Side-Channel Attacks



<sup>a</sup>Shamelessly stolen to O. Bronchain



<sup>a</sup>Shamelessly stolen to O. Bronchain



Attack approach (industry): Current security level  $\checkmark$ Future improvement  $\rightarrow$  reevaluation  $\cancel{\times}$ 

<sup>a</sup>Shamelessly stolen to O. Bronchain



<sup>&</sup>lt;sup>a</sup>Shamelessly stolen to O. Bronchain

Attack approach (industry): Current security level  $\checkmark$ Future improvement  $\rightarrow$  reevaluation  $\times$ 

Approach by *proofs* (academia): Rigorous approach ✓ Potentially conservative ✗



Attack approach (industry): Current security level  $\checkmark$ Future improvement  $\rightarrow$  reevaluation X

Approach by *proofs* (academia): Rigorous approach ✓ Potentially conservative ✗

<sup>a</sup>Shamelessly stolen to O. Bronchain

Today's agenda: evaluation by proofs

#### Content

Context: SCA & Security Evaluation

Masking

Background & Intuitions

Provably Secure Masking

Composition in the Random Probing Model

Tight Reduction

Conclusion

#### Content

#### Context: SCA & Security Evaluation

#### Masking

#### Background & Intuitions

Provably Secure Masking

Composition in the Random Probing Model

**Tight Reduction** 

Conclusion

#### Statement of the Problem



# Statement of the Problem



For each wire X, a leakage function L(X) is revealed to the adversary.

Loïc Masure

A Decade of Masking Security Proofs

# Statement of the Problem



For each wire X, a leakage function L(X) is revealed to the adversary.

#### How informative L about A?

Loïc Masure

A Decade of Masking Security Proofs

The Noisy Leakage Model

$$I \stackrel{\text{M}}{\longrightarrow} \Pr[Y \mid L] \xrightarrow{} y$$

The Noisy Leakage Model

$$I \stackrel{\text{M}}{\longrightarrow} \Pr[Y \mid L] \rightarrow \boxed{y}$$

If, the adversary gets:

The Noisy Leakage Model

If, the adversary gets:

Very noisy leakage  ${\rm Y}$  indistinguishable from blind guess

The Noisy Leakage Model

$$I \stackrel{\text{M}}{\longrightarrow} \Pr[Y \mid L] \rightarrow \boxed{y}$$

If, the adversary gets:

### The Noisy Leakage Model

If, the adversary gets:

Low-noise leakage Exact prediction for  $\boldsymbol{\mathrm{Y}}$ 

The Noisy Leakage Model

#### $\delta$ -noisy adversary

Any intermediate computation Y leaks L(Y) such that:

$$\mathsf{SD}\left(\mathbf{Y};\mathbf{L}\right) = \mathop{\mathbb{E}}_{\mathbf{L}}\left[\mathsf{TV}\left(\underbrace{\qquad}_{\mathsf{Pr}\left[\mathbf{Y}\mid\mathbf{L}\right]},\underbrace{\qquad}_{\mathsf{Pr}\left[\mathbf{Y}\right]},\underbrace{\qquad}_{\mathsf{Pr}\left[\mathbf{Y}\right]}\right)\right] \leq \delta$$

The Noisy Leakage Model

$$I \longrightarrow Pr[Y | L] \rightarrow y$$

#### $\delta$ -noisy adversary

Any intermediate computation Y leaks L(Y) such that:

$$\mathsf{SD}\left(\mathbf{Y};\mathbf{L}\right) = \mathop{\mathbb{E}}_{\mathbf{L}}\left[\mathsf{TV}\left(\underbrace{\blacksquare}_{\mathsf{Pr}\left[\mathbf{Y} \mid \mathbf{L}\right]},\underbrace{\blacksquare}_{\mathsf{Pr}\left[\mathbf{Y}\right]},\underbrace{\blacksquare}_{\mathsf{Pr}\left[\mathbf{Y}\right]}\right)\right] \leq \delta$$

**Main assumption**: every observed leakage is  $\delta$ -noisy

Loïc Masure

A Decade of Masking Security Proofs

## Masking: what is that ?

Masking, a.k.a. *MPC on silicon*:<sup>12</sup> secret sharing over a finite field  $(\mathbb{F}, \oplus, \otimes)$ Y(secret)

### Masking: what is that ?

Masking, a.k.a. *MPC on silicon*:<sup>12</sup> secret sharing over a finite field  $(\mathbb{F}, \oplus, \otimes)$ Y(secret)



### Masking: what is that ?

Masking, a.k.a. MPC on silicon:<sup>12</sup> secret sharing over a finite field  $(\mathbb{F}, \oplus, \otimes)$ Y(secret)  $Y_1$  $Y_2$ d  $L(Y_2) = \delta(Y_2) + N$  $L(Y_1) = \delta(Y_1) + N$  $L(Y_d) = \delta(Y_d) + N$  $\rightarrow$ 

<sup>1</sup>Chari et al., "Towards Sound Approaches to Counteract Power-Analysis Attacks". <sup>2</sup>Goubin and Patarin, "DES and Differential Power Analysis (The "Duplication" Method)". Loic Masure A Decade of Masking Security Proofs

## The Effect of Masking

Y(secret)











#### Content

#### Context: SCA & Security Evaluation

Masking

Background & Intuitions

Provably Secure Masking

Composition in the Random Probing Model

**Tight Reduction** 

Conclusion

## Computing over Masked Secrets

Idea to make a masked circuit

<sup>4</sup>Ishai, Sahai, and Wagner, "Private Circuits: Securing Hardware against Probing Attacks". <sup>4</sup>Rivain and Prouff, "Provably Secure Higher-Order Masking of AES".

Loïc Masure

A Decade of Masking Security Proofs

# Computing over Masked Secrets

Idea to make a masked circuit



· View your algorithm as a circuit

<sup>4</sup>Rivain and Prouff, "Provably Secure Higher-Order Masking of AES".

<sup>&</sup>lt;sup>4</sup>Ishai, Sahai, and Wagner, "Private Circuits: Securing Hardware against Probing Attacks".
Idea to make a masked circuit



 $\cdot$  View your algorithm as a circuit  $\rightarrow$  Made of not, and gates  $^3$ 

<sup>&</sup>lt;sup>4</sup>Ishai, Sahai, and Wagner, "Private Circuits: Securing Hardware against Probing Attacks".

Idea to make a masked circuit



 $\cdot$  View your algorithm as a circuit  $\rightarrow$  Made of not, and gates  $^3$  $\rightarrow$  Made of  $\oplus,\otimes$  gates  $^4$ 

<sup>&</sup>lt;sup>4</sup>Ishai, Sahai, and Wagner, "Private Circuits: Securing Hardware against Probing Attacks".

Idea to make a masked circuit



- $\cdot$  View your algorithm as a circuit  $\rightarrow$  Made of not, and gates  $^3$
- $\rightarrow$  Made of  $\oplus,\otimes$  gates  $^4$
- $\cdot$  Replace each gate by a masked gadget

<sup>&</sup>lt;sup>4</sup>Ishai, Sahai, and Wagner, "Private Circuits: Securing Hardware against Probing Attacks".

Idea to make a masked circuit



- $\cdot$  View your algorithm as a circuit
- ightarrow Made of not, and gates  $^3$
- $\rightarrow$  Made of  $\oplus,\otimes$  gates  $^4$
- Replace each gate by a masked gadget
  Et voilà !\*\*

For now, let's assume the whole circuit to be *probing secure*: every subset of d-1 wires is independent from the secret.

<sup>4</sup>Ishai, Sahai, and Wagner, "Private Circuits: Securing Hardware against Probing Attacks".

