
Christoph Dürr
Directeur de recherche, CNRS, Sorbonne Université

Alantha Newman
Chercheuse, CNRS, Université Grenoble Alpes

Magnús M. Halldórsson
Professor, Reykjav́ık University

Cyril Gavoille
Professeur, Université de Bordeaux

Dimitrios M. Thilikos
Directeur de recherche, CNRS, LIRMM, Université Montpellier

Claire Mathieu
Directrice de recherche, CNRS, Université de Paris

Chien-Chung Huang
Chercheur, CNRS, ENS, PSL

Composition du jury :

Examinateur

Examinatrice

Examinateur

Rapporteur

Examinateur

Directrice de thèse

Directeur de thèse

Thèse de doctorat
Préparée à l’École normale supérieure

Approches Gloutonnes pour l’Approximation de Problèmes
d’Optimisation Combinatoire NP-difficiles

Soutenue par

Mathieu Mari
le 25 septembre 2020

École doctorale n◦ 386

Spécialité

Informatique théorique

École doctorale de Sciences
Mathématiques de Paris
Centre

Autre rapporteur :

Bruce Shepherd
Professor, University of British Columbia

Rapporteur

Greedy Approaches to Approximation of some

NP-hard Combinatorial Optimization Problems

2

i

à ma grand-mère Rolande,

ii

Remerciements

Ces trois dernières années ont été pour moi une très belle expérience dans le monde de la
recherche.

Cela, je le dois en premier lieu à ma directrice de thèse, Claire Mathieu et mon directeur
de thèse, Chien-Chung Huang. Vous avez été un parfait duo pour moi, et je m’estime très
chanceux de vous avoir eu comme encadrants.

Merci Claire d’avoir toujours pu trouver du temps et de l’énergie pour moi malgré ton
emploi du temps chargé. J’ai beaucoup appris en travaillant à tes côtés. Merci pour ta
patience, tes conseils et critiques bienveillantes qui m’ont aidés à progresser dans la bonne
direction. Merci aussi de m’avoir donné l’opportunité de pouvoir voyager et de rencontrer
de nombreux chercheurs.

Merci Chien-Chung d’avoir été aussi présent. On a régulièrement pu travailler ensemble,
c’était agréable et motivant. Je trouve qu’on forme une bonne équipe ! Ta passion pour
la résolution de problèmes de recherche a déteint sur moi. J’espère qu’on continuera à
travailler ensemble à l’avenir !

I wish to express my gratitude to Cyril Gavoille and Bruce Shepherd who took the time
to read and review carefully this thesis. I am also grateful to the other members of my
thesis committee: Magnús Halldórsson, Alantha Newman, Dimitrios Thilikos and Christoff
Dürr. Thank you for your interest in my work!

J’ai eu de la chance de pouvoir faire ma thèse au sein une équipe aussi sympathique que
Talgo; Les nombreuses discussions avec Pierre, Chien-Chung, Tatiana, Kevin et Thang ont
beaucoup élargi ma culture informatique et générale. Merci aussi pour les sorties escalades,
les coinches et les parties de Carcassone et d’Agricola qui ont su épicer agréablement
certaines semaines. Merci à certains membres du DI et de l’équipe administrative qui
m’ont souvent apporté une aide précieuse. Merci notamment à David Pointcheval, Pierre
Senellart, Sophie Jaudon et Lise-Marie Bivard.

Last year I spent few months at Universidad de Chile to work with new people on
different types of algorithms. I am very grateful to José Correa and Andreas Wiese who
gave me this opportunity and welcomed me in Chile. Thanks Andy for sharing your
knowledge on FPT-algorithms and José, on algorithms related to economics. This was a
great time in Chile, also thanks to all nice people who were there: Andrés, Andrew, Boris,
Bastian, Felipe, Camilla, and the others.

I would like to thank Piotr Krysta who gave me the opportunity to discover research
during my Master internship in Liverpool. I am glad that we continued working together
(and with Nan Zhi) during my PhD on questions about the greedy algorithm for Maximum
Independent Set. Thanks Piotr also for all the advises that you gave me during the last
three years!

Je voudrais remercier Nabil Mustafa pour son soutien, pour avoir partagé ses con-

iii

iv

naissances en géométrie, et pour les discussions inspirantes concernant la recherche en
général.

I want to thank Philip Klein for inviting me few days in Providence, and sharing his
knowledge on Primal-Dual schemas and planar graphs.

Thank you Jens Vygen for inviting me at the seminar talk in Bonn, that was an honor
for me. Also, working with you was very inspiring, and helped me in the way of writing
clean and rigorous papers.

Merci David et Simon, votre amitié, nos discussions, et nos sessions de travail collectif
ont contribué à la réussite de cette thèse. Et aussi, les conférences HALG et SODA
n’auraient probablement pas été aussi fun sans vous !

Merci Quentin pour toutes nos discussions sur la topologie algébrique, ça m’a donné
beaucoup d’idées !

J’aimerais remercier tout mes amis qui, par nos discussions en général ont pu être une
source d’inspiration. La liste ne sera pas complète, mais je pense en premier lieu à Yohan,
Juliette, Renaud, Vadim, Ilyès, Paul, Manu, Pierre, Franzi, Simon, Mathieu, Clémence,
Armand, ...

Je voudrais finir en remerciant mes parents, pour leur soutien sans failles durant toutes
ces années. Sans vous, je ne serai pas là aujourd’hui. Merci Papa de m’avoir transmis ton
goût pour les maths.

À tout ceux qui méritent d’apparaître dans cette section et que je n’ai pas mentionnés,
merci !

Abstract

The greedy approach is natural for the design of algorithms. It is fast, easy to implement,
has a good performance on average, and is applicable to many optimization problems
in various settings. For those reasons, it is an important heuristic in practice. In this
thesis, we present greedy algorithms for three different NP-hard optimization problems.
We discuss the relation between those algorithms, their proof techniques and the structure
of the problems under study.

In the first part of this thesis, we focus on the Maximum Coverage problem with a
connectivity constraint, which comes up for the design of wireless networks. We show that
the problem is NP-hard, even when the coverage and the connectivity are induced by a set
of unit disks in the plane. For that special case, we show that greedily picking two disks so
as to maximize the marginal area covered while correctness achieves a 2-approximation.
We further improve the approximation ratio by providing a PTAS for this problem with a
small resource augmentation, using Arora’s shifted grid dissection technique.

In the second part of this thesis, we focus on the Maximum Independent Set problem.
A natural approach is to repeatedly pick a vertex of minimum degree, and remove it and
its neighbours from the graph. We present a new technique to analyze the performance of
this greedy approach in various classes of graphs and address the following question: if
there are several minimun-degree vertices, what vertex should the greedy algorithm pick in
order to maximise the size of the final solution ? With this tool, we design an ”ultimate
tie-breaking” rule that leads to the best possible approximation ratio for sub-cubic graphs
and for this type of greedy algorithms. We complement this by lower bound results that
show that designing good tie-breaking rules is a difficult task.

The third and last part of the thesis is devoted to the Maximum Integral Multiflows
problem. The problem is difficult and well-studied. For instance, a constant factor
approximation is unlikely to exist even when the supply graph is planar and cubic. In the
special case where the supply graph together with the demand edges form a bounded genus
graph, we present a constant factor approximation algorithm. The algorithm consists of a
succession of greedy procedures that exploit topological properties of graphs and curves on
surfaces.

v

vi

Résumé

L’approche gloutonne est naturelle pour concevoir un algorithme. Elle permet la conception
d’algorithmes rapides, faciles à implémenter, qui produisent en moyenne des solutions
de qualité, pour de nombreux problèmes d’optimisation. Pour ces raisons, c’est une
heuristique importante en pratique. Dans cette thèse, nous présentons des algorithmes
gloutons pour trois problèmes d’optimisation NP-difficiles. Nous discutons les relations
entre ces algorithmes, leurs techniques de preuve et la structure des problèmes étudiés.

Dans la permière partie de cette thèse, on se concentre sur le problème de la couverture
maximale avec une contrainte de connexité, contrainte que l’on rencontre lors de la
conception de réseaux sans fil. Nous montrons que le problème est NP-difficile, même
quand la couverture et la connexité proviennent d’un ensemble de disques unité dans
le plan. Pour ce cas particulier, nous montrons que choisir de manière gloutonne deux
disques qui maximisent le gain marginal tout en maintenant la solution connexe réalise
une 2-approximation. Nous améliorons ce ratio d’approximation en donnant un schéma
d’approximation en temps polynomial avec une légère augmentation de ressource, basé sur
la technique d’Arora pour le voyageur de commerce euclidien.

Dans la deuxième partie de cette thèse, on se concentre sur le problème du stable
maximum. Une approche naturelle est de successivement choisir un sommet de degré
minimum, le placer dans la solution en construction, puis le retirer avec ses voisins du
graphe. Nous présentons une nouvelle technique pour analyser la performance de cette
approche gloutonne dans différentes classes de graphes et abordons la question suivante :
s’il y a plusieurs sommets de degré minimum, lequel l’algorithme devrait-il choisir pour
maximiser la taille de la solution finale ? Avec cet outil, nous concevons une règle pour
briser les cas d’égalité, qui conduit à la meilleure approximation possible dans les graphes
sous-cubiques et pour ce type d’algorithmes gloutons. Nous complémentons ces résultats
par des résultats négatifs qui suggèrent que la conception de bonnes règles brisant les cas
d’égalité est une tâche difficile.

La troisième et dernière partie de la thèse est consacrée au problème du multiflot entier
maximum. Ce problème est difficile et a été très étudié. Par exemple, une approximation
de facteur constant est probablement impossible même quand le graphe d’offre est planaire
et cubique. Dans le cas particulier où le graphe d’offre et les arêtes de demande forment
ensemble un graphe de genre borné, nous présentons un algorithme avec un facteur
d’approximation constant. L’algorithme consiste en une succession de procédures gloutonnes
qui exploitent les propriétés topologiques des graphes et des lacets sur des surfaces.

vii

viii

Contents

1 General Introduction 1
1.1 Greedy algorithms . 1
1.2 Contributions of this thesis . 5
1.3 Preliminaries . 10

2 Maximum Disk Coverage with Connectivity Constraints 13
2.1 Introduction . 13
2.2 The Two-by-two greedy algorithm (Proof of Theorem 2.3) 16
2.3 PTAS with resource augmentation (Proof of Theorem 2.4) 20
2.4 Proof of the Structural Lemma . 26
2.5 PTAS for well-distributed inputs . 31
2.6 Hardness results . 34

3 Greedy approaches for Maximum independent Set 39
3.1 Introduction . 39
3.2 Analyzing Greedy: our payment scheme . 46
3.3 Application to bounded degree graphs . 50
3.4 The ultimate greedy algorithm for subcubic graphs 54
3.5 Analysis of the ultimate approximation ratio . 60
3.6 Proof of the inductive low-debt Lemma . 65
3.7 Limits of the greedy approach. 72
3.8 Conclusion . 79

4 Approximating Integral Multiflows on the Plane 81
4.1 Introduction . 81
4.2 Roadmap . 84
4.3 Rounding the Non-negative Cycle LP . 86
4.4 Packing Cuts (Proof of Theorem 4.8) . 90
4.5 Max-Multiflow Min-Multicut gap (Proof of Theorem 4.4) 93
4.6 NP-completeness of NonNegativeCycles . 97
4.7 Conclusion . 99

5 Approximating Integral Multiflows on Orientable Surfaces 101
5.1 Introduction . 101
5.2 Overview . 104
5.3 Finding a large fractional multiflow (Step 1) . 105
5.4 Making a fractional multiflow minimally crossing (Step 2) 105
5.5 Separating cycles: routing an integral multiflow (Step 3) 109
5.6 Non-separating cycles: routing an integral multiflow (Step 4) 112
5.7 Analysis of the overall algorithm (Proof of Theorem 5.1) 119
5.8 Max-Multiflow Min-Multicut gap . 119
5.9 Conclusion . 121

ix

x CONTENTS

Publications of the author

• José R. Correa, Mathieu Mari and Andrew Xia, Dynamic pricing with Bayesian
updates from online reviews, submitted.

• Chien-Chung Huang, Mathieu Mari, Claire Mathieu and Jens Vygen, Approx-
imating maximum integral multiflows on bounded genus graphs, submitted,
arXiv:2005.00575

• Chien-Chung Huang, Mathieu Mari, Claire Mathieu, Kevin Schewior and Jens
Vygen, An Approximation Algorithm for Fully Planar Edge-Disjoint Paths,
submitted, arXiv:2001.01715

• Andrés Cristi, Mathieu Mari and Andreas Wiese, Fixed-Parameter Algorithms
for Unsplittable Flow Cover, 37th International Symposium on Theoretical
Aspects of Computer Science, STACS 2020, 154,42:1–42:17.

• Piotr Krysta, Mathieu Mari and Nan Zhi, Ultimate greedy approximation
of independent sets in subcubic graphs, Proceedings of the 2020 ACM-SIAM
Symposium on Discrete Algorithms SODA 2020, 1436–1455.

• Chien-Chung Huang, Mathieu Mari, Claire Mathieu, Joseph S. B. Mitchell
and Nabil H. Mustafa, Maximizing Covered Area in the Euclidean Plane with
Connectivity Constraint, APPROX/RANDOM 2019, 145,32:1–32:21.

xi

xii CONTENTS

1 | General Introduction

1.1 Greedy algorithms

Imagine that you are planning a walking tour in Paris to visit several places: the Eiffel
tour, the hôtel des invalides, the musée d’Orsay, the Panthéon, the courtyard in École
normale supérieure, some art galleries in the Marais neighborhood, the on-going renovation
at Notre-Dame de Paris, and then go back to your hotel close to the jardin du Luxembourg.
You would like to walk but you don’t want to walk too much: in which order should you
visit these places so that the overall distance is minimized ?

Figure 1.1: What is the shortest tour to visit all the places marked on the above map ?

You could for instance do the following: each time that you have visited a place, you
look at the places on your list that you have not visited yet, and go to the nearest one from
your current location. Luckily, as we can see on Figure 1.1, this strategy would give you
here the optimal tour!

In the design of algorithms, we refer to these type of strategies as being greedy.
Informally, being greedy, it is trying to attain a long-term objective, and at each step of
time, make the decision that is the best local decision in order to attain the final goal.
Informally, a greedy algorithm, a each step of time, makes the decision that is the best
local decision in order to obtain some long-term objective.

Although there is no general definition of what is a greedy algorithm, we can define
this notion for some specific classes of problems. In the context of matroids, a greedy
algorithm is the procedure that builds a maximal independent set by iteratively adding the

1

2 CHAPTER 1. GENERAL INTRODUCTION

cheapest element to the solution, that is initially empty, while maintaining the property
that the solution is an independent set (see e.g. [40], chapter 16). In the context of job
scheduling problems, Borodin, Nielsen and Rackoff [18] proposed the following definition:
a greedy-like algorithm is a procedure that incrementally builds a schedule with each input
job being considered exactly once. Each time a job is considered, the algorithm decides to
add it or not to the solution. The order in which jobs are considered can be fixed before
any job is scheduled, or adaptive, if the order depends on previous decisions made.