### Security Proof for a Gadget

Consider a gadget with  $\ell$  intermediate computations:



Consider a gadget with  $\ell \delta$ -noisy intermediate computations:



Consider a gadget with  $\ell \delta$ -noisy intermediate computations:



#### DATA-PROCESSING INEQUALITY

If for any x the leakage function L(x)

Consider a gadget with  $\ell \delta$ -noisy intermediate computations:



#### DATA-PROCESSING INEQUALITY

If for any x the leakage function L(x) may be expressed as  $\mathcal{S}(\varphi(x))$ ,

Loïc Masure

Consider a gadget with  $\ell \delta$ -noisy intermediate computations:



#### DATA-PROCESSING INEQUALITY

If for any x the leakage function L(x) may be expressed as  $S(\varphi(x))$ , then: advantage from  $L(x) \leq$  advantage from  $\varphi(x)$ 

### Reduction from Noisy Leakage to Random Probing

### Lemma (Simulatability by Random Probing)

The leakage function L can be simulated from a random probing adversary:  $\varphi(x)$  reveals x with probability  $\epsilon = 1 - \sum_{l} \min_{x} \Pr[L(x) = l] \leq \delta \cdot |\mathbb{F}|.^{5}$ 

Random probing model: easier to analyze for leakage from computations

<sup>5</sup>Duc, Dziembowski, and Faust, "Unifying Leakage Models: From Probing Attacks to Noisy Leakage". Loïc Masure A Decade of Masking Security Proofs

### Security against a Random Probing Adversary

To succeed, at least d out of  $\ell$  wires must be revealed to the adversary:

 $\Pr[Adv. \text{ learns sth}] \leq \Pr[At \text{ least } d \text{ wires revealed}]$ 

Loïc Masure

<sup>&</sup>lt;sup>6</sup>Boucheron, Lugosi, and Massart, *Concentration Inequalities: A Nonasymptotic Theory of Independence*, P.24, and Ex. 2.11.

### Security against a Random Probing Adversary

To succeed, at least d out of  $\ell$  wires must be revealed to the adversary:

 $Pr[Adv. \text{ learns sth}] \leq Pr[At \text{ least } d \text{ wires revealed}]$ 

THEOREM (CHERNOFF CONCENTRATION INEQUALITY<sup>6</sup>) If  $\ell$  wires, each independently revealed with proba.  $\epsilon$ :

$$\mathsf{Pr}[\mathsf{At} \; \mathit{least} \; \mathit{dwires} \; \mathit{revealed}] \leq \left(rac{e \cdot \ell \cdot \epsilon}{d}
ight)^d$$

<sup>6</sup>Boucheron, Lugosi, and Massart, *Concentration Inequalities: A Nonasymptotic Theory of Independence*, P.24, and Ex. 2.11.

Loïc Masure

### Putting all Together

In our context,  $\ell \leq \mathcal{O}\left(d^2\right)$  (for  $\otimes$  gadget), and  $\epsilon \leq \delta \cdot |\mathbb{F}|$ :

THEOREM (SECURITY BOUND)

For a single gadget with  $\ell \leq \mathcal{O}\left(d^2\right)$  intermediate computations:

 $\mathsf{SD}(k; \mathbf{L}) \leq (\mathcal{O}(d) \cdot \delta \cdot |\mathbb{F}|)^d$ 

### Putting all Together

In our context,  $\ell \leq \mathcal{O}\left(d^2\right)$  (for  $\otimes$  gadget), and  $\epsilon \leq \delta \cdot |\mathbb{F}|$ :

THEOREM (SECURITY BOUND)

For a single gadget with  $\ell \leq \mathcal{O}\left(d^2\right)$  intermediate computations:

 $\mathsf{SD}(k; \mathbf{L}) \leq \left(\mathcal{O}(d) \cdot \delta \cdot |\mathbb{F}|\right)^d$ 

For the whole circuit  $\mathbb{C}$ ,

 $\mathsf{SD}(k; \mathbf{L}) \leq (|\mathbb{C}| \cdot \mathcal{O}(\mathbf{d}) \cdot \delta \cdot |\mathbb{F}|)^{\mathbf{d}}$ 

For the whole circuit  $\mathbb{C}$ ,

$$\mathsf{SD}(k; \mathbf{L}) \leq (|\mathbf{C}| \cdot \mathcal{O}(\mathbf{d}) \cdot |\mathbf{F}| \cdot \delta)^{\mathbf{d}}$$

**Main challenge**: get rid of the three factors d, |C|, and  $|\mathbb{F}|$ 

For the whole circuit  $\mathbb{C}$ ,

$$\mathsf{SD}(k; \mathbf{L}) \leq (|\mathbf{C}| \cdot \mathcal{O}(\mathbf{d}) \cdot |\mathbf{F}| \cdot \delta)^{\mathbf{d}}$$

**Main challenge**: get rid of the three factors d, |C|, and  $|\mathbb{F}|$ 

*d*: Abdel's thesis

For the whole circuit  $\mathbb{C},$ 

$$\mathsf{SD}(k; \mathbf{L}) \leq (|\mathbf{C}| \cdot \mathcal{O}(\mathbf{d}) \cdot |\mathbf{F}| \cdot \delta)^{\mathbf{d}}$$

**Main challenge**: get rid of the three factors d, |C|, and  $|\mathbb{F}|$ 

- d: Abdel's thesis
- C: this talk (a bit) and Melissa's talk (more in depth)

For the whole circuit  $\mathbb{C},$ 

$$\mathsf{SD}(k; \mathbf{L}) \leq (|\mathbf{C}| \cdot \mathcal{O}(d) \cdot |\mathbf{F}| \cdot \delta)^d$$

**Main challenge**: get rid of the three factors d, |C|, and  $|\mathbb{F}|$ 

- d: Abdel's thesis
- C: this talk (a bit) and Melissa's talk (more in depth)
- $|\mathbb{F}|$ : this talk (a bit, work in progress)

For the whole circuit  $\mathbb{C},$ 

$$\mathsf{SD}(k; \mathbf{L}) \leq (|\mathbf{C}| \cdot \mathcal{O}(d) \cdot |\mathbf{F}| \cdot \delta)^d$$

**Main challenge**: get rid of the three factors d, |C|, and  $|\mathbb{F}|$ 

- d: Abdel's thesis
- C: this talk (a bit) and Melissa's talk (more in depth)
- $|\mathbb{F}|$ : this talk (a bit, work in progress)

A few numbers:

$$d(2,3,4,...,16) \ll |\mathsf{C}| (\approx 10^3,10^5), |\mathbb{F}| (256,2^{23},2^{50})$$

### Content

Context: SCA & Security Evaluation

Masking

Background & Intuitions

Provably Secure Masking

#### Composition in the Random Probing Model

Tight Reduction

Conclusion

## Setting



Figure:  $G_1$ : SNI copy gadget,  $G_2$ ,  $G_3$ : SNI gadgets,  $G_4$ : NIo gadget.

Setting



Figure: G<sub>1</sub>: SNI copy gadget, G<sub>2</sub>, G<sub>3</sub>: SNI gadgets, G<sub>4</sub>: NIo gadget.

#### $\partial_i$ : set of all subsequent gadgets linked to $G_i$

Loïc Masure

# Strong Non-Interference<sup>8</sup>

# DEFINITION (*t*-STRONG NON-INTERFERENCE)

A gadget G is t-SNI



<sup>7</sup>Must be connected to different gadgets  $\checkmark$ 

<sup>8</sup>Barthe et al., "Strong Non-Interference and Type-Directed Higher-Order Masking".

# Strong Non-Interference<sup>8</sup>

### DEFINITION (*t*-STRONG NON-INTERFERENCE)

A gadget G is *t*-SNI if any set  $W^G$  of internal probes and any set  $J^G$  of output probes such that  $|W^G| + |J^G| \le t$ 



 $^{7}$ Must be connected to different gadgets  $\checkmark$ 

<sup>8</sup>Barthe et al., "Strong Non-Interference and Type-Directed Higher-Order Masking".

# Strong Non-Interference<sup>8</sup>

### DEFINITION (*t*-STRONG NON-INTERFERENCE)

A gadget G is *t*-SNI if any set  $W^{G}$  of internal probes and any set  $J^{G}$  of output probes such that  $|W^{G}| + |J^{G}| \le t$  can be simulated with at most  $|I^{G}| \le |W^{G}|$  shares of each input sharing



<sup>&</sup>lt;sup>7</sup>Must be connected to different gadgets ✓

<sup>8</sup>Barthe et al., "Strong Non-Interference and Type-Directed Higher-Order Masking".

# Strong Non-Interference<sup>8</sup>

### DEFINITION (*t*-STRONG NON-INTERFERENCE)

A gadget G is *t*-SNI if any set  $W^{G}$  of internal probes and any set  $J^{G}$  of output probes such that  $|W^{G}| + |J^{G}| \le t$  can be simulated with at most  $|I^{G}| \le |W^{G}|$  shares of each input sharing



- $\rightarrow$  Composable : circ. SNI iff all gadgets SNI
- $\rightarrow$  SNI  $\implies$  probing security
- $\rightarrow$  Extends to multiple outputs^7

<sup>8</sup>Barthe et al., "Strong Non-Interference and Type-Directed Higher-Order Masking".

 $<sup>^{7}</sup>$ Must be connected to different gadgets  $\checkmark$ 

### Definition (t-NIO)

A gadget is *t*-NIo



<sup>9</sup>Coron et al., *High-order Polynomial Comparison and Masking Lattice-based Encryption* <sup>10</sup>Barthe et al., "Masking the GLP Lattice-Based Signature Scheme at Any Order".

### DEFINITION (*t*-NIO)

A gadget is *t*-NIo if any set of  $t_1 \leq t$  internal probes and the output



<sup>9</sup>Coron et al., *High-order Polynomial Comparison and Masking Lattice-based Encryption* <sup>10</sup>Barthe et al., "Masking the GLP Lattice-Based Signature Scheme at Any Order".

### DEFINITION (*t*-NIO)

A gadget is *t*-NIo if any set of  $t_1 \leq t$  internal probes and the output can be jointly simulated from the output and at most  $t_1$  input shares



<sup>&</sup>lt;sup>9</sup>Coron et al., *High-order Polynomial Comparison and Masking Lattice-based Encryption* <sup>10</sup>Barthe et al., "Masking the GLP Lattice-Based Signature Scheme at Any Order".

### DEFINITION (*t*-NIO)

A gadget is *t*-NIo if any set of  $t_1 \leq t$  internal probes and the output can be jointly simulated from the output and at most  $t_1$  input shares



- $\rightarrow$  Output assumed to be public anyway Neurilt from strong Pofreshing <sup>9</sup>
- $\rightarrow\,$  Built from strong Refreshing  $^9$

<sup>9</sup>Coron et al., *High-order Polynomial Comparison and Masking Lattice-based Encryption* <sup>10</sup>Barthe et al., "Masking the GLP Lattice-Based Signature Scheme at Any Order".

THEOREM

Assume: (1) Each output gadget (d - 1)-NIo;

#### THEOREM

# Assume: (1) Each output gadget (d - 1)-NIo; (2) Each internal gadget $t_i$ -SNI;

#### THEOREM

Assume: (1) Each output gadget (d - 1)-NIo; (2) Each internal gadget  $t_i$ -SNI; (3) Each copy gadget connected to different gadgets;

#### Theorem

Assume: (1) Each output gadget (d - 1)-NIo; (2) Each internal gadget  $t_i$ -SNI; (3) Each copy gadget connected to different gadgets; then, C is secure with proba  $\geq 1 - \eta$  such that:

$$\eta \leq \sum_{\substack{i=1\ G_j \, not \, output}}^{|\mathsf{C}|} \left( e \cdot rac{|G_i| + \sum_{j \in \partial_i} |G_j|}{t_i + 1} \cdot \epsilon 
ight)^{t_i + 1}.$$

#### Theorem

Assume: (1) Each output gadget (d - 1)-NIo; (2) Each internal gadget  $t_i$ -SNI; (3) Each copy gadget connected to different gadgets; then, C is secure with proba  $\geq 1 - \eta$  such that:

$$\eta \leq \sum_{\substack{i=1 \ G_{j} \text{ not output}}}^{|\mathsf{C}|} \left( e \cdot rac{|G_i| + \sum_{j \in \partial_i} |G_j|}{t_i + 1} \cdot \epsilon 
ight)^{t_i + 1}$$

#### COROLLARY

The *d*-share ISW compiler is  $|\mathsf{C}| \cdot (\mathcal{O}(d) \cdot |\mathbb{F}| \cdot \delta)^d$ -noisy leakage secure

Loïc Masure

### Proof Sketch

Apply SNI simulator gadget-wise, in reversed order, until complete or failure



Figure: G<sub>1</sub>: SNI copy gadget, G<sub>2</sub>, G<sub>3</sub>: SNI gadgets, G<sub>4</sub>: NIo gadget.  $\partial_1 = \{2, 3\}$ ,  $\partial_2 = \{3\}$ ,  $\partial_3 = \{4\}$ ,  $\partial_4 = \emptyset$ Loic Masure A Decade of Masking Security Proofs 24 / 44
Apply SNI simulator gadget-wise, in reversed order, until complete or failure



Apply SNI simulator gadget-wise, in reversed order, until complete or failure



Apply SNI simulator gadget-wise, in reversed order, until complete or failure



Apply SNI simulator gadget-wise, in reversed order, until complete or failure



Apply SNI simulator gadget-wise, in reversed order, until complete or failure



Failure may happen (simulation with abort)



Failure may happen (simulation with abort)



Figure: G<sub>1</sub>: SNI copy gadget, G<sub>2</sub>, G<sub>3</sub>: SNI gadgets, G<sub>4</sub>: NIo gadget.  $\partial_1 = \{2,3\}$ ,  $\partial_2 = \{3\}$ ,  $\partial_3 = \{4\}$ ,  $\partial_4 = \emptyset$ Loic Masure A Decade of Masking Security Proofs

25 / 44

Failure may happen (simulation with abort)



Let  $bad_i$ : "simulation failure at step *i*". This implies:

 $<sup>^{11}{\</sup>rm If}~{\rm G}_{j_{\rm Loic}} \mathop{\rm Is}_{\rm Masure}$  and the subset of the second state of the second stat

Let  $bad_i$ : "simulation failure at step *i*". This implies:

 $\rightarrow t_i$ -SNI assumption of  $G_i$  not verified:  $|W^{G_i}| + \sum_{j \in \partial_i} |J_j^{G_i}| \ge t_i$ 

 $<sup>^{11}{\</sup>rm If}~{\rm G}_{j}$  is an NIo output gadget, this is also verified. A Decade of Masking Security Proofs

Let  $bad_i$ : "simulation failure at step *i*". This implies:

 $\rightarrow t_i$ -SNI assumption of  $G_i$  not verified:  $|W^{G_i}| + \sum_{j \in \partial_i} |J_j^{G_i}| \ge t_i$ 

 $i \to \forall j > i$ ,  $t_j$ -SNI assumption of G<sub>j</sub> verified, thereby  $\left|J_j^{G_j}\right| = \left|I_i^{G_j}\right| \le \left|W^{G_j}\right|^{11}$ 

 $<sup>^{11}{\</sup>rm If}~{\rm G}_{j_{\rm Loic}} \mathop{\rm is}_{\rm Masure}$  and output gadget, this is also verified. A Decade of Masking Security Proofs

Let  $bad_i$ : "simulation failure at step *i*". This implies:

 $\rightarrow t_i$ -SNI assumption of  $G_i$  not verified:  $|W^{G_i}| + \sum_{j \in \partial_i} |J_j^{G_i}| \ge t_i$ 

 $\rightarrow \forall j > i$ ,  $t_j$ -SNI assumption of  $G_j$  verified, thereby  $\left|J_j^{G_i}\right| = \left|I_i^{G_j}\right| \le |W^{G_j}|^{11}$ Hence,

$$\Pr[\mathsf{bad}_i] \leq \Pr\left[ \left| W^{\mathcal{G}_i} \right| + \sum_{j \in \partial_i} \left| W^{\mathcal{G}_j} \right| \geq t_i 
ight]$$