You may wonder if greedy algorithms always give optimal solutions. The answer is no!
Take for instance our example and imagine that you had started in musée des invalides
(point 6 on Figure 1.1). Then the nearest place to visit is musée d’Orsay (point 5) and
then Notre-Dame de Paris (point 3) which is clearly non-optimal, because you should have
visited the Marais first (point 4). In fact, the combinatorial problem, called Travelling
Salesman problem (TSP), that models this example is NP-hard [125], which means that
there is no fast method that systematically finds the shortest tour, unless the famous
conjecture P 6= NP is disproved.

Being greedy has several merits. First, it is probably the most natural approach for
solving a problem. In real life, people use such a strategy sometimes unconsciously. For
instance people may use a greedy strategy when they give back the change to mininize the
number of coins exchanged1, or to optimize the overall duration of their travels in a long
tourist-tour. In computer science, a greedy approach is often the first idea that comes to
mind when facing an optimization problem for the first time.

As a consequence of being natural, greedy algorithms are easy to understand. In our
society, algorithms have a growing importance, and have more and more influence on
people’s lives, for instance for school admissions, job markets, social networks, etc. In a
future where algorithms could be used for making social decisions, it seems natural that
these algorithms remain simple enough to be understandable by non-experts. A greedy
strategy thus seems a natural candidate.

This simplicity of greedy algorithms makes them easy to implement and due to their good
time-efficiency, they are attractive heuristics in practice. For instance, for the vast majority
of satisfiable 3-CNF formulas, the algorithm that starts at a random truth assignment
and repeatedly flips the variables that improves the number of satisfied clauses the most,
almost always succeeds in discovering a satisfying truth assignment [99]. Even when no
guarantees are known, or when in the worst-case the solution is far from optimal, greedy
algorithms can be efficient on average. For instance, even though finding a maximum-size
Independent Set2 cannot be approximated in polynomial time within any constant [80], the
natural minimum degree greedy algorithm (Algorithm 2) is on average a 2-approximation3
in a random graph [116].

Another feature of greedy algorithms is that the decisions are irrevocable. Since greedy
algorithms do not re-consider their previous decisions, they are a type of algorithms that
can easily implemented on-line, i.e., where the input is revealed over time and decisions
must be taken at each step without possible go-back.

Sometimes, the greedy algorithm is guaranteed to lead to the optimal solution. In 1935,
Hassler Whitney introduced the combinatorial notion of matroid, which captures a wide
class of problems for which a certain type of greedy algorithms is optimal. This generalises

1in fact, for the Euro coin system, the greedy algorithm is optimal.
2a set of vertices that are pairwise non-adjacent.
3a solution is a 2-approximation if the size of the solution is within a factor of 2 of the optimum.

1.1. GREEDY ALGORITHMS 3

for instance Kruskal’s algorithm for computing a minimum spanning-tree, or the greedy
algorithm for scheduling unit length jobs with profits and deadlines.

Even when the greedy algorithm is not optimal, there are some NP-hard problems
for which a simple greedy algorithm achieves the best possible approximation guarantee
in polynomial time, assuming some widely-believed conjectures. The most well-known
problem with this characteristic is probably Set Cover, where we are given a universe of n
elements and a collection of sets of elements, and the goal is to find the smallest family of
sets that covers all the elements. The Greedy algorithm to solve this problem is natural:
add to your solution the set that covers a maximum number of uncovered elements, until
your solution covers everything.

Starting with an empty solution,
while there are some uncovered elements do

add to your solution the set that covers the maximum number of uncovered
elements.

Algorithm 1: A Greedy algorithm for Set Cover.

This algorithm finds a solution of size at most
∑n
i=1

1
i ≤ lnn+ 1 times the size of an

optimal solution4 and Figure 1.2 shows an example where the greedy algorithm returns a
solution of size log2 n while the optimal solution consists of only two sets. Most importantly,
a series of inapproximability results initiated by Lund and Yannakakis in 1994 [112], suggest
that no better approximation can be obtained for Set Cover by a polynomial time algorithm,
unless P = NP. In particular, Feige [49] improved the lower bound on the approximability
to (1−o(1)) lnn under the same assumptions, which essentially matches the approximation
ratio achieved by the greedy algorithm. Two other important examples of problems of this
flavor are Vertex Cover and Metric k-Center where simple greedy algorithms5 achieve a
2-approximation [144], while 2− o(1) is the best ratio achievable in polynomial time for
Vertex Cover (resp. Metric k-center) unless the Unique Game Conjecture is disproved [93]
(resp. unless one can solve the Dominating Set problem in polynomial time, i.e., unless
P = NP [81])

Consider NP-hard problems that have a simple polynomial-time approximation algo-
rithm achieving a best possible approximation ratio. How can the analysis be so tight?
Often, that is obtained by finding connections with the problem structure. Because of their
simplicity, greedy algorithms are a great place to look for such connections. Sometimes,
their approximation ratio can be established by powerful techniques that can be applied
more broadly. For instance: looking at the greedy algorithm for Set Cover through the
lens of its linear programming relaxation illustrates the technique of Dual-Fitting, that
suggests a correspondence between the integrality gap and the approximability of Set Cover
[111, 37]. For Vertex Cover and more generally Set Cover where the frequency6 of each
element is bounded by a constant f , the technique of the Primal-Dual Schema provides an
algorithm that greedily updates primal and dual variables of the classic LP formulation of
the problem, to generate a f -approximate solution [144].

4A tighter analysis shows that the approximation ratio is exactly lnn− ln lnn+ Θ(1) [140].
5for Vertex Cover, the greedy algorithm is: pick two adjacent vertices and remove all incident edges,

until de graph is empty.
6the number of sets in which it appears. For Vertex Cover, each edge (elements) is incident to f = 2

vertices (sets).

4 CHAPTER 1. GENERAL INTRODUCTION

Figure 1.2: A hard example for the Greedy algorithm of Set Cover. Black dots are the elements
to be covered. The family of sets consists of O1, O2 and Si for 1 ≤ i ≤ k. Each set Si contains
2i elements, so O1 and O2 both contain 2k − 1. The greedy algorithm picks iteratively the sets
Sk, Sk−1, . . . , S2, S1 for an overall solution of size k while the optimal solution consists of only two
sets O1 and O2. The ratio between these two solutions is k/2 ≈ (log2 n)/2.

For some problems, the existence of a hereditary property of the class of instances
considered can suggest a greedy strategy for finding a solution. For instance, the existence
of a vertex of degree d in a class of graphs closed by vertex deletion7, like planar graphs,
implies a natural greedy algorithm (Algorithm 3) that properly colors any graph in G
with at most d+ 1 colors. The method of conditional probabilities [130] is used to convert
probabilistic proofs of the existence of certain structural properties of problems into
deterministic algorithms. Applied to the Max-Cut problem, the fact that a (uniformly)
random subset of vertices cuts on average half of the edges allows to greedily construct a
(deterministic) 2-approximate solution. Applied to the Maximum Independent Set problem,
this probabilistic method shows that the greedy algorithm (Algorithm 2) achieves the
celebrated Turán bound8 [142, 47].

Sometimes the same greedy algorithm can be applied to two different problems9. The
greedy algorithm described for Set Cover (Algorithm 1) can actually be applied to a similar
problem called Maximum Coverage. Instead of covering every element, with a minimum
number of sets, the goal here is to cover a maximum number of elements, given a budget
of k sets.

The Maximum Coverage Problem: Given a set of elements, a family of sets of
elements, and a budget k ≥ 0, the goal is to find a set of k sets that cover the maximum
number of elements.

With the same greedy algorithm10 that iteratively picks the most profitable set, we
obtain a solution for the Maximum Coverage problem that covers at least 1− (1− 1

k)k >
1− 1/e ≈ 63% of the maximum number of elements that can be covered by k sets [124].
Again, no better approximation can be obtained in polynomial time for this problem, unless
P = NP [49].

What makes this greedy strategy successful here lies in a structural property of the
objective function called submodularity. Consider a process that builds a solution by

7a class G such that, for all graph G ∈ G and any subset of vertices U ⊆ V (G), the subgraph G[U]
induced by U is in G.

8any graph with n vertices and average degree d contains an independent set of size at least n/(d+ 1).
9except for the termination criteria.

10this greedy algorithm is sometimes called Nemhauser’s algorithm. It can be used for maximizing a
monotone submodular function.

1.2. CONTRIBUTIONS OF THIS THESIS 5

iteratively adding sets, and consider inserting a set S into that process. The later we insert
S, the less benefit it brings you11. Nemhauser showed the same greedy algorithm applied
to maximizing the value of a k-set given by any (non-negative and monotone) submodular
function achieves the same approximation of e/(e− 1) [124].

Greedy methods exploit other type of structural properties. For matroids, the greedy
algorithm exploits the exchange property12. Greedy coloring (Algorithm 3) and the greedy
algorithm for Independent Set problem (Algorithm 2) use the hereditary13 existence of a
small-degree vertex. The existence of half-integral solutions of the fractional relaxation of the
classic linear program for Vertex Cover enables us to iteratively construct a 2-approximate
solution [144]. Sometimes, when the approximation obtained is the best possible, we are
even able to predict the structure of the graphs on which the approximation is the worst,
as we will see in chapter 3 (see Section 3.5.3).

1.2 Contributions of this thesis

Maximizing submodular functions under additional constraints has drawn a lot of attention,
and many variants and generalisations were investigated. For the more general problem of
maximizing a monotone submodular function under a matroid constraint, an approximation
of e/(e− 1) can also be achieved [21]. When the function is no longer monotone, there is a
2-approximation [20].

A natural constraint that has received relatively little attention is the connectivity
constraint. There is a graph, associated to the input, with sets as vertices, and a solution
must induce a connected subgraph to be feasible under the connectivity constraint. The
Maximum Coverage problem is motivated by network design (sensors, wireless routers,
relay-antennas, etc.) where the connectivity constraint models the ability of communication
between the different devices within the network [103]. For these applications, the problem
takes place in a geometric setting. Indeed, a sensor, a wireless router or an antenna “covers”
all devices present at a certain distance from it, and we can imagine that two devices in
the network can communicate if they are within a certain distance from each other, hence
the graph structure.

Another motivation for studying connectivity constraints comes from cancer genome
studies. Imagine an influence graph where a vertex represents an individual protein (and its
associated gene), an edge represents pairwise interactions protein-protein or protein-DNA,
and each vertex (gene) has an associated set of samples (patients) in which this gene is
mutated. It is widely accepted that cancer is a disease of pathways that can be viewed
as specific connected subgraphs of this influence graph. It is important to discover new
cancer pathways, by identifying subgraphs of genes that are mutated in a large number of
samples. Finding the connected subgraph of k genes that is mutated in the largest number
of samples is equivalent to the problem of finding the connected subgraph with k nodes
that maximizes the cardinality of the union of the associated sets (see [143]).

This leads us to the first question adressed in this thesis:

11Given a set of elements X, a set function f : 2X → R+ is submodular if f(A ∪ {S}) − f(A) ≤
f(A′ ∪ {S})− f(A′) for all set S and all collections A and A′ such that A′ ⊆ A.

12If A and B are two independent sets of a matroid such that |B| > |A|, then there is an element x ∈ B\A
such that A ∪ {x} is an independent set.

13a property that is true for any subgraph.

6 CHAPTER 1. GENERAL INTRODUCTION

Can we design good approximations for the Maximum Coverage problem with the
connectivity constraint in the geometric setting ?

A greedy algorithm would be a natural candidate. Notice that finding a greedy strategy
that takes into account the connectivity constraint is not straightforward.

A first idea would be to greedily construct a solution of large value and then connect
the different parts of the solution, with the hope that the budget is sufficient to connect
everything. In the general (non-geometric) setting, Kuo, Lin and Tsai [103] studied the
following strategy. Greedily compute for each vertex in the input graph, a (not necessarily
connected) solution of size

√
k in the

√
k-neighborhood around this vertex and then connect

this solution by shortest paths, and return the best of all solutions. They obtained a
O
(√

k
)
-approximation algorithm.

A second idea would be locally augment the coverage of the solution while maintaining
at any step the solution connected. In this thesis we study this greedy strategy and show
that when the submodular function and the connectivity are induced by geometry, the
approximability of the problem is significantly improved.

IWe introduce the Maximum Area connected Subset problem where given a set D of
n unit disks in the plane and an integer k ≤ n, the goal is to compute a set D′ ⊆ D of
size k that maximizes the area of the union of disks, under the constraint that this
union is connected.

We prove that the problem is NP-hard (Theorem 2.10) and analyze a greedy
algorithm, proving that it is a 2-approximation (Theorem 2.3). We then give a
polynomial-time approximation scheme (PTAS) for this problem with resource aug-
mentation, i.e., allowing an additional set of εk disks that are not drawn from the
input (Theorem 2.4). This algorithm follows Arora’s framework for Euclidean TSP [4].
Additionally, for two special cases of the problem we design a PTAS without resource
augmentation (Corollary 2.6).

−→ see Chapter 2

The third chapter of this thesis studies tie-breaking rules for greedy algorithms. Some-
times, an algorithm has to make its own choices. Imagine for instance that on Figure 1.2
the two rightmost points were not here, so that O1, O2 and Sk cover exactly the same
number of elements, 2k − 2, which are at this step the most profitable sets. So, the greedy
algorithm may choose any of them. Picking O1 or O2 leads the algorithm to the optimal
solution of size 2, but picking Sk leads the algorithm to a solution of size Θ(logn), i.e., to
the worst possible greedy solution! Not specifying a tie-breaking rule forces this worst-case
performance of Θ(logn). For Set Cover, this is unavoidable, but for other problems,
tie-breaking can help. For instance, imagine that we want to compute a large independent
set in a small degree graph.

The Maximum Independent Set problem: Given a graph, find a set of vertices
of maximum size, such that no two of those vertices are adjacent.

This is one of the most classic and widely studied NP-hard optimization problems.
It is known for its inherent hardness of approximation. Indeed, Håstad showed that

1.2. CONTRIBUTIONS OF THIS THESIS 7

Figure 1.3: An execution of the minimum degree greedy algorithm. The minimum degree is two, and
among all vertices of minimum-degree, the algorithm happens to choose vertex 1, then vertices 2,3,
etc, leading to a solution consisting of orange vertices. Black vertices form a maximum independent
set. Their ratio tends to 5/3 when the size of the graph goes to infinity.

this problem cannot be approximated in polynomial time within a factor n1−ε, unless
P = NP, for all ε > 0 where n is the number of vertices of the input graph [80]. This
negative results means that, in the general case, the algorithm that returns one arbitrary
vertex already (almost) achieves the best possible approximation in polynomial time. To
design interesting algorithms, people focussed on more restricted classes of graphs, such
as geometric intersection graphs, bipartite graphs, planar graphs, minor-closed families of
graphs. We focus here on the class of bounded degree graphs. For the class of subcubic
graphs, that are graphs with maximum degree at most three, the Maximum Independent
Set problem remains NP-hard [59], and even APX-hard [2].

For this problem, one of the best known algorithmic paradigms is the following minimum
degree greedy method:

Starting with an empty solution,
while the graph is non-empty do

pick a vertex of minimum degree, add it to your solution, and remove it and its
neighbors from the graph.

Algorithm 2: The minimum degree greedy algorithm for the Maximum Indepen-
dent Set problem.

It is clear that the set returned by this algorithm is an independent set. See Figure 1.3
for an example of an execution of this algorithm.