Using the union bound:

$$\eta = \sum_{\substack{i=1\\G_{j \text{ not output}}}}^{|\mathsf{C}|} \mathsf{Pr}[\mathsf{bad}_i]$$

 $^{11}{\rm If}~{\rm G}_{j_{\rm Loic}} \mathop{\rm is}_{\rm Masure}$  and NIo output gadget, this is also verified. A Decade of Masking Security Proofs

## Concluding the Proof

Using Chernoff:

$$\begin{split} \mathsf{Pr}\bigg[ \Big| \mathcal{W}^{G_i} \Big| + \sum_{j \in \partial_i} \Big| \mathcal{W}^{G_j} \Big| > t_i \bigg] &= \mathsf{Pr}\bigg[ \left| \mathcal{W}^{G_i} \cup \left( \bigcup_{j \in \partial_i} \mathcal{W}^{G_j} \right) \right| \ge t_i + 1 \bigg] \\ &\leq \left( e \cdot \frac{|G_i| + \sum_{j \in \partial_i} |G_j|}{t_i + 1} \cdot \epsilon \right)^{t_i + 1}. \end{split}$$

## Comparison with Previous Works

So far, trade-off was needed (see next talk):

- $\rightarrow$  Duc *et al*.:<sup>12</sup>  $|\mathsf{C}| \cdot (\mathcal{O}(d) \cdot |\mathbb{F}| \cdot \delta)^{d/2}$
- $\rightarrow$  Belaïd *et al.*:<sup>13</sup> |C|  $\cdot (\mathcal{O}(1) \cdot |\mathbb{F}| \cdot \delta)^{\approx d/3}$
- $\rightarrow$  Next talk: tighter and more generic way to compose

 <sup>12</sup>Duc, Dziembowski, and Faust, "Unifying Leakage Models: From Probing Attacks to Noisy Leakage".
 <sup>13</sup>Taleb, "Secure and Verified Cryptographic Implementations in the Random Probing Model. (Implémentations cryptographiques sûres et vérifiées dans le modèle random probing)".

#### Content

Context: SCA & Security Evaluation

Masking

Background & Intuitions

Provably Secure Masking

Composition in the Random Probing Model

**Tight Reduction** 

Conclusion

#### Lemma (Simulatability by Random Probing<sup>14</sup>)

The leakage function L can be simulated from a random probing adversary:  $\varphi(x)$  reveals x with probability  $\epsilon = 1 - \sum_{l} \min_{x} \Pr[L(x) = l] \leq \delta \cdot |\mathbb{F}|$ .

<sup>14</sup>Duc, Dziembowski, and Faust, "Unifying Leakage Models: From Probing Attacks to Noisy Leakage". Loïc Masure A Decade of Masking Security Proofs

#### Lemma (Simulatability by Random Probing<sup>14</sup>)

The leakage function L can be simulated from a random probing adversary:  $\varphi(x)$  reveals x with probability  $\epsilon = 1 - \sum_{l} \min_{x} \Pr[L(x) = l] \leq \delta \cdot |\mathbb{F}|$ .

 $\rightarrow$  Tight w.r.t.  $|\mathbb{F}| \times$ 

<sup>14</sup>Duc, Dziembowski, and Faust, "Unifying Leakage Models: From Probing Attacks to Noisy Leakage". Loïc Masure A Decade of Masking Security Proofs

30 / 44

#### Lemma (Simulatability by Random Probing<sup>14</sup>)

The leakage function L can be simulated from a random probing adversary:  $\varphi(x)$  reveals x with probability  $\epsilon = 1 - \sum_{l} \min_{x} \Pr[L(x) = l] \leq \delta \cdot |\mathbb{F}|$ .

- $\rightarrow$  Tight w.r.t.  $|\mathbb{F}|$  X
- ightarrow Holds for any  $x \in \mathbb{F} \iff$  holds for any arbitrarily distributed r.v.  $X \leftarrow \$ \mathbb{F}$

<sup>&</sup>lt;sup>14</sup>Duc, Dziembowski, and Faust, "Unifying Leakage Models: From Probing Attacks to Noisy Leakage". Loic Masure A Decade of Masking Security Proofs

#### Lemma (Simulatability by Random Probing<sup>14</sup>)

The leakage function L can be simulated from a random probing adversary:  $\varphi(x)$  reveals x with probability  $\epsilon = 1 - \sum_{l} \min_{x} \Pr[L(x) = l] \leq \delta \cdot |\mathbb{F}|$ .

- $\rightarrow$  Tight w.r.t.  $|\mathbb{F}|$  X
- ightarrow Holds for any  $x \in \mathbb{F} \iff$  holds for any arbitrarily distributed r.v.  $X \leftarrow \mathfrak{F}$
- $\rightarrow$  Equivalently, holds at the scale of the whole circuit, for *any* joint distribution  $X_1, \ldots, X_\ell$  of the wires  $\checkmark\checkmark$

<sup>14</sup>Duc, Dziembowski, and Faust, "Unifying Leakage Models: From Probing Attacks to Noisy Leakage". Loïc Masure A Decade of Masking Security Proofs

#### Lemma (Simulatability by Random Probing<sup>14</sup>)

The leakage function L can be simulated from a random probing adversary:  $\varphi(x)$  reveals x with probability  $\epsilon = 1 - \sum_{l} \min_{x} \Pr[L(x) = l] \leq \delta \cdot |\mathbb{F}|$ .

- $\rightarrow$  Tight w.r.t.  $|\mathbb{F}|$  X
- ightarrow Holds for any  $x \in \mathbb{F} \iff$  holds for any arbitrarily distributed r.v.  $X \leftarrow \mathbb{F}$
- $\rightarrow$  Equivalently, holds at the scale of the whole circuit, for *any* joint distribution  $X_1, \ldots, X_\ell$  of the wires  $\checkmark\checkmark$

# Is it too much ?

<sup>14</sup>Duc, Dziembowski, and Faust, "Unifying Leakage Models: From Probing Attacks to Noisy Leakage". Loïc Masure A Decade of Masking Security Proofs

30 / 44

#### The Average Random Probing Model

#### The Average Random Probing Model



Brown: Brian, Dziembowski, and Faust, "From Random Probing to Noisy Leakages Without Field-Size Dependence Masure A Decade of Masking Security Proofs

RP

<sup>&</sup>lt;sup>14</sup>Blue: Duc, Dziembowski, and Faust, "Unifying Leakage Models: From Probing Attacks to Noisy Leakage",

Green: Dziembowski, Faust, and Skorski, "Noisy Leakage Revisited",

#### The Average Random Probing Model



<sup>&</sup>lt;sup>14</sup>Blue: Duc, Dziembowski, and Faust, "Unifying Leakage Models: From Probing Attacks to Noisy Leakage",

Green: Dziembowski, Faust, and Skorski, "Noisy Leakage Revisited",

Brown: Brian, Dziembowski, and Faust, "From Random Probing to Noisy Leakages Without Field-Size Dependence A Decade of Masking Security Proofs

#### The Average Random Probing Model

**ARP** (EC'24): 
$$\varphi(x) = x$$
 with proba.  $\epsilon_x$ 



<sup>&</sup>lt;sup>14</sup>Blue: Duc, Dziembowski, and Faust, "Unifying Leakage Models: From Probing Attacks to Noisy Leakage",

Brown: Brian, Dziembowski, and Faust, "From Random Probing to Noisy Leakages Without Field-Size Dependence Masure A Decade of Masking Security Proofs

Green: Dziembowski, Faust, and Skorski, "Noisy Leakage Revisited",

#### The Average Random Probing Model

• **ARP** (EC'24): 
$$\varphi(x) = x$$
 with proba.  $\epsilon_x$ 



<sup>14</sup>Blue: Duc, Dziembowski, and Faust, "Unifying Leakage Models: From Probing Attacks to Noisy Leakage".

Green: Dziembowski, Faust, and Skorski, "Noisy Leakage Revisited",

Brown: Brian, Dziembowski, and Faust, "From Random Probing to Noisy Leakages Without Field-Size Dependence A Decade of Masking Security Proofs

#### The Average Random Probing Model

- · **ARP** (EC'24):  $\varphi(x) = x$  with proba.  $\epsilon_{\mathbf{x}}$
- **DFS-ARP** (EC'15):  $\varphi(x)$  reveals x with proba.

 $\epsilon_x$ , and some internal randomness



<sup>&</sup>lt;sup>14</sup>Blue: Duc, Dziembowski, and Faust, "Unifying Leakage Models: From Probing Attacks to Noisy Leakage".

Brown: Brian, Dziembowski, and Faust, "From Random Probing to Noisy Leakages Without Field-Size DependemeeMasure A Decade of Masking Security Proofs

Green: Dziembowski, Faust, and Skorski, "Noisy Leakage Revisited",

## The Average Random Probing Model

- · **ARP** (EC'24):  $\varphi(x) = x$  with proba.  $\epsilon_x$
- **DFS-ARP** (EC'15):  $\varphi(x)$  reveals x with proba.

 $\epsilon_x$ , and some internal randomness



<sup>&</sup>lt;sup>14</sup>Blue: Duc, Dziembowski, and Faust, "Unifying Leakage Models: From Probing Attacks to Noisy Leakage".

Brown: Brian, Dziembowski, and Faust, "From Random Probing to Noisy Leakages Without Field-Size Dependence Masure A Decade of Masking Security Proofs

Green: Dziembowski, Faust, and Skorski, "Noisy Leakage Revisited",

#### Technical Results

#### Theorem (ARP-SIMULABILITY)

L is simulable in the  $\{\epsilon_x\}_x$  average random probing model if  $f^{15}$ 

$$1 \leq \sum_{l} \min_{x':\epsilon_{x'} < 1} \left\{ rac{\Pr[\operatorname{L}(x') = l]}{1 - \epsilon_{x'}} 
ight\}$$

Remark: if  $\epsilon_x$  constant, we get back the RP lemma Proof: see appendix

 $<sup>^{15}\</sup>textsc{One}$  needs at least one  $\epsilon_{x}<1$  for non-trivial simulation

# The Catastrophic Channel, a.k.a., the evil function<sup>16</sup>



Equivalently:

$$\Pr[\operatorname{L}(x) = l] = \begin{cases} 0 & \text{if } x = l, \\ \frac{1}{|\mathbb{F}| - 1} & \text{otherwise} \end{cases}$$
  
Here,  $\delta = \frac{1}{|\mathbb{F}|}$ , but  $\epsilon = \underset{x}{\mathbb{E}}[\epsilon_x] \ge \frac{1}{2}$   
Hence,  $\frac{\epsilon}{\delta} \ge \Omega\left(\left|\mathbb{F}\right|\right) \nearrow$ 

<sup>16</sup>Thus named by Gianluca Brian, as it appears as a worst-case in another of their works Loïc Masure A Decade of Masking Security Proofs






#### Content

Context: SCA & Security Evaluation

Masking

Background & Intuitions

Provably Secure Masking

Composition in the Random Probing Model

Tight Reduction

#### Conclusion

Research strategy in masking security proofs:

Research strategy in masking security proofs:

 $\cdot$  Always good to start tackling a problem by simpler sides

Research strategy in masking security proofs:

- $\cdot$  Always good to start tackling a problem by simpler sides
- $\cdot$  Gives good intuitions

Research strategy in masking security proofs:

- $\cdot$  Always good to start tackling a problem by simpler sides
- $\cdot$  Gives good intuitions
- · Risk: forgetting the big picture (noisy leakage)



Research strategy in masking security proofs:

- $\cdot$  Always good to start tackling a problem by simpler sides
- $\cdot$  Gives good intuitions
- · Risk: forgetting the big picture (noisy leakage)

Main priority (IMHO):

- $\rightarrow$  Either improving reductions to random probing
- $\rightarrow\,$  Or working directly in the noisy leakage



Research strategy in masking security proofs:

- $\cdot$  Always good to start tackling a problem by simpler sides
- $\cdot$  Gives good intuitions
- · Risk: forgetting the big picture (noisy leakage)

Main priority (IMHO):

- $\rightarrow$  Either improving reductions to random probing
- $\rightarrow\,$  Or working directly in the noisy leakage

No easy fix currently ...



Research strategy in masking security proofs:

- $\cdot$  Always good to start tackling a problem by simpler sides
- $\cdot$  Gives good intuitions
- · Risk: forgetting the big picture (noisy leakage)

Main priority (IMHO):

- $\rightarrow$  Either improving reductions to random probing
- $\rightarrow\,$  Or working directly in the noisy leakage

No easy fix currently ...

#### Join us in this line of research !



#### References I

- Barthe, G. et al. "Masking the GLP Lattice-Based Signature Scheme at Any Order". In: J. Cryptol. 37.1 (2024), p. 5. DOI: 10.1007/S00145-023-09485-Z. URL: https://doi.org/10.1007/s00145-023-09485-z.
- Barthe, G. et al. "Strong Non-Interference and Type-Directed Higher-Order Masking". In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. CCS '16. Vienna, Austria: Association for Computing Machinery, 2016, 116–129. ISBN: 9781450341394. DOI: 10.1145/2976749.2978427. URL: https://doi.org/10.1145/2976749.2978427.

#### References II

Boucheron, S., G. Lugosi, and P. Massart. Concentration Inequalities: A Nonasymptotic Theory of Independence. Oxford University Press, 2013. ISBN: 9780191747106. URL:

https://books.google.fr/books?id=O3yoAQAACAAJ.

 Brian, G., S. Dziembowski, and S. Faust. "From Random Probing to Noisy Leakages Without Field-Size Dependence". In: Advances in Cryptology -EUROCRYPT 2024 - 43rd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Zurich, Switzerland, May 26-30, 2024, Proceedings, Part IV. Ed. by M. Joye and G. Leander. Vol. 14654. Lecture Notes in Computer Science. Springer, 2024, pp. 345–374. DOI: 10.1007/978-3-031-58737-5\\_13. URL: https://doi.org/10.1007/978-3-031-58737-5\\_13.

## References III

- Chari, S. et al. "Towards Sound Approaches to Counteract Power-Analysis Attacks". In: Advances in Cryptology - CRYPTO '99, 19th Annual International Cryptology Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings. Ed. by M. J. Wiener. Vol. 1666. Lecture Notes in Computer Science. Springer, 1999, pp. 398–412. ISBN: 3-540-66347-9. DOI: 10.1007/3-540-48405-1\\_26. URL: https://doi.org/10.1007/3-540-48405-1\\_26.
- Coron, J.-S. et al. High-order Polynomial Comparison and Masking Lattice-based Encryption. Cryptology ePrint Archive, Paper 2021/1615. 2021. URL: https://eprint.iacr.org/2021/1615.

## References IV

- Duc, A., S. Dziembowski, and S. Faust. "Unifying Leakage Models: From Probing Attacks to Noisy Leakage". In: J. Cryptology 32.1 (2019), pp. 151–177. DOI: 10.1007/s00145-018-9284-1. URL: https://doi.org/10.1007/s00145-018-9284-1.
- Dziembowski, S., S. Faust, and M. Skorski. "Noisy Leakage Revisited". In: Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II. Ed. by E. Oswald and M. Fischlin. Vol. 9057. Lecture Notes in Computer Science. Springer, 2015, pp. 159–188. DOI: 10.1007/978-3-662-46803-6\\_6. URL: https://doi.org/10.1007/978-3-662-46803-6\\_6.

#### References V

 Goubin, L. and J. Patarin. "DES and Differential Power Analysis (The "Duplication" Method)". In: Cryptographic Hardware and Embedded Systems, First International Workshop, CHES'99, Worcester, MA, USA, August 12-13, 1999, Proceedings. Ed. by Ç. K. Koç and C. Paar. Vol. 1717. Lecture Notes in Computer Science. Springer, 1999, pp. 158–172. DOI: 10.1007/3-540-48059-5\\_15. URL: https://doi.org/10.1007/3-540-48059-5\\_15.