Halldórsson and Radhakrishnan proved that this greedy algorithm has an approximation
ratio of 5/3 in subcubic graphs and more generally an approximation ratio (∆ + 3)/2 on
graphs with maximum degree ∆ ≥ 3 [70], and that all those approximation guarantees
are tight. Figure 1.3 shows a asymptotically tight example when ∆ = 3. However, in this
example, the algorithm made a very poor sequence of choices. Indeed, starting with vertex
a would have led the greedy algorithm to an optimal solution. Halldórsson and Yoshihara
[74] asked in their paper the following question:

Can we improve the approximation ratio of the greedy algorithm when we augment it
with a tie-breaking rule ?

For subcubic graphs, they for instance proved that no tie-breaking rule leads to an
approximation ratio better than 5/4 (see Figure 3.1). On the other hand, they provided a

8 CHAPTER 1. GENERAL INTRODUCTION

rule that implies a 3/2-approximation (see Theorem 3.2).

I In this thesis we present is a novel potential function for the design of greedy
algorithms for the independent set problem (Section 3.2). With this new theory we
obtain the “ultimate” approximation ratio of 5/4 for greedy on graphs with subcubic
graphs (Theorem 3.3), which completely resolves the question from Halldórsson and
Yoshihara.

We also obtain a simple and short proof of the (∆ + 2)/3-approximation ratio
of any greedy on graphs with maximum degree ∆ (Section 3.3), the result proved
previously by Halldórsson and Radhakrishnan. We almost match this ratio by showing
a lower bound of (∆ + 1)/3 on the ratio of any greedy algorithm that can use any
tie-breaking rule (Theorem 3.22).

We complement our positive results with negative results which prove that the
problem of designing good tie-breaking rules for greedy is NP-hard (Theorem 3.23)
and even hard to approximate on various classes of graphs (Section 3.7.3).

−→ see Chapter 3

In the two last chapters of this thesis, we exploit topological properties of planar graphs
and bounded genus graphs to design good approximation algorithms. Designing tight
approximation algorithms requires a deep understanding of the structure of the problem
that we intend to solve. Planar graphs form a class with many structural properties. Each
planar planar has a dual planar graph and has small balanced separators [106]; the Euler
characteristic14 establishes a relation between the number of vertices, edges and faces;
Kuratowski’s theorem15 gives a characterisation in terms of excluded minors; the Jordan’s
curve theorem16 implies a connection between cycles and dual cuts, etc.

Eventually, these structural properties imply techniques for the design of good algorithms
in planar graphs. In general, the more restricted the instance class is, the stronger and
the more diverse the structural properties are, and the better the approximability can
potentially be. There is a number of optimization problems that are APX-hard in general
but admit polynomial time approximation schemes17 (PTAS) in planar graphs. The
celebrated technique of Baker [8] provides a general framework for many “ubiquitous”
optimization problems including Maximum Independent Set or Minimum Vertex Cover.
Other techniques based on planar graphs decomposition imply PTASes for “connectivity”
problems such as TSP [5], Steiner Tree [19] or Steiner Forest [11].

For all problems mentionned in the last paragraph, their approximability in planar
graphs is well-understood, since the upper bounds (PTASes) match the lower bounds
(NP-hardness). We now look at the following problem for which there is a gap between the
best inapproximability result and the best known approximation, even for planar graphs.

14any plane graph satisfies #Faces−#Edges + #Vertices = 2.
15a graph is planar if and only if neither K5 nor K3,3 appear as a minor.
16a closed curve separates the plane into two connected components.
17a family of (1 + ε)-approximation algorithms, for arbitrarily small values ε > 0.

1.2. CONTRIBUTIONS OF THIS THESIS 9

The Maximum Integral Multi-commodity Flow problem: Let G = (V,E) be
a supply graph, with capacities c : E → Z≥0, and D = {(s1, t1), . . . , (sk, tk)} ⊆ V × V
a family of demand pairs. The goal is to find a maximum-cardinality family of paths
P in G whose end-points correspond to demand pairs, such that for each edge e ∈ E,
the total capacities of the paths in P that contain e does not exceed the capacity of e.

The well-known edge-disjoint paths problem is the special case of this problem where all
capacities are 1. Multi-commodity flows, or multiflows for short, are well-studied objects
in combinatorial optimization. A fractional multiflow of maximum value can be found in
polynomial time by linear programming. Often, a multiflow must be integral, and then the
problem is much harder.

Assuming that for some δ > 0, not all problems in NP can be solved in randomized
time 2nδ , there is no nO(1/(log logn)2)-approximation even when G is planar and subcubic18,
when n is the number of vertices [36]. On the other land, the first upper bound on the
approximability of the edge-disjoint paths problem was O(

√
|E|) and was obtained by a

simple greedy algorithm that repeatedly picks any non-connected pair and connect it via a
shortest feasible path [96]. The best known approximation guarantee for the edge-disjoint
paths and Maximum Integral Multiflow problems is O(

√
n) and is due to Chekuri, Khanna

and Shepherd [27]. As far as we know, this is also the best known approximation when G
is planar.

In fact, the structure of the edge-disjoint path problem and the Maximum Integral
Multiflow problem also depends on how the demand pairs are disposed in the supply graph.
In order to design good approximation algorithms for these problems, we will assume that
the supply graph G together with the demand graph H = (V,D) is planar.

One of the landmark results for this special case is due to Seymour. He proved that
if G+H is planar and Eulerian, the cut condition19 guarantees a solution to connect all
demand pairs; such a solution can be found in polynomial time [137]. Seymour’s result
has motivated a sequence of follow-up works investigating the edge-disjoint paths problem
when G+H is planar. For example, one can decide in polynomial time whether all demand
pairs can be connected when G + H is planar and the demand pairs lie on a bounded
number of faces of G [117].

Unfortunately the general case that G+H is planar is one of these cases in which the
edge-disjoint paths problem is NP-hard, as Middendorf and Pfeiffer [117] proved. Very
little seems to be known about approximation in that setting. Korach and Penn [98] showed
that, given that the cut condition holds, one can satisfy all demands except one for each
face of G, and such a solution can be found in polynomial time. However, this does not
imply an approximation ratio in general.

I We devise a constant-factor approximation algorithm for the maximization version
of the edge-disjoint paths problem if the supply graph together with the demand edges
form a planar graph (Theorem 4.2). We also show that the natural linear programming
relaxations have constant integrality gap, yielding an approximate max-multiflow
min-multicut theorem (Theorem 4.4).

We then generalize these results to higher-genus graphs, by giving the first constant-

18in fact, even when G is a wall graph, as in Figure 5.7.
19see equation 4.1.

10 CHAPTER 1. GENERAL INTRODUCTION

factor approximation algorithm for finding an integral multi-commodity flow of max-
imum total value for instances where the supply graph together with the demand
edges can be embedded on an orientable surface of bounded genus (Theorem 5.1).

−→ see Chapters 4 and 5

Our algorithms are the conjunction of several greedy methods that exploit topological
properties of curves and graphs on surfaces. In particular, we establish a connection between
the approximation ratio of our algorithm and the coloring number of an intersection graph
of a family of curves known in topology as a 1-system, see Section 5.9.

1.3 Preliminaries
We give here some general definitions and notations that we use all along this thesis.
Notions presented in Section 1.3.2 are used in Chapters 4 and 5.

We say that an algorithm is a polynomial-time algorithm if its running time is a
polynomial on the size on the input. An algorithm for a maximisation (resp. minimisation)
problem is an α-approximation, with approximation ratio α ≥ 1 if it is a polynomial
time algorithm and if the value of the solution returned is at least OPT/α (resp. at most
α ·OPT) where OPT denotes the value of an optimal solution.

A polynomial time approximation scheme is a family of (1 + ε)-approximation
algorithms, for arbitrarily small values ε > 0.

1.3.1 Graphs notations.

Given a (multi)graph G = (V,E), we denote V (G) = V and E(G) = E. When two
graphs G = (V,E) and H = (V,D) have the same vertex set V then we denote by
G+H = (V,E ∪̇D) the graph whose edge set is the disjoint union of their edge sets. When
a weight function w : V → R (or w : E → R) is given on vertices (or edges), for any subset
U ⊆ V (or U ⊆ E), we define the weight of U as w(U) :=

∑
u∈U w(u).

in a graph G = (V,E), the subgraph induced by a subset of vertices U ⊆ V is
G[U] := (U, {uv ∈ E | u, v ∈ U}). To lighten notation, we sometimes write G \ U for
the subgraph G[V \ U]. For a vertex v ∈ V , let NG(v) := {u ∈ V | uv ∈ E} and
NG[v] := NG(v) ∪ {v} denote respectively the open and closed neighborhood of v in
G. The degree of v in G denoted dG(v) is the size of its open neighborhood. When the
context is clear, we simply write d(v). More generally, we define the closed (resp. open)
neighborhood of a subset S ⊆ V , denoted NG[S] (resp. NG(S)) as the union of all closed
(resp. open) neighborhoods of each vertex in S. Given a subset of vertices U ⊆ V , we
denote δ(U) the set of edges that are incident to both U and V \ U . The degree of a
subset U ⊆ V is the size of its set: d(U) := |δ(U)|.

The maximum degree of a graph G is ∆(G) := maxv∈V d(v). If every vertex of a graph
has degree exactly k, then we say that is graph is k-regular. A 3-regular graph is also
called cubic. A graph is called subcubic if its maximum degree is at most three.

Independent sets and Coloring. An independent set is a set of vertices I ⊆ V such
that every two vertices in I are non-adjacent. We denote by α(G) the independence
number of G, that is, the size of a maximum independent set in G.

1.3. PRELIMINARIES 11

The coloring number χ(G) is the smallest integer s such that V (G) can be decomposed
into a disjoint union of s independent sets, called color classes. Such a coloring of G
with s colors can be viewed as a function V (G)→ {1, . . . , s}. Upper bounding the coloring
number is a simple tool to prove the existence of large independent sets. Indeed, given a
graph G = (V,E) and vertex weight function w : V → R+ , there exists an independent
set I with weight w(I) ≥ w(V)/s, that corresponds to a color class of any given coloring
with s colors.

The following simple greedy algorithm computes in time O(|V (G)|2) a coloring of a
graph G with at most ∆(G) + 1 colors.

Input: a graph G = (V,E).
Output: A coloring of G.
Let v be a vertex in G of minimum degree;
Compute a coloring of G[V \ {v}];
Complete this coloring by associating to v the smallest color that does not appear
in NG(v);

Algorithm 3: The basic Greedy algorithm for Coloring

More generally, if the input graph belongs to an hereditary class of graphs G stable by
vertex deletion, in the following sense ∀G ∈ G, ∀U ⊆ V (G) : G[U] ∈ G and such that for all
graph in this class, there exists a vertex of degree at most s, then Algorithm 3 produces
a coloring with at most s+ 1 colors. For instance, planar graphs form such a hereditary
class, with s = 5. Thus, with this algorithm we can get a coloring of a planar graph with
six colors.

Cycles and cuts. A path in a graph G = (V,E) is a sequence (v0, e1, v1, . . . , ek, vk)
for some k ≥ 0, where v0, . . . , vk are distinct vertices and ei = {vi−1, vi} is an edge for
all i = 1, . . . , k. A cycle in a connected graph G is a sequence (v0, e1, v1, . . . , ek, vk) such
that v1, . . . , vk are distinct vertices, {vi−1, vi} is an edge for all i = 1, . . . , k, and v0 = vk.
Sometimes we view cycles as edge sets or as graphs.

In a graph G = (V,E), a cut is an edge set δ(U) that contains all edges with one
endpoint in U and the other in V \ U for some proper subset ∅ 6= U ⊂ V . A cut δ(U)
is simple if both U and V \ U are connected in G. A cut is simple if and only if it is a
minimal cut (for inclusion).

1.3.2 Graphs on surfaces

Surfaces are either orientable or non-orientable. A compact orientable surface of genus g
can be seen as a connected sum of g tori, or equivalently a sphere with g handles attached
on it, where g is called the genus of the surface. The connected sum of two surfaces
S and S′ is the surface obtained by removing a disk D on S and a disk D′ on S′ and
identifying D’s boundary with the boundary of D′.

Given an integer g ≥ 0, all compact surfaces with genus g are mutually homeomorphic,
and we refer to any one of them as Sg. For instance, S0 is the sphere and S1 is the torus.

A (multi)graph has genus g or is a genus-g graph, if it can be drawn on Sg without
edge crossings, but not on Sg−1. A genus-0 graph is also called a planar graph. A genus-g
graph may have several non-equivalent embeddings on Sg, but all of them satisfy the same

12 CHAPTER 1. GENERAL INTRODUCTION

invariant, called the Euler characteristic: #Faces−#Edges + #Vertices = 2− 2g. Using
this formula one can for instance bound the average degree of a genus-g graph by O(√g).
In particular we can get:

Theorem 1.1. (Map-coloring theorem) A genus-g graph can be colored in polynomial time
with at most χg := b7+

√
1+48g
2 c colors.

For g ≥ 1, the coloring is obtained by Algorithm 3 [77]. For g = 0, this is an algorithmic
version of the four color theorem. Robertson, Sanders, Seymour, and Thomas [131]
improved on the original proof by Appel, Haken, and Koch and showed that a 4-coloring of
a planar graph G can be computed in time O(|V (G)|2). Interestingly Heawood conjectured
that χg colors were necessary to color a genus-g graph, and 80 years later Ringel and
Youngs proved that the clique of size χg was embeddable on Sg, for any g ≥ 0.

Duality. Given an embedding of a genus-g graph G on Sg, there exists a uniquely defined
dual graph, denoted as G∗. This graph can be embedded on the same surface as G. There
exists a bijection between the faces of G and the vertices of G∗, a bijection between the
vertices of G and the faces of G∗, and a bijection between the edge sets of G and of G∗.
Moreover, the embeddings of G and G∗ are consistent: with this bijection, edges only cross
their image, faces only contain their image and reciprocally. For notational simplicity, the
latter bijection is often implicit.

We say that an edge set F in a graph is a (simple) dual cut if the corresponding set of
edges F ∗ in the dual is a (simple) cut. A cycle C in G is called separating if it is a dual
cut, and non-separating otherwise. Note that every separating cycle is a simple dual cut.

Combinatorial embeddings. Given a graph, let δ(v) denote the set of edges incident
to a vertex v. Given an embedding of a graph on an orientable surface, and an arbitrary
orientation of this surface, for each vertex v, a clockwise cyclic order can be defined on
the edges of δ(v). Note that contracting an edge e = {u, v} results in removing e from
δ(u) and from δ(v) and concatenating the orders to obtain the clockwise cyclic order of
the edges around the vertex created by the contraction. Using these orders together with
the incidence relation between edges and faces, embeddings become purely combinatorial
objects.

For additional details and results about graphs on surfaces see e.g. [119, 39].

2 | Maximum Disk Coverage with
Connectivity Constraints

2.1 Introduction

Maximizing a submodular function1 under constraints is a classical problem in computer
science and operations research [124, 147]; the most commonly studied constraints are
cardinality, knapsack and matroids constraints. A natural constraint that has received little
attention is the connectivity constraint. In this chapter, we study the following problem:
given a set of n unit disks in the plane, select a subset of k disks that maximize the area of
their union, under the constraint that this union is connected. We call this problem the
Maximum Area Connected Subset problem (MACS). Notice that the area covered by a set
of disks is a monotone submodular function.

The problem is motivated by wireless router deployment, first introduced in [103],
where the goal is to install a given number of routers to maximize the number of clients
covered. When the clients are uniformly spread in the plane, the number of clients in a
region can be approximated by the area of that region, leading to our problem.

Our Contributions. We first analyze a variant of the greedy algorithm and show that
it computes a 2-approximation to MACS (Theorem 2.3); further, the analysis is tight. In
contrast, the natural algorithm that greedily adds one disk at a time can end up with a
solution with area a factor of Ω (k) worse than the optimal solution.

To improve upon the 2-approximation ratio, we turn to the resource augmentation
setting in which the algorithm is allowed to add a few additional disks that need not be
drawn from the input. We design a PTAS for the resource augmentation version of the
problem using Arora’s shifted quadtree technique (Theorem 2.4)2. The proof hinges on
the existence of a near-optimal solution with O (εk) additional disks and with additional
structure that allows its computation by dynamic programming.

As a corollary, we show that for two special cases of MACS we can in fact design a
PTAS without resource augmentation: i) when the Euclidean distances between centers
of the input disks are well-approximated by shortest paths in their intersection graph
(Corollary 2.6), and ii) when every point of the relevant region of the Euclidean plane is
covered by at least one input disk (Corollary 2.9).

1Given a set X, a function f : 2X → R is submodular if given any two subsets A, B ⊆ X, f(A) + f(B) ≥
f(A ∩B) + f(A ∪B).

2We also developed an alternative algorithm using Mitchell’s m-guillotine dissection technique [118]
with faster running time. See the original paper [82].

13

14 CHAPTER 2. DISK COVERAGE WITH CONNECTIVITY CONSTRAINTS

On the other hand, via a reduction from the Rectilinear Steiner Tree problem, we
show that MACS is NP-hard (Theorem 3). We also show that MACS for the input of
a set of quadrilaterals instead of disks, the problem is APX-hard (Theorem 2.12). We
leave open the question whether MACS is APX-hard or admits a PTAS without resource
augmentation.

2.1.1 Related work

Maximizing a monotone submodular function under constraint(s) is a subject that has
received a large amount of attention over the years. Kulik et al. designed an approximation
algorithm for maximizing a submodular function under multiple linear constraints with
an approximation ratio that (almost) matches the bound e/(e − 1) [102]. The greedy
algorithm gives a (k+1)-approximation where the objective function is subject to k matroid
constraints [124]. Lee et al. later improved the approximation arbitrarily close to k when
k ≥ 2 using a local-search approach [105]. When a monotone submodular function is
subject only one matroid constraint, this is a randomized e

e−1 -approximation [21].
Our problem can be regarded as maximizing a submodular function under a cardinality

(knapsack) constraint and a connectivity constraint. Notice that the connectivity constraint
is central to the difficulty of our problem: without connectivity constraints, MACS admits
a PTAS even in the more general case of convex pseudodisks [25]. However even without
the connectivity constraint the problem remains NP-hard3.

Another motivation for studying the connectivity constraint is related to cancer genome
studies. Suppose that a vertex represents an individual protein (and associated gene),
an edge represents pairwise interactions, and each vertex has an associated set. Finding
the connected subgraph of k genes that is mutated in the largest number of samples is
equivalent to the problem of finding the connected subgraph with k nodes that maximizes
the cardinality of the union of the associated sets (see [143]).

In the general (non-geometric) setting, there exists a O
(√

k
)
-approximation algorithm

for maximizing a monotone submodular function [103]. This approximation is obtained by
computing for each vertex in the graph, a non-necessarily connected solution of size

√
k in

the
√
k-neighborhood around this vertex and then connect these vertices by shortest paths.

Our results show that when the submodular function and the connectivity are induced by
a geometric configuration, the approximation ratio can be significantly improved.

We next consider several related problems where the connectivity constraint plays an
important role. The goal of the node-cost budget problem [129] is to find a connected
set of vertices in a general graph to collect the maximum profit on the vertices while
guaranteeing the total cost does not exceed a certain budget. Notice that in this setting
the submodular function is a simple additive function of the profits. Another related
problem [23] is to assign radii to a given set of points in the plane so that the resulting set
of disks is connected and the objective is to minimize the sum of radii.

Khuller et al. [94] study the budgeted connected dominating set problem where given
a general undirected graph, the goal is to select k vertices whose induced subgraph is
connected and that maximizes the number of dominated vertices. It was pointed out to us
that their algorithm can be used to give a 13 e

e−1 -approximate solution for MACS. The
authors of [79] consider the problem of selecting k nodes of an input node-weighted graph

3The reduction is from Maximum independent set problem that is NP-hard in unit-disk graphs.

2.1. INTRODUCTION 15

to form a connected subgraph, with the aim of maximizing or minimizing the selected
weight.

We now turn to the geometric setting. A logarithmic-factor approximation algorithm is
known [67] for the connected sensor coverage problem in which one must select at most k
sensors in the plane forming a connected communication network and covering the desired
region, where the region covered by each sensor is convex [57, 89]. A (1 + ε)-approximation
algorithm in time nO(1/ε) for the maximum independent set problem on unit disk graphs
is known [115]. The authors of [114] present a constant-factor approximation algorithm
for several problems on unit disk graphs, including maximum independent set. For the
geometric set cover problem where the goal is to cover a given set of input points with a
minimum number of given disks, a PTAS is possible [120].

2.1.2 Our results

The Euclidean distance between two points x and y is denoted by ‖x− y‖. When there
is no confusion, we will refer to a point x in the plane and the unit disk centered at x
interchangeably.
Definition 2.1. Given a finite set S in the plane, the unit disk intersection graph
UDG(S) is a graph on S where {x, y} ⊆ S is an edge of UDG(S) if and only if ‖x− y‖ ≤ 2.

A set S of points in the plane are connected if UDG(S) is a connected graph.

Definition 2.2. The Maximum Area Connected Subset (MACS) problem is
as follows.
Input: a finite set of points X ⊆ R2 and a non-negative integer k, where k ≤ |X|.
Output: a subset S ⊆ X of size at most k such that the unit-disk graph UDG(S) of
S is connected.
Goal: maximize the area of the union of the unit disks centered at the points of S.

The optimal solution of MACS on input (X, k) is denoted by OPT (X, k).

When the context is clear, we refer to OPT (X, k) as OPT, which is also used to denote
the area covered by the optimal solution; observe that OPT is trivially upper-bounded by
πk. Any S ⊆ X with |S| ≤ k for which UDG(S) is connected is called a feasible solution.

We state our main results below.
Theorem 2.3 (Approximation). There exists a 2-approximation for MACS (Algo-
rithm 4).

With resource augmentation, we obtain a (1 + ε)-approximation.

Theorem 2.4 (Resource augmentation). Let ε > 0 be a given parameter. Given a set
of points X ⊆ R2 and a non-negative integer k, there is an algorithm (Algorithm 5)
that computes, in time nO(ε−3), a subset S ⊆ X of size at most k and a set Sadd ⊆ R2

of at most εk points, such that UDG (S ∪ Sadd) is connected and the area of the union
of the unit disks centered at S is at least (1− ε)OPT (X, k) .

Theorem 2.4 can be obtained alternatively by a (deterministic) guillotine cut approach
with a faster running time, see [82].

Let dG(x, y) denote the distance between two vertices x and y of G. A set X of points
in the plane is called α-well-distributed if UDG(X) is an α-spanner for X [121]:

16 CHAPTER 2. DISK COVERAGE WITH CONNECTIVITY CONSTRAINTS

Definition 2.5. Given α > 0, a finite set X of points in the plane is called α-well-
distributed if for all x, y ∈ X, dUDG(X) (x, y) ≤ dα · ‖x− y‖e.

When the input is well-distributed then the set of additional disks Sadd obtained from
Theorem 2.4 can be transformed into a set of O(|Sadd|) input disks achieving the same
goal (Lemma 2.26). Thus using a result of “concavity” of the value of optimal solutions
(Lemma 2.27) , we get a PTAS without resource augmentation.

Corollary 2.6. There exists a PTAS for MACS on α-well-distributed inputs, where
α is a fixed constant (Algorithm 6).

We apply this result to a particular case of well-distributed inputs:

Definition 2.7. A set X is called pseudo-convex if the convex-hull of X is covered by
the union of the unit disks centered at points of X.

Lemma 2.8. A pseudo-convex set X is 3.82-well-distributed.

The exact constant is 12/π < 3.82 and is obtained by simple geometrical observations.

Corollary 2.9. MACS on pseudo-convex inputs admits a polynomial-time approximation
scheme.

We next turn to the hardness of MACS. By a reduction from Rectilinear Steiner
Tree we show:

Theorem 2.10 (Hardness). MACS is NP-hard.

For slightly more complicated geometrical object, the problem becomes even hard to
approximate.

Definition 2.11. The quad-connected-cover is defined as follows.
Input: a set T of n convex quadrilaterals in the plane, and an integer k.
Output: a subset T of T of size k such that the intersection graph of T is connected.
Goal: Maximize the area covered by the union of quadrilaterals in T .

By a reduction from 3-set-cover we show:

Theorem 2.12. Quad-connected-cover is APX-hard.

2.2 The Two-by-two greedy algorithm (Proof of Theorem 2.3)
In the section we present a simple 2-approximation for MACS based on a greedy approach:
we iteratively add two unit disks that maximize the area covered while maintaining
feasibility. Interestingly, the algorithm that adds disks one at a time is not a constant
approximation algorithm. See Figure 2.1 for an example. Moreover, trying all possible sets
of s disks, for any s ≥ 3, in the neighborhood of the current solution does not improve the
approximation ratio. This can be seen on Figure 2.2 where the first disk chosen by the
algorithm is not x, but xs.

Let Bx denote the unit disk centered at x ∈ R2 and B(S) =
⋃
x∈S Bx denote their

union. The area covered by a set C ⊂ R2 is denoted by A(C). When C = B(S), its area is

2.2. THE TWO-BY-TWO GREEDY ALGORITHM 17

Input: X ⊆ R2, k ≥ 0, where X is finite and k ≤ |X|.
Output: a feasible set of size k.
if k is even then

S ← any two intersecting disks of X;
else

S ← any one disk of X;
while |S| ≤ k − 2 do
{x, x′} ← arg max {A(S ∪ {x, x′}) : x, x′ ∈ X, S ∪ {x, x′} is feasible };
S ← S ∪ {x, x′};

return S;
Algorithm 4: The Two-by-two algorithm for MACS

Figure 2.1: The greedy algorithm that adds only one connected disk maximizing the marginal area
covered is not a constant factor algorithm. For any k ≥ 0 and ε > 0, consider the above input
where O = (0, 0), and yi = (2(i− 1) + ε, 0) for all i. Then, put all x1, . . . , xk evenly spaced (by an
angle α) on a circle of radius 2 around O so that none of them intersect y2. Each light grey regions
are covered by only one disk xi so the marginal gain of adding xi to any solution is at least the area
of one of these regions, say a > 0. If ε is chosen such that A(By1 \BO) < a, then if the algorithm
starts by picking disk O, it will then choose all xj , so that the area covered by the solution is
upper-bounded by the area of a radius 3 disk, 9π, while the optimal solution (disks yi) has area πk.

18 CHAPTER 2. DISK COVERAGE WITH CONNECTIVITY CONSTRAINTS

simply written as A(S). A subset of the vertices of a graph is a dominating set if every
vertex belongs to the set or is adjacent to some vertex of it.

One can find an example similar to Figure 2.2 to show that optimizing the initial choice
of the first disk(s) does not improve the approximation ratio.

Theorem 2.3 (Approximation). There exists a 2-approximation for MACS (Algo-
rithm 4).

We can assume w.l.o.g. that UDG(X) is connected; otherwise we return the maximum
value over all connected components. For the analysis, we divide the execution of Algorithm
4 in two phases. An iteration belongs to the first phase as long as the current solution S is
not a dominating set in the graph UDG(X).

During the first phase, in each iteration the area covered increases by at least π. During
the second phase, since the current solution is a dominating set, any disk can be added
while keeping the solution feasible. Therefore the algorithm reduces to a standard greedy
algorithm to maximize a submodular function, and the analysis is similar to the proof that
Nemhauser’s algorithm is a

(
e
e−1

)
-approximation for classic submodular functions.

Figure 2.2 shows a tight example.

Figure 2.2: A tight example for Algorithm 4. For any ε > 0, X contains x = (0, 0) (stripe-shaded),
xi = (2(i−1) + iε, 0) and x′i = ((2 +ε)i, 0) for 1 ≤ i ≤ k (blue) and yi = (−2i−ε/2, 0) for 0 ≤ i ≤ k
(orange). Suppose that k = 1 + 2κ is odd and the algorithm starts with S0 := {x, x}. Then the
algorithm will add {xi, x′i} in iteration i since it covers more additional area than {y0, y1}. The
solution returned (blue disks) covers an area of π + κ(π + f(ε)) ≈ k

2π, for some function f(·) with
limε→0 f(ε) = 0, while OPT (orange disks) covers an area kπ.

2.2.1 Analysis of the Two-by-Two algorithm

We first analyze the even case where k = 2κ, and then we reduce the odd case to the
even one. Let Sκ = {x1, x2, . . . , x2κ} be the solution returned by the algorithm. Let
Si = {x1, . . . , x2i} be the set right after the i-th iteration and let d be the smallest integer
such that Sd is a dominating set in UDG(X). If such an integer does not exist, i.e., Sκ is
not a dominating set, then set d = κ.
Claim 2.13. The area A(Sd) is at least πd.
Proof. For i < d, Si is not a dominating set. Then there exist two disks y, y′ such that
B(Si)∩By = ∅ and S ∪ {y, y′} is connected. Adding such a pair increases the area covered
by at least A (By) = π. Since (x2i+1, x2i+2) is chosen to maximize A(Si ∪ {x, x′}) among
all feasible pairs, A(Si+1) ≥ A(Si ∪ {y, y′}) ≥ A(Si) + π. By induction, A(Sd) ≥ πd.

Note that when d = κ, Claim 2.13 immediately implies that A(Sκ) ≥ OPT
2 . Also

regardless of the initial choice, the area covered by the first two disks is at least π. This
observation will be useful when we prove the case where k is odd.

2.2. THE TWO-BY-TWO GREEDY ALGORITHM 19

Claim 2.14. For all d ≤ i ≤ κ, A(OPT) ≤ A(Si) + κ · (A(Si+1)−A(Si)) .

Proof. It is easy to check that the function A(·) satisfies the following properties for all
H ⊆ H ′ ⊆ X :

(1) positivity : A(H) ≥ 0.

(2) monotonicity : A(H) ≤ A(H ′).

(3) submodularity : ∀H ′′ ⊆ X, A(H ′ ∪H ′′) ≤ A(H ∪H ′′)−A(H) +A(H ′).

Let OPT = {y1, . . . , y2κ}. We have for all d ≤ i ≤ κ :

A(OPT) ≤ A(Si ∪OPT)
= A(Si) + (A(Si ∪ {y1, y2})−A(Si)) + . . .