## References VI

 Ishai, Y., A. Sahai, and D. A. Wagner. "Private Circuits: Securing Hardware against Probing Attacks". In: Advances in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003, Proceedings. Ed. by D. Boneh. Vol. 2729. Lecture Notes in Computer Science. Springer, 2003, pp. 463–481. DOI: 10.1007/978-3-540-45146-4\\_27. URL: https://doi.org/10.1007/978-3-540-45146-4\\_27.

### References VII

- Rivain, M. and E. Prouff. "Provably Secure Higher-Order Masking of AES". In: Cryptographic Hardware and Embedded Systems, CHES 2010, 12th International Workshop, Santa Barbara, CA, USA, August 17-20, 2010. Proceedings. Ed. by S. Mangard and F. Standaert. Vol. 6225. Lecture Notes in Computer Science. Springer, 2010, pp. 413–427. DOI: 10.1007/978-3-642-15031-9\\_28. URL: https://doi.org/10.1007/978-3-642-15031-9\\_28.
- Taleb, A. R. "Secure and Verified Cryptographic Implementations in the Random Probing Model. (Implémentations cryptographiques sûres et vérifiées dans le modèle random probing)". PhD thesis. Sorbonne University, Paris, France, 2023. URL: https://tel.archives-ouvertes.fr/tel-04457258.

Assume there exists such a simulator  $\mathcal{S}$ ,

Assume there exists such a simulator S, we need to construct it for all inputs:

$$\Pr[\mathcal{S}(x) = l] = \dots, \text{ for all } x$$
  
$$\Pr[\mathcal{S}(\bot) = l] = \dots$$

Constraints:

Assume there exists such a simulator S, we need to construct it for all inputs:

$$\Pr[\mathcal{S}(x) = l] = \dots, \text{ for all } x$$
  
$$\Pr[\mathcal{S}(\bot) = l] = \dots$$

Constraints:

 $\rightarrow$  For all input x,  $\Pr[\mathcal{S}(x)]$  should be a p.m.f.

Assume there exists such a simulator S, we need to construct it for all inputs:

$$\Pr[\mathcal{S}(x) = l] = \dots, \text{ for all } x$$
  
$$\Pr[\mathcal{S}(\bot) = l] = \dots$$

Constraints:

- $\rightarrow$  For all input x,  $\Pr[\mathcal{S}(x)]$  should be a p.m.f.
- $\rightarrow$  For the input  $\perp$ ,  $\mathsf{Pr}[\mathcal{S}\left(\perp\right)]$  should be a p.m.f.

Assume there exists such a simulator  $\mathcal{S}$ , we need to construct it for all inputs:

$$\Pr[\mathcal{S}(x) = l] = \dots, \text{ for all } x$$
  
$$\Pr[\mathcal{S}(\bot) = l] = \dots$$

Constraints:

- $\rightarrow$  For all input x,  $\Pr[\mathcal{S}(x)]$  should be a p.m.f.
- $\rightarrow$  For the input  $\perp$ ,  $\Pr[\mathcal{S}(\perp)]$  should be a p.m.f.
- $\rightarrow$  For any x, l,  $\Pr[\mathcal{S}(\varphi(x)) = l] = \Pr[L(x) = l]$

Let us start from the last constraint. For any x and any l:

 $\Pr[L(x) = l] = \Pr[\mathcal{S}(\varphi(x)) = l]$ 

Let us start from the last constraint. For any x and any l:

$$\begin{aligned} \mathsf{Pr}[\mathrm{L}(x) &= l] &= \mathsf{Pr}[\mathcal{S}(\varphi(x)) = l] \\ &= \mathsf{Pr}[\varphi(x) = x] \cdot \mathsf{Pr}[\mathcal{S}(x) = l] + \mathsf{Pr}[\varphi(x) = \bot] \cdot \mathsf{Pr}[\mathcal{S}(\bot) = l] \end{aligned}$$

Let us start from the last constraint. For any x and any l:

$$\begin{aligned} \Pr[\mathrm{L}(x) &= l] &= & \Pr[\mathcal{S}(\varphi(x)) = l] \\ &= & \Pr[\varphi(x) = x] \cdot \Pr[\mathcal{S}(x) = l] + \Pr[\varphi(x) = \bot] \cdot \Pr[\mathcal{S}(\bot) = l] \\ &= & \epsilon \cdot \Pr[\mathcal{S}(x) = l] + (1 - \epsilon) \cdot \Pr[\mathcal{S}(\bot) = l] \end{aligned}$$

Let us start from the last constraint. For any x and any l:

$$\begin{aligned} \mathsf{Pr}[\mathsf{L}(x) &= l] &= \mathsf{Pr}[\mathcal{S}(\varphi(x)) = l] \\ &= \mathsf{Pr}[\varphi(x) = x] \cdot \mathsf{Pr}[\mathcal{S}(x) = l] + \mathsf{Pr}[\varphi(x) = \bot] \cdot \mathsf{Pr}[\mathcal{S}(\bot) = l] \\ &= \epsilon \cdot \mathsf{Pr}[\mathcal{S}(x) = l] + (1 - \epsilon) \cdot \mathsf{Pr}[\mathcal{S}(\bot) = l] \end{aligned}$$

#### Hence,

Should not depend on X

$$0 \leq \Pr[\mathcal{S}(\bot) = l] = \overline{\frac{\Pr[\operatorname{L}(x) = l] - \epsilon \cdot \Pr[\mathcal{S}(x) = l]}{1 - \epsilon}}$$

Let us start from the last constraint. For any x and any l:

$$\begin{aligned} \mathsf{Pr}[\mathsf{L}(x) &= l] &= \mathsf{Pr}[\mathcal{S}(\varphi(x)) = l] \\ &= \mathsf{Pr}[\varphi(x) = x] \cdot \mathsf{Pr}[\mathcal{S}(x) = l] + \mathsf{Pr}[\varphi(x) = \bot] \cdot \mathsf{Pr}[\mathcal{S}(\bot) = l] \\ &= \epsilon \cdot \mathsf{Pr}[\mathcal{S}(x) = l] + (1 - \epsilon) \cdot \mathsf{Pr}[\mathcal{S}(\bot) = l] \end{aligned}$$

#### Hence,

Should not depend on X

$$0 \leq \Pr[\mathcal{S}(\bot) = l] = \frac{\Pr[L(x) = l] - \epsilon \cdot \Pr[\mathcal{S}(x) = l]}{1 - \epsilon} = \frac{\pi(l)}{1 - \epsilon} \quad (1)$$

Let us start from the last constraint. For any x and any l:

$$\begin{aligned} \mathsf{Pr}[\mathsf{L}(x) &= l] &= \mathsf{Pr}[\mathcal{S}(\varphi(x)) = l] \\ &= \mathsf{Pr}[\varphi(x) = x] \cdot \mathsf{Pr}[\mathcal{S}(x) = l] + \mathsf{Pr}[\varphi(x) = \bot] \cdot \mathsf{Pr}[\mathcal{S}(\bot) = l] \\ &= \epsilon \cdot \mathsf{Pr}[\mathcal{S}(x) = l] + (1 - \epsilon) \cdot \mathsf{Pr}[\mathcal{S}(\bot) = l] \end{aligned}$$

Hence,



$$0 \leq \Pr[\mathcal{S}(\perp) = l] = \frac{\Pr[\mathcal{L}(x) = l] - \epsilon \cdot \Pr[\mathcal{S}(x) = l]}{1 - \epsilon} = \frac{\pi(l)}{1 - \epsilon} \quad (1)$$
  
$$0 \leq \Pr[\mathcal{S}(x) = l] = \frac{\Pr[\mathcal{L}(x) = l] - \pi(l)}{\epsilon} \quad (2)$$

Let us start from the last constraint. For any x and any l:

$$\begin{aligned} \mathsf{Pr}[\mathsf{L}(x) &= l] &= \mathsf{Pr}[\mathcal{S}(\varphi(x)) = l] \\ &= \mathsf{Pr}[\varphi(x) = x] \cdot \mathsf{Pr}[\mathcal{S}(x) = l] + \mathsf{Pr}[\varphi(x) = \bot] \cdot \mathsf{Pr}[\mathcal{S}(\bot) = l] \\ &= \epsilon \cdot \mathsf{Pr}[\mathcal{S}(x) = l] + (1 - \epsilon) \cdot \mathsf{Pr}[\mathcal{S}(\bot) = l] \end{aligned}$$

Hence,



$$0 \leq \Pr[\mathcal{S}(\perp) = l] = \frac{\Pr[\mathcal{L}(x) = l] - \epsilon \cdot \Pr[\mathcal{S}(x) = l]}{1 - \epsilon} = \frac{\pi(l)}{1 - \epsilon} \quad (1)$$
  
$$0 \leq \Pr[\mathcal{S}(x) = l] = \frac{\Pr[\mathcal{L}(x) = l] - \pi(l)}{\epsilon} \quad (2)$$

Is there any  $\epsilon$  such that  $\geq$  and  $\geq$  are valid?