+ (A(Si ∪ {y1, . . . , y2κ})−A(Si ∪ {y1, . . . , y2κ−2}))
≤ A(Si) + (A(Si ∪ {y1, y2})−A(Si)) + · · ·+ (A(Si ∪ {y2κ−1, y2κ})−A(Si))
≤ A(Si) + κ · (A(Si ∪ {x2i+1, x2i+2})−A(Si))
= A(Si) + κ · (A(Si+1)−A(Si)) .

The first and the second inequality respectively come from monotonicity and submodularity,
while the third one follows from the fact that for i ≥ d, (x2i+1, x2i+2) is the pair of disks
maximizing A(Si ∪{x, x′}) among all pairs (x, x′) in X. As Sd is a connected dominating
set in X, all pairs (y2j−1, y2j) for 1 ≤ i ≤ κ are considered.

We can now re-write Claim 2.14 as

For all d ≤ i ≤ κ : A(Si+1) ≥
(

1− 1
κ

)
A(Si) + OPT

κ
.

Combined with Claim 2.13, simple algebra yields that for d ≤ i ≤ κ, we have

A(Si) ≥
[
1−

(
1− d

2κ

)(
1− 1

κ

)i−d]
OPT.

Therefore, for i = κ we have

A(S) = A(Sκ) ≥
[
1−

(
1− d

2κ

)(
1− 1

κ

)κ−d]
OPT =

[
1− 1

2 (1 + t)
(

1− 1
κ

)κt]
OPT

where t = κ− d
κ
∈ [0, 1]. As 1 + x ≤ ex for all x ∈ R, we get

A(S) ≥
(

1− 1
2(1 + t)e−t

)
OPT ≥

(
1− 1

2e
te−t

)
OPT = 1

2OPT,

concluding the proof of the case when k is an even number.
For the odd case k = 2κ− 1: in the first iteration, instead of adding two disks to S1,

we add a single disk of X to S1. This is equivalent to adding two copies of the same disk.
This iteration belongs to the first phase, and the only properties we used in the first phase
is that each iteration adds an area of π, and keeps the solution feasible; these are clearly
true for the first iteration even with one disk. We have proved Theorem 2.3.

20 CHAPTER 2. DISK COVERAGE WITH CONNECTIVITY CONSTRAINTS

2.3 PTAS with resource augmentation (Proof of Theorem 2.4)

Theorem 2.4 (Resource augmentation). Let ε > 0 be a given parameter. Given a set
of points X ⊆ R2 and a non-negative integer k, there is an algorithm (Algorithm 5)
that computes, in time nO(ε−3), a subset S ⊆ X of size at most k and a set Sadd ⊆ R2

of at most εk points, such that UDG (S ∪ Sadd) is connected and the area of the union
of the unit disks centered at S is at least (1− ε)OPT (X, k) .

We first summarize the high level ideas; the details are then presented in subsequent
sections. Let (X, k) denote an input of MACS and OPT be the optimal solution of
MACS on input (X, k). When the context is clear OPT can also denote the total area
covered by the union of the unit disks centered in points of OPT.

We start by guessing a bounding box of size Θ(k)×Θ(k) that contains OPT. Next,
another square of size L×L, where L = Θ(k), is randomly shifted so that it always contains
the bounding box. We remove all disks that are outside the square. That square is then
recursively partitioned into smaller squares until they have (large) constant size. This
hierarchical dissection induces a grid.

We remove all disks that intersect the lines of the grid. In contrast, we deploy some
new disks (Xadd) in some strategic portal positions along the lines and near the boundary
of all the smallest squares.

Next, we use dynamic programming to build a solution from the smallest squares
upwards. The difficulty lies in having to guarantee the connectivity when combining
solutions from smaller squares into larger squares using additional disks, while controlling
the time complexity and the number of disks added.

The key of our approach lies in Lemma 2.20, in which we argue that with constant
probability, there exists a well-structured near-optimal solution that uses at most εk
additional disks.

2.3.1 The grid

The first step is to reduce significantly the size of the input by guessing the position of the
optimal solution.

Lemma 2.15. There exists a point c ∈ X such that OPT is contained in an axis-parallel
square of side length 4k and centered in c.

Proof. For c, take any disk in OPT and recall that OPT is connected and has at most
k disks, so all the disks in OPT are contained in the square centered at c and with side
length 4k.

Given the randomly shifted hierarchical dissection, we use the same terminology as
Vazirani [145, Chapter 11] to define the root square, the shift of the dissection, the
horizontal and vertical lines, the levels of squares and of lines of the dissection, and the
portals. This precise definitions are given in the next subsection. The recursive dissection
stops when a square has side length L0 = Θ(ε−1) (leaf square). Portals are either at
the intersection of grid lines or distributed along the grid lines (with varying density).
We make some observations here (all details and proofs are in the following section and
the appendix). First, the distance between two consecutive portals on a line at level `
is O(L/(m2`)), where m represents the density of portals on the grid. The greater this

2.3. PTAS WITH RESOURCE AUGMENTATION 21

parameter, the greater the accuracy of the solution and higher the running time. Choosing
m = Θ(ε−1 log(L/L0)) = O(ε−1 log(εk)) allows us to compute a near-optimal solution in
polynomial time.

Observation 2.16. If an horizontal line of level ` crosses a vertical line of level greater
than or equal to ` then the intersection point is a horizontal portal.

We define a set P of portal disks which we position at or near the portals. If a portal
(i, j) is on exactly one line of the grid then we add the portal disk (i, j) to P. If a portal
(i, j) is at the intersection of two lines of the grid, then i) if it is a horizontal portal then
we add to P two portal disks (i, j + 2) and (i, j − 2), and ii) if it is a vertical portal then
we add to P two portal disks (i− 2, j) and (i+ 2, j).

Given a square C of the dissection, the potential portal disks of C, denoted by PC ,
are the portal disks on the boundary of C.

Observation 2.17. For any square, the number of potential portal disks is O(m) =
O(ε−1 log(εk)).

The border of a leaf square C, denoted as ∂C, is the set of points in C within distance
1 from C’s boundary. The remaining points of C are called the core of C, written as
core(C). A unit disk with its center in C intersects the boundary if and only if its center
lies in the border. If two disks are in the core of two different leaf squares, then they
do not intersect. We refer to the union of the core of all leaf squares as the core. In
a leaf square C = [a, b] × [c, d], the set of points formed by the boundary of the square
[a+ 2, b− 2]× [c+ 2, d− 2] is called the fence. We cover the fence of C by fence disks,
aligned such that each corner of this square is the center of a fence disk. See Figure 2.4.
We denote by F the set of all fence disks for all leaf squares. The set of portal disks and
fence disks form the set of additional disks Xadd = P ∪ F .

Figure 2.3: An illustration of the grid with
d = 3. Numbers on the top and the right
are the level of the corresponding lines and
the red, orange and yellow are respectively
the example of square of the dissection at
level 1, 2 and 3.

Figure 2.4: The grey and white area are respectively
the core and the border. Dotted lines are from the grid
while the orange lines represent the fence and orange
disks are the fence disks. Blue points are (vertical)
portals and blue disks are portal disks.

22 CHAPTER 2. DISK COVERAGE WITH CONNECTIVITY CONSTRAINTS

2.3.2 Detailed construction of the grid

Let L′ be the sidelength of the box given by the Lemma 2.15, and set X ′ be the set of
points of X lying inside this box. Let L be the smallest power of 2 greater than 2L′. The
root square is defined to be the axis-parallel L × L square with the same left-bottom
corner as the bounding-box.

A shift is an non-negative integer a smaller than or equal to L/2. We say that the root
square is shifted by a if it is translated by the vector (−a,−a). Notice that any shifted
root square contains the bounding-box.

Given a shifted root square, we can define its dissection as a recursive partitioning into
smaller squares. The L×L root square is divided into four squares of size L/2×L/2. Each
of these squares is again divided into four L/4× L/4 squares, so forth. The process stops
when the side length of a square is equal to L0 = Θ(ε−1). Let d = log (L/L0) = O (log(εk)).
We can think of this partitioning as 4-ary tree, where each node at level ` corresponds to a
L02` × L02` square and has four children corresponding to four L02`−1 × L02`−1 squares.
The root square is at level 0 and the leaf squares are at level d. Given two squares of
level ` and level `′, ` > `′, we say the former is of higher level than the latter. So the leaf
square is the one with the highest level.

This dissection defines a grid composed of 2 · (2d − 1) horizontal and vertical lines of
length L. We say that a line is at level ` ∈ {1, . . . , d} if it was added on the grid to divide
a square at level l − 1 into four squares at level `. There are 2` horizontal (resp. vertical)
lines at level `. See figure 2.3.

On each horizontal line of level ` ≥ 1, we will place a set of vertical—notice the naming
asymmetry—portals of level `, near which (not exactly on which) we will deploy the
portal disks to facilitate the connection of disks on both sides of this line. We define a
set of horizontal portals for each vertical line in an analogous manner. Notice that it is
possible that a point is both a vertical portal and a horizontal portal. Let m = O(ε−1d)
be a power of two. Along a line of level `, there are m2` + 1 portals evenly spaced so that
the distance between two neighboring portals have distance exactly L

m2` .

2.3.3 Dynamic program

The algorithm uses dynamic programming. The dynamic programming table is indexed by
configurations.

Definition 2.18. A configuration is a 5-tuple C = [C, t, tadd, P,∼], where:

• C is a square of the dissection.

• 0 ≤ t ≤ k is an integer, denoting the number of disks of S used by the solution inside
C.

• 0 ≤ tadd ≤ εk is an integer, denoting the number of additional disks used by the
solution inside C.

• P ⊆ PC is a subset of potential portal disks of C, those that are used by the solution.

• ∼ is a planar connectivity relation on P (described below), representing the connec-
tivity achieved so far by the part of the solution inside C.

2.3. PTAS WITH RESOURCE AUGMENTATION 23

In the following, to facilitate discussion, we will refer to portals disks as simply portals.
An equivalence relation ∼ on P is a planar connectivity relation if each equivalence
class has an associated tree with the portals at the leaves, and there exists a planar
embedding of those trees inside the square, such that the trees do not intersect.

The content of the dynamic programming table, the value of a configuration C =
[C, t, tadd, P,∼], denoted by A(C), is the maximum area that can be covered by a set
S ⊆ X of t disks in C ∩ core4, such that there is a set Sadd ⊆ Xadd of tadd additional disks
such that any p, p′ ∈ P with p ∼ p′ are in the same connected component induced by
S ∪ Sadd ∪ P . We say that p and p′ are connected in C. If such sets {S, Sadd, P} do not
exist for configuration C, the value A(C) is set to −∞.

2.3.4 Computing leaf entries of the dynamic programming

We first explain how to fill the entries of the table corresponding to the leaf squares. For
each leaf square C, we enumerate

1. all possible subsets S ⊆ X ′∩core(C) of at most k0 disks, for a parameter k0 = O(ε−3)
(see Lemma 2.20).

2. all possible subsets Sf ⊆ F ∩ C,

3. all possible subsets P ⊆ PC , and

4. all possible planar connectivity relations ∼ on P .

We say that (S, Sf , P,∼) is a guess in C and that it is usable if one of the following two
conditions holds:

Case 1. if P = ∅, then S ∪ Sf is connected, otherwise

Case 2. every connected component of S ∪ Sf ∪ P contains at least one portal disk in P .

Each usable guess (S, Sf , P) in C corresponds to a configuration C := [C, |S|, |Sf |, P,∼],
where ∼ is the planar connectivity relation on P induced by the connected components of
S ∪ Sf ∪ P .

Several usable guesses (S, Sf , P) can potentially correspond to the same configuration
C. The value of C is computed5 as the maximum value A(S) over all such guesses S.

2.3.5 Computing all entries

It remains to show how to compute the solution of a configuration, say C = [C, t, tadd, P,∼],
for a square C at level `, by combining the solutions

[
Ci, ti, tiadd, P

i,∼i
]
of the four child

squares Ci, i = 1, 2, 3, 4, at level `+ 1. Recall that connectivity relations ∼i capture the
information about connectivity in the squares Ci. Let P = {p0, . . . , ps} be the subset
of potential portal disks. We define ∼′ as the transitive closure of all ∼i: p ∼′ p′ if and
only if there exists a sequence of squares i1, . . . , is ∈ {1, 2, 3, 4} and a sequence of portals
p = p0, . . . , ps = p′ such that for all 1 ≤ j ≤ s, pj is a common portal of P ij−1 and P ij .

4Recall that core is the union of the core(C) of all leaf squares C.
5The area covered by the union of a set of disks is a real number that can be computed exactly. When

the desired accuracy is a fixed constant (for instance ε), one can give an approximation of this area with
the desired precision in polynomial time.

24 CHAPTER 2. DISK COVERAGE WITH CONNECTIVITY CONSTRAINTS

(a) the top-left configuration is
closed while other configurations
are empty.

(b) there is unique connected
component independent from
the outside world.

(c) Each connected component
contains a portal in P .

Figure 2.5: Illustration of cases (a)-(b)-(c) of point 6. in Definition 2.19.
.

Further, pj−1 and pj must be connected in Cij . We call C empty if P = ∅ and t = 0, and
closed if P = ∅ and t > 0.

We now define the notion of compatibility of configurations.
Definition 2.19. Five configurations

(
C, C1, C2, C3, C4) with C = [C, t, tadd, P,∼] and

Ci = [Ci, ti, tiadd, P i,∼i] are compatible if all the following properties are satisfied.
1. all Ci have the same level and their union is the square C.
2. P =

⋃4
i=1 P

i ∩ ∂C.
3. ∼ is the restriction of the transitive closure ∼′ of

(
∼i
)
1≤i≤4 to P .

4. t = t1 + t2 + t3 + t4 and t ≤ k.
5. tadd = t1add + t2add + t3add + t4add + |

⋃4
i=1 P

i \ P | and tadd ≤ εk.
6. exactly one of following three conditions holds.

(a) Ci, i ∈ {1, 2, 3, 4}, is closed and all Cj , j 6= i are empty.
(b) C is closed and there is exactly one equivalence class for ∼′.
(c) all equivalence classes of ∼′ contain a portal in P .

Remark. By condition 2, the set P of portals used by C is obtained by removing from⋃4
i=1 P

i the portals not on the border of C. Notice that these removed portals in
⋃4
i=1 P

i\P
are now counted as additional disks (in condition 5). Condition 6 attempts to capture all
possible situations—either we have a single connected component not connected to the
“outside world”, which is a feasible solution by itself, (see Condition (6a) and Condition
(6b)), or we have several connected components, each of which must be further connected
to the outside world in a later stage (see Condition (6c)). See Figure 2.5. Finally, it is easy
to see that if all ∼i satisfy the connectivity relation, then so does ∼.

2.3.6 The structural Lemma

Let a be a shift chosen uniformly at random in
{

0, L2
}
. We consider the grid associated

to this shift and the set of additional disks on this grid as defined in the previous section.
The following lemma is essential to our main theorem. Recall that P denotes the set of
portal disks and F the set of fence disks.

2.3. PTAS WITH RESOURCE AUGMENTATION 25

Lemma 2.20 (Structural Lemma). Given a fixed parameter ε > 0, there exists a
subset S ⊆ core of input disks and a set Sadd ⊆ P ∪ F of additional disks, such that
with probability at least 1/3,

(i) (feasibility) |S| ≤ k and S ∪ Sadd is connected,

(ii) (bounded resource augmentation) |Sadd| ≤ εk,

(iii) (near-optimality) A(S) ≥ (1− ε)OPT,

(iv) (bounded local size) For each leaf square C, |C ∩ S| = O(ε−3).

Our dynamic programming aims at finding a solution satisfying all conditions of this
Structural Lemma. We show that such a solution can be computed in time nO(ε−3). The
bounded local size property ensures that we can try all possible configurations in the leaf
squares in polynomial time. We also prove that for any square, the number of different
planar connectivity relations is upper-bounded by the Catalan number of the number of
potential portal disks of the square. It follows from Observation 2.17 that this number is
polynomially bounded.

2.3.7 The algorithm

Input: X, k, ε.
Output: a real number maxi ≥ (1− ε)OPT.
forall c ∈ X do

let B′ be the 4k × 4k square centered at c;
X ′ ← X ∩ B′;
L← the smallest power of 2 such that L ≥ 8k;
forall shift a ∈ {0, . . . , L/2} do

Create a table tab;
foreach configuration C do

tab[C]← −∞;
/* Initialization */
foreach C at level d (leaf square) do

tab[C]← max{A(S) : (S, Sf , P) is usable and corresponds to C};
/* Fusion */
foreach level 0 ≤ i ≤ d− 1 in decreasing order do

foreach configuration C at level i do
tab[C]← max

{∑4
i=1 tab[Ci] : (C, C1, C2, C3, C4) are compatible

}
;

return maxi = max
configuration C
for root square

tab [C];

Algorithm 5: PTAS for MACS with resource augmentation.
Notice that since the root square has no potential portals (portals are only placed on

lines at level at least 1), any configuration that corresponds to the root square has only one
connected component. We can easily add information in the table so that the algorithm
also outputs the corresponding sets S and Sadd.

26 CHAPTER 2. DISK COVERAGE WITH CONNECTIVITY CONSTRAINTS

Notice that Algorithm 5 tries all possible shift a. Our structural Lemma 2.20 ensures
that there exists at least one shift such that the output satisfies all expected properties of
Theorem 2.4.

Theorem 2.21. Algorithm 5 has a running time nO(ε−3).

The key ingredient in order to prove that our algorithm is polynomial follows from
Observation 2.17. We show that the number of connectivity relations of a set of O(m)
portals corresponds to its Catalan number which is polynomial when m = O(ε−1 log(εk)).

Proof. (Theorem 2.21)

Size of tab. There exists 4i squares at level i so the total of squares is
∑d
i=0 4i = O(4d+1).

For any square C, the number of potential portal disks is at most 4m. To see
this, observe that if C is of level i, it is of size L/2i × L/2i. Furthermore, it is
surrounded by lines of level at most i and two adjacent portals on such a line has
distance Ω(L/(m2i)). Therefore, the number of possible sets P ⊆ PC is 24m, and
for each set P of size r the total number of planar connectivity relations is equal to

the r-th Catalan number : P (r) = 1
r + 1

(
2r
r

)
and then by Stirling formula we get

P (r) = O(4r) = O(44m). To see that P (r) is the r-th Catalan number, we check that
it satisfies the same recurrence relation :

P (r) =
r∑

k=1
P (k − 1) · P (r − k) (2.1)

with P (0) = 1. Indeed, if k denotes the index of the first portal pk that is on
the connected component of the r-th portal disk pr, then the portal disk pi with
1 ≤ i ≤ k − 1 cannot be equivalent to a portal pj disk with k ≤ j ≤ n, and then the
equivalence relation can be restricted to the set {pi, 1 ≤ i ≤ k − 1} and there are
P (k − 1) possible distinct choices. Next observe that since pn and pk are connected
(i.e., pn ∼ pk), it is enough to count the number of different equivalence relations in
{pj , k + 1 ≤ j ≤ r}, which is P (r − k). Finally, observe that k can be from 1 to r
(k = r means that pr is alone in its connected component.) We thus concludes (2.1).
Therefore, creating tab in line 5 can be done in time O(4d+1εk284m) = kO(1/ε).

Initialization There exists 4d leaf squares and for each of them, we try all possible guesses.
This can be done in time nO(ε−3).

Fusion Trying all possible combinations can be done in time kO(1/ε)

2.4 Proof of the Structural Lemma
In this section we prove the Structural Lemma.

Lemma 2.20 (Structural Lemma). Given a fixed parameter ε > 0, there exists a
subset S ⊆ core of input disks and a set Sadd ⊆ P ∪ F of additional disks, such that
with probability at least 1/3,

2.4. PROOF OF THE STRUCTURAL LEMMA 27

(i) (feasibility) |S| ≤ k and S ∪ Sadd is connected,

(ii) (bounded resource augmentation) |Sadd| ≤ εk,

(iii) (near-optimality) A(S) ≥ (1− ε)OPT,

(iv) (bounded local size) For each leaf square C, |C ∩ S| = O(ε−3).

We construct S and Sadd from OPT in two steps. In the first step, we build sets S′
and Sadd that satisfy properties (i)-(iii); and in the second step, we construct S ⊆ S′ by
removing some disks from S′ so as to satisfy property (iv) while maintaining the validity
of the three first properties.

2.4.1 Part 1 : Construction of the set of additional disks

Fix any shift, consider its associated grid and dissection and the corresponding set of
additional disks Xadd = P ∪ F . Let S′ be the union of disks in OPT that are located in
the core of a leaf square of the dissection, namely

S′ = OPT ∩ core.

Observe that S′ might be disconnected since we have removed from OPT all the disks
that were intersecting the grid. Letting border denote

⋃
C is leaf ∂(C), we show how to

replace the set of input disks OPT ∩ border by a subset Sadd ⊆ F ∪ P of additional disks.
Each leaf square [a, b]× [c, d] has an associated fence that is the boundary of the square

[a + 2, b − 2] × [c + 2, d − 2]. For each vertical (resp. horizontal) portal disk (x, y), we
define a connection line, which is {x}× [y− 2, y+ 2] (resp. [x− 2, x+ 2]×{y}). The set of
fences and connection lines naturally partition the set of points which are at distance at
most 2 from the lines of the grid into a set of rectangles R. See Figure 2.6. Notice that
all connections and fences are covered by the union of additional disks. Given a rectangle
R ∈ R, we define disk(R) ⊆ Xadd as the minimal set of additional disks that contain R.

We construct Sadd as the union of disk(R), over all rectangles R that intersect a disk
x ∈ OPT ∩ border.

Sadd =
⋃
{disk(R) : R ∈ R, ∃x ∈ OPT ∩ border such that Bx ∩R 6= ∅}

Notice that each disk x ∈ OPT∩border intersects at most two rectangles. Furthermore,
such a disk does not intersect with any fence and can intersect at most one connection line.

Claim 2.22. Sets S′ and Sadd are such that S′ ∪ Sadd is connected, S′ has size at most k
and with probability at least 1/3 : |Sadd| ≤ O(εk) and A(S′) ≥ (1−O(ε))OPT.

The argument is similar to the one of Arora [4]. We first upper-bound the expectation of
|Sadd| and A(OPT)−A(S′), and then use Markov’s inequality. To bound the expectation
of |Sadd|, we observe that the number of additional disks added in Sadd for each disk in
OPT intersecting a line at level ` is O(L/(m2`)) while the probability that a disk intersects
a line at level ` is O(2`/L).

Proof. (Claim 2.22)
Clearly |S′| ≤ |OPT| ≤ k. We now prove that S′ ∪ Sadd is connected. Suppose

that there exists a disk x ∈ OPT ∩ border such that OPT \ {x} is split into several

28 CHAPTER 2. DISK COVERAGE WITH CONNECTIVITY CONSTRAINTS

Figure 2.6: Dotted lines are the grid lines. The bottom and top horizontal lines have respectively
level 8 and 10, and the vertical lines from left to right have level 5, 10 and 9. Grey continuous line
are the fence, and the red ones, the connection lines. Points and blue disks are portals and portal
disks. Striped orange areas illustrate some rectangles R ∈ R, and other disks are fence disks of the
corresponding sets disk(R).

connected components. We know that x intersects only one rectangle R1 ∈ R or two
rectangles R1, R2 ∈ R. Since OPT is connected, and Bx is contained in the set U = R1 or
U = R1∪R2, each connected component intersects the boundary of U . Then, Bx intersects
a disk in disk(R1) or disk(R2). Therefore, OPT \ {x} ∪ disk(R1) ∪ disk(R2) is connected.
By doing so for each x ∈ OPT ∩ border, it follows that S′ ∪ Sadd is connected.

It remains to show that, under a uniform random shift a, with probability at least one
third we have |Sadd| ≤ O(εk) and A(S′) = A(OPT ∩ core) ≥ (1−O(ε))OPT. The proof
is very similar to Arora’s approach, we first upper-bound the expectation of |Sadd| and
A(OPT)−A(S′), and then use Markov inequality to conclude.

We first upper-bound the expected number of additional disks. For each x ∈ OPT
intersecting a line at level `, we have added at most two sets of additional disks associated
to rectangles with side length smaller than the distance between two consecutive portals of
this line. It follows that O(L/(m2`)) additional disks have been added to Sadd for each
disk in OPT intersecting a line of level `. This can be observed in Figure 2.7. Moreover,
the probability that a disk intersects a line at level ` is O(2`/L). Then,

E(|Sadd|) ≤
∑

x∈OPT

d−1∑
`=0
P(x intersects exactly one line at level `)O(L

m2`)

=
∑

x∈OPT

d−1∑
`=0

O(2`

L
· L

m2`) = O(dk
m

) = O(εk)

We now upper-bound the expectation of A(OPT)−A(S′). First we have A(OPT)−
A(S′) ≤ A(OPT∩ border), and the probability that a point p ∈ B(OPT) is in B(OPT∩

2.4. PROOF OF THE STRUCTURAL LEMMA 29

border) is smaller that p is at distance 2 from the lines of the grid. Therefore

E
(
A(OPT)−A(S′)

)
≤ E(A(OPT ∩ border))

≤
∫
p∈B(OPT)

P(p is at distance at most 4 from the grid)dp

≤
∫
p∈B(OPT)

2 · 4
L0

dp

≤ 8 ·OPT
L0

= O(εOPT)

By choosing the constant properly in the big O notation and using the Markov inequality,
we can show that the probability of |Sadd| > O(εk) and the probability of A(OPT)−A(S) >
O(εOPT) are both upper bounded by 1

3 . Thus, by a union bound, we conclude the proof.

2.4.2 Part 2 : Sparsification of S ′

The sets S′ ∪Sadd obtained so far may not satisfy the last property (bounded local size). In
this section, we show how to remove some disks from S′ to guarantee this property while
still maintaining the other required properties in Lemma 2.20.

Suppose that there exists a leaf square C such that S′C := S′ ∩ C has size greater than
k0 := (1+β−1)L2

0 = O(ε−3), where β = min {ε/12, 1}. Then the core of C is “overcrowded”
and we show how to construct a non-overcrowded subset maintaining connectivity while
losing only an ε/2-th fraction of the covered area.

Define a set S to be initially equal to S′. Consider each overcrowded leaf square C one
by one, and define SC = S ∩ C. Start with an empty set H and for each disk x ∈ SC , add
x in H if A(H ∪ {x})−A(H) ≥ β. Define H = SC \H as the complement of H and then
apply Claim 2.23 to G = UDG(S ∪ Sadd) and D = S ∪ Sadd \H to define D′ ⊆ H. Finally
update S to (S \H) ∪D′.

Claim 2.23. Let G = (V,E) be a connected graph and D a dominating set with µ connected
components. There exists a subset D′ ⊆ V \D of size at most 2(µ− 1) such that G[D ∪D′]
is connected.

Proof. Let H and H ′ be two connected components in D that minimize dG(H,H ′). Then,
dG(H,H ′) ≤ 3. Indeed, if dG(H,H ′) ≥ 4, then there exists a vertex x on a shortest path

Figure 2.7: OPT is represented by orange disks. Disks of OPT that intersect the grid (dotted line)
are replaced by additional disks (striped blue disks). This operation maintains the connectivity of
the set.

30 CHAPTER 2. DISK COVERAGE WITH CONNECTIVITY CONSTRAINTS

from H to H ′ that is not dominated by D. This implies that we can find two vertices that
connect H and H ′. We repeat this operation until there is only one connected component.
This requires at most 2(µ− 1) vertices.

The following claim, together with Claim 2.22 ensures that sets S and Sadd built in
Part 1 and Part 2 satisfy the expected properties of our structural Lemma.

Claim 2.24. The constructed sets S and Sadd satisfy

(i) S ∪ Sadd is connected,

(ii) for each leaf square C, |S ∩ C| ≤ k0, and

(iii) A(S) ≥ (1− ε/2)A(S′).

This Claim might not be true if the radius of disks considered are arbitrary. The proof
of this fact follows from geometrical observations about unit disks.

Proof. (claim 2.24)
For (i), we just need to argue that for each leaf square C, after H is defined, S∪Sadd \H

is a dominating set in UDG(S ∪ Sadd) (then the proof follows from Claim 2.23). Indeed if
a disk x is in H then it means that A(H ∪ {x})−A(H) < β ≤ 1. In particular, it implies
that there exists a disk in H ⊆ S ∪ Sadd \H that intersects x.

For (ii), observe that the size of S ∩ C is the sum of the size of the corresponding sets
H and D′ built during the “sparsification” of C. Since all disks in H increases the area
covered by at least β and are contained in a square of area L2

0, the number of disks in H
is upper-bounded by β−1L2

0. Moreover, each connected component of S ∪ Sadd \H had a
disk contained in C so that the number µ of connected component is upper-bounded by
L2

0/π < L2
0/2. Therefore |D′| < L2

0. Finally |H ∪D′| < (1 + β−1)L2
0 = k0.

For (iii), we start by observing that the union B(S′) of disks in S′ is contained in the
set B+(S), which is defined as

B+(S) := {z ∈ R2 | ∃x ∈ S such that ||z − x|| ≤ 1 + β}

Figure 2.8: S consists of grey disks. The boundary of B+(S) is the dotted curve. Circular sectors
are in orange while the red one represents a circular sector in B+(S).

2.5. PTAS FOR WELL-DISTRIBUTED INPUTS 31

Indeed, if there exists a point p covered by a disk x in S′ but at distance at least 1 + β
from any disk of S then adding x to S would increase the area covered by S by more that
β. Therefore, we have the following inclusion

B(S) ⊆ B(S′) ⊆ B+(S), (2.2)

and if the following geometrical claim holds, our proof of (iii) will be complete.

Claim 2.25. A(B(S)) ≥ (1− ε/2)A(B+(S))

The result follows from the fact that B(S) is a union of unit-disks. See Figure 2.8.
The boundary of B(S) is made of circular arcs and each of these arcs is associated with a
circular sector θi. Circular sectors intersect with other circular sectors only on the extreme
points of their corresponding arcs, thus A(∪iθi) =

∑
iA(θi).