Loïc Masure

A Decade of Masking Security Proofs

2 / 6

Is there any  $\epsilon$  such that  $\geq$  and  $\geq$  are valid?

Is there any  $\epsilon$  such that  $\geq$  and  $\geq$  are valid? From (3), and (4), we get  $0 \leq \pi(l) \leq \Pr[L(x) = l]$  for any x

Is there any  $\epsilon$  such that  $\geq$  and  $\geq$  are valid? From (3), and (4), we get  $0 \leq \pi(l) \leq \Pr[L(x) = l]$  for any x

In other words,

$$0 \leq \pi(l) \leq \min_{x} \Pr[L(x) = l]$$

Is there any  $\epsilon$  such that  $\geq$  and  $\geq$  are valid? From (3), and (4), we get

$$0 \leq \pi(l) \leq \Pr[L(x) = l]$$
 for any x

In other words,

$$0 \leq \pi(l) \leq \min_{x} \Pr[L(x) = l]$$

Furthermore, summing (3) over l, by definition of probability distributions,

$$\sum_{l} \pi(l) = \underbrace{\sum_{l} \Pr[\mathcal{L}(x) = l]}_{=1} -\epsilon \cdot \underbrace{\sum_{l} \Pr[\mathcal{S}(x) = l]}_{=1}$$

Is there any  $\epsilon$  such that  $\geq$  and  $\geq$  are valid? From (3), and (4), we get  $0 \leq \pi(l) \leq \Pr[I(x) - l]$  for any x

$$0 \leq \pi(l) \leq \Pr[L(x) = l]$$
 for any x

In other words,

$$0 \leq \pi(l) \leq \min_{x} \Pr[L(x) = l]$$

Furthermore, summing (3) over l, by definition of probability distributions,

$$\sum_{l} \pi(l) = \underbrace{\sum_{l} \Pr[\mathcal{L}(x) = l]}_{=1} - \epsilon \cdot \underbrace{\sum_{l} \Pr[\mathcal{S}(x) = l]}_{=1} = 1 - \epsilon$$

Is there any  $\epsilon$  such that  $\geq$  and  $\geq$  are valid? From (3), and (4), we get

$$0 \leq \pi(l) \leq \Pr[L(x) = l]$$
 for any x

In other words,

$$0 \leq \pi(l) \leq \min_{x} \Pr[L(x) = l]$$

Furthermore, summing (3) over l, by definition of probability distributions,

$$\sum_{l} \pi(l) = \underbrace{\sum_{l} \Pr[\mathcal{L}(x) = l]}_{=1} - \epsilon \cdot \underbrace{\sum_{l} \Pr[\mathcal{S}(x) = l]}_{=1} = 1 - \epsilon$$

Hence,

$$\epsilon = 1 - \sum_{l} \pi(l) \ge 1 - \sum_{l} \min_{x} \Pr[\operatorname{L}(x) = l]$$

Loïc Masure

A Decade of Masking Security Proofs

Is there any  $\epsilon$  such that  $\geq$  and  $\geq$  are valid? From (3), and (4), we get

$$0 \leq \pi(l) \leq \Pr[L(x) = l]$$
 for any x

In other words,

$$0 \leq \pi(l) \leq \min_{x} \Pr[L(x) = l]$$

Furthermore, summing (3) over l, by definition of probability distributions,

$$\sum_{l} \pi(l) = \underbrace{\sum_{l} \Pr[\mathcal{L}(x) = l]}_{=1} - \epsilon \cdot \underbrace{\sum_{l} \Pr[\mathcal{S}(x) = l]}_{=1} = 1 - \epsilon$$

Hence, to have the smallest  $\epsilon$ ,

$$\epsilon = 1 - \sum_{l} \pi(l) = 1 - \sum_{l} \min_{x} \Pr[\mathcal{L}(x) = l]$$

Loïc Masure

A Decade of Masking Security Proofs

## Reduction to Average Random Probing (I)

For any x and any l:

 $\Pr[L(x) = l] = \Pr[\mathcal{S}(\varphi(x)) = l]$ 

## Reduction to Average Random Probing (I)

#### For any x and any l:

$$\begin{aligned} \mathsf{Pr}[\mathrm{L}(x) &= l] &= \mathsf{Pr}[\mathcal{S}(\varphi(x)) = l] \\ &= \mathsf{Pr}[\varphi(x) = x] \cdot \mathsf{Pr}[\mathcal{S}(x) = l] + \mathsf{Pr}[\varphi(x) = \bot] \cdot \mathsf{Pr}[\mathcal{S}(\bot) = l] \end{aligned}$$
### For any x and any l:

$$\begin{aligned} \Pr[\mathcal{L}(x) = l] &= \Pr[\mathcal{S}(\varphi(x)) = l] \\ &= \Pr[\varphi(x) = x] \cdot \Pr[\mathcal{S}(x) = l] + \Pr[\varphi(x) = \bot] \cdot \Pr[\mathcal{S}(\bot) = l] \\ &= \epsilon_{\mathbf{x}} \cdot \Pr[\mathcal{S}(x) = l] + (1 - \epsilon_{\mathbf{x}}) \cdot \Pr[\mathcal{S}(\bot) = l] \end{aligned}$$

#### For any x and any l:

$$\begin{aligned} \mathsf{Pr}[\mathsf{L}(x) &= l] &= \mathsf{Pr}[\mathcal{S}(\varphi(x)) = l] \\ &= \mathsf{Pr}[\varphi(x) = x] \cdot \mathsf{Pr}[\mathcal{S}(x) = l] + \mathsf{Pr}[\varphi(x) = \bot] \cdot \mathsf{Pr}[\mathcal{S}(\bot) = l] \\ &= \epsilon_{\mathsf{x}} \cdot \mathsf{Pr}[\mathcal{S}(x) = l] + (1 - \epsilon_{\mathsf{x}}) \cdot \mathsf{Pr}[\mathcal{S}(\bot) = l] \end{aligned}$$

Hence, provided that  $\epsilon_x < 1$ ,

Should not depend on X

$$0 \leq \Pr[\mathcal{S}(\bot) = l] = \frac{\Pr[L(x) = l] - \epsilon_x \cdot \Pr[\mathcal{S}(x) = l]}{1 - \epsilon_x}$$

#### For any x and any l:

$$\begin{aligned} \mathsf{Pr}[\mathsf{L}(x) &= l] &= \mathsf{Pr}[\mathcal{S}(\varphi(x)) = l] \\ &= \mathsf{Pr}[\varphi(x) = x] \cdot \mathsf{Pr}[\mathcal{S}(x) = l] + \mathsf{Pr}[\varphi(x) = \bot] \cdot \mathsf{Pr}[\mathcal{S}(\bot) = l] \\ &= \epsilon_{\mathsf{x}} \cdot \mathsf{Pr}[\mathcal{S}(x) = l] + (1 - \epsilon_{\mathsf{x}}) \cdot \mathsf{Pr}[\mathcal{S}(\bot) = l] \end{aligned}$$

Hence, provided that  $\epsilon_x < 1$ ,

Should not depend on X

$$0 \leq \Pr[\mathcal{S}(\bot) = l] = \frac{\Pr[\mathrm{L}(x) = l] - \epsilon_{x} \cdot \Pr[\mathcal{S}(x) = l]}{1 - \epsilon_{x}} = \frac{\pi(l, x)}{1 - \epsilon_{x}} \quad (3)$$

#### For any x and any l:

$$\begin{aligned} \mathsf{Pr}[\mathsf{L}(x) &= l] &= \mathsf{Pr}[\mathcal{S}(\varphi(x)) = l] \\ &= \mathsf{Pr}[\varphi(x) = x] \cdot \mathsf{Pr}[\mathcal{S}(x) = l] + \mathsf{Pr}[\varphi(x) = \bot] \cdot \mathsf{Pr}[\mathcal{S}(\bot) = l] \\ &= \epsilon_{\mathbf{x}} \cdot \mathsf{Pr}[\mathcal{S}(x) = l] + (1 - \epsilon_{\mathbf{x}}) \cdot \mathsf{Pr}[\mathcal{S}(\bot) = l] \end{aligned}$$

Hence, provided that  $\epsilon_x < 1$ ,

$$0 \leq \Pr[\mathcal{S}(\perp) = l] = \frac{\Pr[\mathrm{L}(x) = l] - \epsilon_{x} \cdot \Pr[\mathcal{S}(x) = l]}{1 - \epsilon_{x}} = \frac{\pi(l, x)}{1 - \epsilon_{x}} \quad (3)$$
  
$$0 \leq \Pr[\mathcal{S}(x) = l] = \frac{\Pr[\mathrm{L}(x) = l] - \pi(l, x)}{\epsilon_{x}} \quad (4)$$

----

#### For any x and any l:

$$\begin{aligned} \mathsf{Pr}[\mathsf{L}(x) &= l] &= \mathsf{Pr}[\mathcal{S}(\varphi(x)) = l] \\ &= \mathsf{Pr}[\varphi(x) = x] \cdot \mathsf{Pr}[\mathcal{S}(x) = l] + \mathsf{Pr}[\varphi(x) = \bot] \cdot \mathsf{Pr}[\mathcal{S}(\bot) = l] \\ &= \epsilon_{\mathbf{x}} \cdot \mathsf{Pr}[\mathcal{S}(x) = l] + (1 - \epsilon_{\mathbf{x}}) \cdot \mathsf{Pr}[\mathcal{S}(\bot) = l] \end{aligned}$$

Hence, provided that  $\epsilon_x < 1$ ,

$$0 \leq \Pr[\mathcal{S}(\perp) = l] = \frac{\Pr[\mathrm{L}(x) = l] - \epsilon_{x} \cdot \Pr[\mathcal{S}(x) = l]}{1 - \epsilon_{x}} = \frac{\pi(l, x)}{1 - \epsilon_{x}} \quad (3)$$
  
$$0 \leq \Pr[\mathcal{S}(x) = l] = \frac{\Pr[\mathrm{L}(x) = l] - \pi(l, x)}{\epsilon_{x}} \quad (4)$$

- · · ·

Is there any  $\epsilon$  such that  $\geq$  and  $\geq$  are valid?

Loïc Masure

A Decade of Masking Security Proofs

Is there any  $\epsilon$  such that  $\geq$  and  $\geq$  are valid?

Is there any  $\epsilon$  such that  $\geq$  and  $\geq$  are valid? From (3), and (4), we get

$$0 \leq \pi(l, x) \leq \Pr[L(x) = l]$$
 for any x

Is there any  $\epsilon$  such that  $\geq$  and  $\geq$  are valid? From (3), and (4), we get  $0 \leq \pi(l, x) \leq \Pr[L(x) = l]$  for any x

So (3) gives

$$\Pr[\mathcal{S}(\bot) = l] \leq \frac{\Pr[\mathrm{L}(x) = l]}{1 - \epsilon_x} \text{ for any } x \text{ s.t. } \epsilon_x < 1$$

Is there any  $\epsilon$  such that  $\geq$  and  $\geq$  are valid? From (3), and (4), we get  $0 \leq \pi(l, x) \leq \Pr[L(x) = l]$  for any x

So (3) gives

$$\Pr[\mathcal{S}(\bot) = l] \leq \frac{\Pr[\mathrm{L}(x) = l]}{1 - \epsilon_{\mathsf{x}}} \text{ for any } \mathsf{x} \text{ s.t. } \epsilon_{\mathsf{x}} < 1$$

In other words,

$$0 \leq \Pr[\mathcal{S}(\bot) = l] \leq \min_{x':\epsilon_{x'} < 1} \left\{ \frac{\Pr[\operatorname{L}(x') = l]}{1 - \epsilon_{x'}} \right\}$$

Is there any  $\epsilon$  such that > and > are valid? From (3), and (4), we get  $0 < \pi(l, x) < \Pr[L(x) = l]$  for any x

So (3) gives

$$\Pr[\mathcal{S}(\bot) = l] \leq \frac{\Pr[\operatorname{L}(x) = l]}{1 - \epsilon_{\mathsf{x}}} \text{ for any } \mathsf{x} \text{ s.t. } \epsilon_{\mathsf{x}} < 1$$

In other words,

$$0 \leq \Pr[\mathcal{S}(\bot) = l] \leq \min_{x':\epsilon_{x'} < 1} \left\{ \frac{\Pr[\operatorname{L}(x') = l]}{1 - \epsilon_{x'}} \right\}$$

And (3) also gives

$$0 \leq \pi(l, x) \leq (1 - \epsilon_x) \cdot \min_{\substack{x': \epsilon_{x'} < 1 \\ A \text{ Decade of Masking Security Proofs}}} \left\{ \frac{\Pr[L(x') = l]}{1 - \epsilon_{x'}} \right\}$$

Loïc Masure

### Characterization of ARP-simulable Leakages

Furthermore, summing (3) over l, by definition of probability distributions,

$$\sum_{l} \pi(l, x) = \underbrace{\sum_{l} \Pr[\mathcal{L}(x) = l]}_{=1} - \epsilon_{x} \cdot \underbrace{\sum_{l} \Pr[\mathcal{S}(x) = l]}_{=1}$$

 $<sup>^{17}</sup>$  One needs at least one  $\epsilon_{\rm x} < 1$  for non-trivial simulation

### Characterization of ARP-simulable Leakages

Furthermore, summing (3) over l, by definition of probability distributions,

$$\sum_{l} \pi(l, x) = \underbrace{\sum_{l} \Pr[\mathcal{L}(x) = l]}_{=1} - \epsilon_{x} \cdot \underbrace{\sum_{l} \Pr[\mathcal{S}(x) = l]}_{=1} = 1 - \epsilon_{x}$$

 $<sup>^{17}</sup>$  One needs at least one  $\epsilon_{\rm x} < 1$  for non-trivial simulation

## Characterization of ARP-simulable Leakages

Furthermore, summing (3) over l, by definition of probability distributions,

$$\sum_{l} \pi(l, \mathbf{x}) = \underbrace{\sum_{l} \Pr[\mathcal{L}(\mathbf{x}) = l]}_{=1} - \epsilon_{\mathbf{x}} \cdot \underbrace{\sum_{l} \Pr[\mathcal{S}(\mathbf{x}) = l]}_{=1} = 1 - \epsilon_{\mathbf{x}}$$

Hence, the following result

Theorem (ARP-SIMULABILITY)

L is simulable in the  $\{\epsilon_x\}_x$  average random probing model if  $f^{17}$ 

$$1 \leq \sum_{l} \min_{x':\epsilon_{x'} < 1} \left\{ \frac{\Pr[\mathcal{L}(x') = l]}{1 - \epsilon_{x'}} \right\}$$

 $^{17}\text{One}$  needs at least one  $\epsilon_{\rm x} < 1$  for non-trivial simulation