We can associate with each circular sector θi (of a disk of radius 1) its “dilation”
θ+
i which corresponds to the same circular sector in a disk of radius 1 + β. We have
A(θ+

i) = (1 + β)2A(θi) and can see that B+(S) \B(S) ⊆
⋃
i(θ+

i \ θi). Then

A(B+(S))−A(B(S)) = A(B+(S) \B(S)) = A
(⋃

i

(θ+
i \ θi)

)
≤
∑
i

A(θ+
i \ θi) =

∑
i

A(θ+
i)−A(θi)

≤
∑
i

(1 + β)2A(θi)−A(θi)

≤
∑
i

3βA(θi) = 3βA
(⋃

i

θi

)
≤ 3βA(B(S))

Therefore, A(B(S)) ≥ A(B+(S))
1 + 3β ≥ (1− ε/2)A(B+(S)). This concludes the proofs of

Claims 2.25 and 2.24.

2.5 PTAS for well-distributed inputs
Let us recall the definition of well-distributed input.

Definition 2.5. Given α > 0, a finite set X of points in the plane is called α-well-
distributed if for all x, y ∈ X, dUDG(X) (x, y) ≤ dα · ‖x− y‖e.

Here d·e is the ceiling function. This ensures that the right-hand side is always at least
one. Notice that a well-distributed set is necessarily connected.

One intuitive view of a well-distributed input is to look at the shape of the “holes” of
the input, that are the different connected components of the complement of the union of
the input disks in the plane. The assumption of well-distribution means that these holes
are roughly fat.

One particular interesting case arises when there is no hole at all. We call these sets
pseudo-convex, and we prove that this is a particular case of well-distributed inputs.

Definition 2.7. A set X is called pseudo-convex if the convex-hull of X is covered by
the union of the unit disks centered at points of X.

32 CHAPTER 2. DISK COVERAGE WITH CONNECTIVITY CONSTRAINTS

Lemma 2.8. A pseudo-convex set X is 3.82-well-distributed.

Proof. (Lemma 2.8) Let X be a pseudo-convex set, G its unit-disk graph, and x and y
be any two disks in X at distance L = ‖x− y‖. We show that dG(x, y) ≤ dαLe where
α = 12/π < 3.82.

If L < 2 then the two unit disks associated to x and y overlap so that dG(x, y) =
1 ≤ dαLe. Otherwise suppose that L ≥ 2. Since X is pseudo-convex, it is connected
and any point in the line segment [x, y] is covered by a disk in X. Let S = {z ∈ X |
Bz ∩ [x, y] 6= ∅, ‖x− z‖ > 2 and ‖y − z‖ > 2} and let I be any maximal independent set
in S ∪ {x, y}. Since S is at distance at least 2 from x and y, we deduce that x, y ∈ I
and all disks in I \ {x, y} are inside a L × 4 rectangle and then |I| ≤ 4L/π. Since I is
maximal, it is a dominating set in S. Therefore, claim 2.23 implies that there exists a
connected subset D ⊆ X such that I ⊆ D and |D| ≤ 3|I| − 2 ≤ 12L/π − 2. We deduce
that dG(x, y) ≤ (12L/π − 2) + 1 ≤ dαLe.

2.5.1 The algorithm

Our Corollary 2.6 states that the restriction of MACS to well-distributed inputs admits a
PTAS. The algorithm works as follows. Given a parameter 0 < ε ≤ 1/2, and an input (X, k)
of MACS, we run Algorithm 5 on input (X, k′, ε′) for suitable values k′ and ε′ specified
below. Next, we transform the set of additional disks obtained into a set of input disks that
has roughly the same size while maintaining the connectivity of the solution. See Lemma
2.26 and Algorithm 6 for details. This algorithm naturally applies to pseudo-convex inputs
(Corollary 2.9).

Input: X an α-well-distributed input, k ≥ 0, ε > 0.
Output: A feasible solution to MACS(X, k).
Choose ε′ > 0 and k′ ≤ k such that (1− ε′)(1− 10(22α+ 4)ε′) ≥ (1− ε) and
k′(1 + (22α+ 4)ε′) = k;
Let S, Sadd be the solution of Algorithm 5 on input (X, k′, ε′) ;
Let S′ be the set obtained from Sadd by Lemma 2.26;
return S ∪ S′;

Algorithm 6: PTAS for MACS for well-distributed inputs.

Lemma 2.26. Given an α-well-distributed input X and two finite sets S ⊆ X and
Sadd ⊆ R2 such that UDG(S ∪Sadd) is connected, there exists a set S′ ⊆ X of size at most
(22α+ 4)|Sadd| such that UDG(S ∪S′) is connected. Moreover, such a set can be computed
in polynomial time.

Since ε′ = Θ(ε/α), the previous algorithm runs in polynomial time when ε and α are
fixed constants.

We now explain how to compute the set S′ in Lemma 2.26. In this Lemma, the set
Sadd is not supposed to be a set of additional disks as defined in Section 2.3.

Proof. (Lemma 2.26) Let us use the same notation as in the statement of Lemma 2.26.
We prove how to build S′ from Sadd such that |S′| ≤ (22α + 4)|Sadd| while preserving
connectivity.

2.5. PTAS FOR WELL-DISTRIBUTED INPUTS 33

Let Y be a connected component of Sadd. We prove that we can find a set Y ′ ⊆ X of
input disks such that |Y ′| ≤ (4+22α)|Y | and (Sadd\Y)∪(S∪Y ′) is connected. Removing Y
might split the solution into several connected components F1, . . . , Fs. For each connected
component Fi, pick one disk xi in Fi ∩X that intersects Y .

Step 1. Each additional disk y in Y is adjacent to at most 6 disks xi. We can connect
the corresponding connected component by using 20α disks of the input. Indeed,
any two xi and xj adjacent to y has a Euclidean distance at most 4. Since X is
well-distributed their distance in UDG(X) is at most 4α. Then, we can find d4α− 1e
disks in X which connect xi and xj . In order to connect all the xi that are adjacent
to y, it is sufficient to repeat this operation 5 times, which asks at most 20α disks. We
can perform this operation for each additional disk that was not already considered.
Then, in total for this first step we need to use at most 20α|Y | disks.

Step 2. During step 1, we may have connected some disks xi, so that the number of
connected components has decreased. The number of connected components is s′ ≤ s,
each of them corresponds to a disk xi, and without loss of generality we can assume
that the corresponding indexes are such that 1 ≤ i ≤ s′. Let T be a spanning tree
on UDG(Y). Without loss of generality, we can suppose that indexes i are such
that the sequence (x1, . . . , xs′) correspond to a T transversal. Note that after step
1, each xi can be associated to a different y in Y . Then, we reconnect each xi to
xi+1 for 1 ≤ i ≤ s− 1. If xi and xi+1 are respectively associated to yi and yi+1, then
||xi − xi+1|| ≤ 2 + 2dT (yi, yi+1) and thus dUDG(X)(xi, xi+1) ≤ dα(2 + 2dT (yi, yi+1)e.
Then, we can find dα(2 + 2dT (yi, yi+1)e − 1 disks in X to connect xi and xi+1. In
order to connect all xi we need to use at most

s′−1∑
i=1
dα(2 + 2dT (yi, yi+1)e − 1 ≤ 2(s′ − 1)α+ 2

s′−1∑
i=1

dT (yi, yi+1)

input disks. Since the order corresponds to a T transversal, each edge is visited at
most twice and then

∑s′−1
i=1 dT (yi, yi+1) ≤ 2(|Y | − 1). Therefore the total number of

disks that were added during this second step is bounded by |Y |(4 + 2α).

We proved that there exists a subset Y ′ ⊆ X of size at most (4 + 22α)|Y | such that
(S ∪ Sadd \ Y) ∪ Y ′ is connected. By doing so for each connected component of Sadd, we
get the result claimed.

2.5.2 Analysis

In this subsection we prove that Algorithm 6 is a PTAS for well-distributed inputs. First,
we need to state the following “stability” property over optimal solutions.

Lemma 2.27. Let η < 1
2 . Then OPT(X, k) ≥ (1− 10η) ·OPT(X, k(1 + η)).

Proof. (Lemma 2.27) Let X be a set of points of the plane, k a positive integer and
η ≤ 1/2 a parameter. We prove a stronger result. Given any solution feasible solution S to
MACS(X, k(1+η)), there exists a subset S′ of S that is a feasible solution to MACS(X, k)
with value at least (1− 10η)A(S). Obviously Lemma 2.27 follows when S is optimal. If
A(S) ≥ k/3, then remove ηk disks from S without disconnecting S. For instance, consider

34 CHAPTER 2. DISK COVERAGE WITH CONNECTIVITY CONSTRAINTS

a spanning tree on UDG(S) and remove the nodes from the leaves to the root until you
reach the desired size. Let S′ denote the subset obtained.

A(S′) ≥ A(S)− ηπk ≥ (1− 3πη)A(S) ≥ (1− 10η)A(S)

If A(S) < k/3, let I be a maximal independent set in S. We have |I|π = A(I) ≤ A(S) < k

3 .
According to claim 2.23, there exists a connected dominating set I ⊆ D ⊆ S in S of size at
most 3|I| − 2 < k/π <

k

3 . Consider a set H ⊆ S \D of size k − |D| > 2
3k built by greedily

adding a disk h ∈ S \ (D ∪H) maximizing the marginal area A(D ∪H ∪ {h})−A(D ∪H).
Since D is a connected dominating set, the set S′ := D ∪H is connected. Since all disk
where added greedily in H, for all H ∈ S \ S′, we have

A(S′ ∪ {h})−A(S′)) ≤ A(S)−A(D)
|H|

≤ 2A(S)
k

.

By submodularity, we deduce that A(S)−A(S′) ≤ ηk · 2A(S)
3k . That implies A(S′) ≥

(1− 3
2η)A(S). This concludes the proof of lemma 2.27.

Remark that this proof is constructive and it is easy to check that finding S′ from any
given set S can be done in polynomial time. We can now prove that Corollary 2.6.

Proof. (Claim 2.6) The solution output by Algorithm 5 on input (X, k′, ε′) verifies the
following properties: S ∪ Sadd is connected, the size of S and Sadd are respectively upper-
bounded by k′ and ε′k′ and A(S) ≥ (1 − ε′)OPT(X, k′). Therefore, the set S′ given
by Lemma 2.26 has size at most (22α + 4)|Sadd| ≤ (22α + 4)ε′k′, and then |S ∪ S′| ≤
k′ + (22α+ 4)ε′k′ ≤ (1 + (22α+ 4)ε′)k′ = k. Since S ∪ S′ is connected, this set is a feasible
solution to MACS(X, k).

Finally, from Lemma 2.27 with parameter η = (22α+ 4)ε′, we get that the area covered
by this solution is

A(S ∪ S′) ≥ A(S) ≥ (1− ε′)OPT(X, k′) ≥ (1− ε′)(1− 10η)OPT(X, k′(1 + η))
≥ (1− ε′)(1− 10(22α+ 4)ε′)OPT(X, k′(1 + (22α+ 4)ε′))
≥ (1− ε)OPT(X, k)

which concludes the proof.

2.6 Hardness results

In this section we show our hardness results. First we prove that MACS is NP-hard and
then we show that the problem even becomes APX-hard when we take as input more
complicated geometrical objects.

2.6.1 NP-Hardness of MACS

We present a reduction from the Rectilinear Steiner Tree (RST) problem, which is
NP-hard, to prove that MACS is NP-hard.

2.6. HARDNESS RESULTS 35

Rectilinear Steiner Tree problem: Given n terminals on a Euclidean
plane and a number L, decide whether there exists a tree to connect all the n
terminals using horizontal and vertical lines of total length at most L.

The problem is NP-complete [58], even if all terminals have integral coordinates
bounded by V = poly(n). In the following, we assume that n is sufficiently large, say
n ≥ 8.

We next explain the reduction. We start from an instance of RST and define an
instance of MACS as follows.

• For all 0 ≤ i, j ≤ V , place one disk with center with center at (ni, nj). We call them
cardinal disks.

• Then place n−4 disks centered at
(
in+ 2 + (1 + 1

n−5) · t, jn
)
where t ∈ {0, . . . , n−5}

and n− 4 disks centered at
(
in, jn+ 2 + t(1 + 1

n−5)
)
where t ∈ {0, . . . , n− 5}. We

call them path disks.

• For each terminal (i, j) in the RST instance, we place n2/10 bonus disks : the first
one centered at

(
in+

√
2, jn+

√
2
)
and the remaining centers forming a connected

group in [in+ 2, (i+ 1)n− 2]× [jn+ 2, (j + 1)n− 2] in such a way that each bonus
disk is tangent6 to other bonus disks, and can be connected to the first bonus disk.
Notice that except the first one, no bonus disk intersects path disks. This defines the
set of disks.

• Set k = 1 + L(n− 3) + n3/10.

This defines the MACS instance. See Figure 2.9 for an illustration. Note that the
interior of a cardinal disk is disjoint from all other disks of the instance.

Notice that as the RST instance has all terminals bounded by a rectangular of
polynomial size, the above reduction can be done in polynomial time.

Let Z denote the set of the cardinal disk at (0, 0) and the n − 4 path disks at(
2 + t(1 + 1

n−5), 0
)
where t ∈ {0, . . . , n − 5} and let A(Z) denote the area covered by

Z.

Lemma 2.28. The original RST instance has a feasible solution of total length at most
L if and only if the derived MACS instance has a feasible solution of area of at least
π + L · A(Z) + (n3

10 −
n
3)π.

Proof. (⇒) This direction is easy to see: We call a set of disks a segment if it consists of a
cardinal disk and all the n− 4 path disks between it and one of its four adjacent cardinal
disks. Thus the area covered by a segment is exactly A(Z). Consider a feasible solution for
the RST instance, of length exactly L without loss of generality. We root it at an arbitrary
integral point, direct it outwards from the root, and view it as a collection of horizontal or
vertical directed edges of unit length. In the MACS instance, we take all bonus disks, the
cardinal disk associated to the root of the RST solution, and, for each directed edge of the
RST solution, all disks of the corresponding segment. The total number of disks is exactly
k, and the area covered is at least π + L · A(Z) + n3π

10 − 2nγ, where γ is the size of the
overlapped area of the first bonus disk associated with a terminal and the path disk just

6their centers are at distance exactly 2.

36 CHAPTER 2. DISK COVERAGE WITH CONNECTIVITY CONSTRAINTS

tangent to the corresponding cardinal disk of the latter. (Recall the first bonus disk can
overlap up to two path disks). The distance between two such centers is h =

√
8− 4

√
2.

Furthermore, the overlapped area can be expressed as

2 arccos h2 − 2
(
h

2

)√
1−

(
h

2

)2

which is upper-bounded by 0.45. Therefore 2nγ ≤ 0.9n ≤ nπ/3. This gives the proof of
one direction.

For (⇐) direction, assume that a solution S for the MACS instance is given with area
at least π+L · A(Z) + (n3

10 −
n
3)π. By our construction, we can modify S, while conserving

its connectivity and without diminishing covered area, so that the following properties
hold.

(i) If any bonus disk corresponding to a terminal is part of S, so is the cardinal disk
corresponding to this terminal.

(ii) The path and cardinal disks in S form a tree; furthermore, such a tree consists of a
cardinal disk, a set of segments, and at most one sub-segment. (A sub-segment is a
subset of a segment, so that it induces a connected component.)

Indeed, if (i) does not hold, then we add in S the missing terminal disk and remove
any bonus disk that does not disconnect the solution. To guarantee (ii), remark that
a sub-segment does not contribute to connect terminals.Suppose the path and cardinal
disks has a cycle. We can replace one segment of this cycle by any set of disks without
disconnecting the solution. Then, if there are at least two sub-segments, we can remove
some disks in the shortest sub-segment et replace them by disks in another sub-segment
until it is complete or the shortest sub-segment is empty. After this step, the number of
sub-segments decreased by at least one. We repeat this operation until the solution has
only one sub-segment.

We claim that the number B of bonus disks in S is at least n3

10 −
9n
10 . Suppose not.

Observe that the covered area of S can be upper-bounded as

A(S) ≤ Bπ + π +
L|Z|+ n3

10 −B
|Z|

A(Z). (2.3)

(Here we ignore the possible intersection of a bonus disk with the path disks. The first
term is the area covered by bonus disks; the second term is the area covered by a cardinal
disk; the third term is the maximum area that can be covered by segments, and possibly
the single sub-segment in S). Now since S is supposed to be a feasible solution in the
MACS instance, its covered area should be at least

A(S) ≥ π + L · A(Z) +
(
n3

10 −
n

3

)
π. (2.4)

The difference between the lower bound (2.4) and the upper bound (2.3) is(
n3

10 −B
)(

π − A(Z)
|Z|

)
− nπ

3 ≥
9n
10

(
π − A(Z)

|Z|

)
− nπ

3 .

2.6. HARDNESS RESULTS 37

Here in order to reach a contradiction (making the last term greater than 0), we need
to calculate A(Z), which is (n− 3)π − (n− 5)γ′, where γ′ is size of the overlapped area
of two disks whose centers have distance 1 + 1

n−5 . γ
′ is easily shown to be at most 1.25.

Therefore,

0.9n(π − A(Z)
|Z|

)− nπ

3 ≥ 0.9n(π − (n− 3)π − (n− 5)1.25
n− 3)− nπ

3

= (0.9 ∗ 1.25− π

3)n− 2 ∗ 1.25
n− 3 ≥ 0.07n− 2.5

n− 3 ≥ 0,

which can be verified when n ≥ 8 by the simple study of a quadratic polynomial.
So we know that S has at least n3

10 − δ bonus disks, where δ ≤ n/10. Ignoring the
possible sub-segment of S, S includes a cardinal disk, L′ segments and n3

10 − δ bonus disks.
As a result,

k = 1 + L|Z|+ n3

10 ≥ 1 + L′|Z|+ n3

10 − δ ≥ 1 + L′|Z|+ n3

10 −
n

10 ,

implying that n/10 ≥ (L′ − L)|Z| = (L′ − L)(n− 3). Thus L′ = L and the cardinal disks
and path disks of S correspond to a tree of length L in the RST instance. The proof
follows.

Figure 2.9: Black, red and orange disks respectively represent path, cardinal and bonus disks. The
hatched disk is associated to a terminal node.

2.6.2 APX-hardness of Quad-Connected-Cover

Theorem 2.12. Quad-connected-cover is APX-hard.

The reduction will be from the following problem.

3-set-cover: Given a set X of n elements, and its subsets S = {S1, . . . , Sm}
such that |Si| ≤ 3 for i = 1, . . . ,m, compute a minimum size subset of S that
covers X.

38 CHAPTER 2. DISK COVERAGE WITH CONNECTIVITY CONSTRAINTS

This problem is APX-hard (due to the fact that minimum vertex cover on graphs with
maximum degree 3 is APX-hard).

Proof. (Theorem 2.12) The proof is by a reduction from 3-set-cover to quad-connected-
cover. In particular, given a set X = {x1, . . . , xn} and subsets § = {S1, . . . , Sm}, we show
how to construct, in polynomial time and for any parameter ε < 1

6 , a (1 + ε)-approximation
to 3-set-cover from a

(
1− ε

6
)−1-approximation to the quad-connected-cover.

o

xi

T ′
i

C

Map the n points of X to n points placed uniformly on a circle C of unit area centered
at the origin o; we will use the notation xi for these points as well. Our set T will consist
of convex quadrilaterals of two types:

• center-quads. These are, for each set Sj ∈ §, the quadrilateral Tj = convexhull (Sj ∪ {o}).

• side-quads. For each element xi, let T ′i be the rectangle with width 1
2n , length 4n,

containing xi and tangent to C

Note that every pair of center-quads intersect (namely, at o), no two side-quads intersect,
and Tj intersects T ′i if and only if xi ∈ Sj . The area of the union of the center-quads is at
most 1, and the area of each side-quad is 2.

Let s be the size of an optimal set-cover for X and §. Let T ′ be a (1− ε
6)-approximate

solution to the quad-connected-cover problem on the set {T1, . . . , Tm, T
′
1, . . . , T

′
n} with

k = n+ s. Observe that to maintain connectivity of the intersection graph of T ′, if a point
xi is covered by a side-quad of T ′, it must also be covered by some center-quad of T ′, as a
side-quad only intersects center-quads.

One possible solution consists of picking the s center-quads of the set-cover, and all the
n side-quads to get the total area of at least 2n; in particular, an optimal solution has value
at least 2n. Thus the area of the union of the quadrilaterals in T ′ is at least

(
1− ε

6
)
· 2n.

This implies that T ′ leaves at most εn
6 elements of X uncovered by center-quads; otherwise

at least εn
6 + 1 side-quads are not picked, and so the area covered by T ′ can only be

1 + 2
(
n− εn

6 − 1
)
≤
(
1− ε

6
)
· 2n− 1. Thus, out of the n+ s quadrilaterals in T ′, at least

n− εn
6 side-quads are present, and at most (n+ s)−

(
n− εn

6
)

= s+ εn
6 center-quads are

present. Thus one can pick arbitrarily one set for each uncovered point to construct a
set cover for X of size at most

(
s+ εn

6
)

+ εn
6 ≤ s + 2ε

6 · 3s ≤ (1 + ε) · s, where the first
inequality follows from the fact that s ≥ n

3 . This completes the proof.

We conjecture that by finding a more specific reduction from APX-hard geometric
covering problems in [76] for instance, the problem quad-connected-cover remains
APX-hard even when the quadrilaterals are triangles with area arbitrarily close to one.

3 | Greedy approaches for Maxi-
mum independent Set

3.1 Introduction

We are interested in the Maximum Independent Set (MIS) problem on graphs with maximum
degree bounded by ∆. This problem is known to be hard to approximate. The best known
asymptotic polynomial time approximation ratio for MIS is O(∆ log log(∆)/ log(∆)) based
on a semidefinite programming relaxation [75]. However, the best known asymptotic
approximation ratio for MIS is O(∆/ log2(∆)) with nO(1) · 2O(∆) running time [10]. In this
chapter we are primarily interested in MIS on graphs with small to moderate values of ∆.
The best known polynomial time approximation ratio for this problem for small values
of ∆ ≥ 3 is arbitrarily close to ∆+3

5 , see [14, 15, 31]. This is achieved by a local search
approach at the expense of huge running time. See Section 3.1.3 for additional details and
references about the Maximum Independent set problem.

We focus on greedy approaches to compute large independent sets efficiently in bounded-
degree graphs. All the greedy algorithms of this chapter work as follows: given a graph G,
we pick a vertex v, add this vertex to the solution, remove v and its neighbors (because
they cannot be in any independent set that contains v), and repeat until the graph is
empty.

S ← ∅;
while G 6= ∅ do

Pick a vertex v ∈ V (G) according to some rules;
S ← S ∪ {v};
G← G \NG[v];

return S
Algorithm 7: the generic greedy algorithm for MIS.

Any maximal (for inclusion) independent set can be produced by this generic greedy
approach. We want to compute large independent sets and therefore, our objective is to
decide which vertex we should pick at any step in order to maximize the size of the final
solution. We will refer to the algorithm used to compute this vertex as the rules of the
greedy algorithm. We will focus on rules that are implementable in time that is polynomial
is in size of the graph.

The simplest rule that comes to mind consists in finding a vertex v in the graph with
minimum degree. We call this rule min-degree, and by extension we call the greedy
procedure implementing this rule as the min-degree greedy algorithm.

39

40 CHAPTER 3. GREEDY APPROACHES FOR MAXIMUM INDEPENDENT SET

The min-degree rule: Pick a vertex of minimum-degree.

This rule is natural: the size of the complement of the independent set output by
the min-degree greedy algorithm is equal to the sum of the degrees1 of the vertices
picked. Therefore, we hope that greedily minimizing the number of neighbors removed will
produce a large independent set. With this min-degree rule, this basic greedy algorithm
is profoundly simple and time-efficient and can be implemented to run in linear time. For
the class of graphs with maximum degree ∆, the first published approximation guarantee
∆ + 1 of this greedy algorithm for MIS we are aware of can be inferred from the proof
of the following conjecture of Erdős, due to Hajnal and Szemerédi [68, 13]: every graph
with n vertices and maximum degree ∆ can be partitioned into ∆ + 1 disjoint independent
sets of almost equal sizes. The approximation ratio of greedy has been improved to ∆− 1
by Simon [139]. The best known analysis of greedy by Halldórsson and Radhakrishnan
[73, 70] for MIS implies the approximation ratio of (∆ + 2)/3.

Halldórsson and Radhakrishnan proved that this algorithm (Algorithm 5.4) achieves a
∆+2

3 -approximation on graphs with maximum degree ∆.
Theorem 3.1 (Halldórsson and Radhakrishnan [73]). Given a graph G with maximum
degree ∆, let I be an independent set output by the min-degree greedy algorithm on input
G. Then, |I| ≥ 3

∆ + 2 · α(G). Moreover, for all ∆ ≥ 3, this bound is tight.

If there are several vertices with minimum degree, then the min-degree greedy al-
gorithm may pick any of them. Can we improve the approximation ratio of this greedy
algorithm by specifying which vertex to pick in case of ties ? Concretely, if two vertices
have minimum degree, which vertex should the algorithm pick in order to increase the
size of the independent set produced ? Halldórsson and Yoshihara proposed the following
tie-breaking rule [74].

The more-edges rule: Among all vertices of minimum degree, pick a vertex v such
that the degree of its closed neighborhooda d(NG[v]) is the largest.

athe number of edges that are incident to one of v’s neighbors and one vertex at distance two from
v.

Again this rule is a natural refinement of the first rule: when we pick a vertex v
of minimum degree, thinking ahead, we also want to increase the chance to find small
degree vertices in the graph G \N [v], hence we want to discard as many edges as possible.
Halldórsson and Yoshihara analyzed this algorithm and proved that the more-edges
greedy algorithm achieves a strictly better approximation on graphs of degree at most
three.
Theorem 3.2 (Halldórsson and Yoshihara [74]). Given a graph G with maximum degree
3, let I be an independent set outputs by the more-edges greedy algorithm on input G.
Then, |I| ≥ 2

3 · α(G)

How far can we hope to go with this approach ? First, Maximum Independent Set is
APX-hard even for cubic graphs [2]. Since we focus in this chapter on the min-degree
greedy algorithm, we have a stronger lower bound found by Halldórsson and Yoshihara
[74]. Figure 3.1 shows that the approximation ratio of any refinement of the min-degree
greedy algorithm must be at least 5/4.

1at the time they were added to the solution.

3.1. INTRODUCTION 41

Figure 3.1: For any i ≥ 0, the graph Hi is subcubic and has only a unique vertex of minimum
degree. Picking this vertex creates four copies of Hi−1. The min-greedy greedy algorithm outputs
on Hi a solution of size 4i(5 + 1/3) − 1/3 while the maximum independent set of Hi has size
α(Hi) = 4i(6 + 2/3)− 2/3. Their ratio tends to 4/5. Hence, any refinement of the min-degree
greedy algorithm has an approximation ratio at least 5/4.

Motivation. In addition to its simplicity and time efficiency, the greedy algorithm for
MIS is also important in its own right. Following Halldórsson and Radhakrishnan [73],
greedy algorithm is known to have several important properties: it achieves the celebrated
Turán bound [142, 47], and its generalization in terms of degree sequences [146]. It achieves
a good graph coloring approximation when applied iteratively as a coloring method [87].
Finally, the greedy algorithm finds optimal independent sets in trees, complete graphs,
series-parallel graphs, co-graphs, split graphs, k-regular bipartite graphs, and graphs with
maximum degree at most 2 [73, 16]. Another important but non-explicit class of graphs
for which greedy is optimal is the class of well-covered graphs, introduced by Plummer
[126], and widely studied, see [127] for a survey. A graph is well-covered if all its maximal
independent sets have the same size. In particular, because any greedy set is maximal,
the greedy algorithm is optimal on such graphs. Furthermore, the greedy algorithm finds
frequent applications in graph theory, helping to prove that certain classes of graphs have
large independent sets, e.g., it almost always finds a 2-approximation to MIS in a random
graph [116], or it provides an independent set of size at least 0.432n in random cubic
graphs with probability tending to 1 as n, the number of vertices, tends to +∞ [56].

3.1.1 Our results

Our main technical contribution is a new class of “payment schemes” for proving improved
and tight approximation ratios of greedy with additional tie-breaking rules. With our new
payment schemes we obtain the best possible or the best known analyses of the greedy
algorithm on bounded degree graphs. As a warm-up, we first apply these new techniques
to MIS on graphs with maximum degree bounded by ∆ to obtain the following results:

• A simple and short proof of the (∆ + 2)/3-approximation ratio of the min-degree
greedy algorithm, a result proved previously by Halldórsson and Radhakrishnan
(Theorem 3.1) [73, 70]. We extend a lower bound construction of Halldórsson
and Radhakrishnan [73] to prove that any minimum-degree greedy algorithm (i.e.,
any algorithm that iteratively picks a vertex of minimum degree) must have an
approximation ratio at least (∆ + 1)/3−O(1/∆).

• A simple proof of the (∆ + 6)/4-approximation ratio of the min-degree greedy
algorithm on triangle-free graphs with maximum degree ∆ (Theorem 3.9), which

42 CHAPTER 3. GREEDY APPROACHES FOR MAXIMUM INDEPENDENT SET

improves the previous best known greedy ratio of ∆/3.5 + O(1) [70] for MIS on
triangle-free graphs. Compared to the proof in [70], which uses a technique of Shearer
[138], our proof is extremely simple and short.

• A simple proof that the more-edges greedy algorithm achieves a 3/2-approximation
in subcubic graphs (Theorem 3.2).

We see that as ∆ increases, there is no hope in obtaining significantly better approxi-
mation than (∆ + 2)/3 by using any, even exponential time, tie-breaking rule for greedy
(Theorem 3.22). This motivates us to focus on the small values of ∆. Indeed, we have
to develop our payment scheme techniques significantly more compared to the above
applications to MIS on graphs with maximum degree ∆ for any value of ∆.

We completely resolve the open problem from the paper of Halldórsson and Yoshihara
[74] and design a fast, ultimate advice for greedy obtaining a 5/4-approximation, that is,
the best possible greedy ratio for MIS on subcubic graphs.

Theorem 3.3. There exists an ultimate greedy algorithm (Algorithm 9) such that
given a graph G = (V,E) with maximum degree 3, the algorithm outputs a independent
set of size at least 4

5 · α(G).

Our new greedy 5/4-approximation algorithm has running time O(n2), where n is
the number of vertices in the graph. For comparison, the best known algorithm for this
problem is a local search 6/5-approximation algorithm of Berman and Fujito [14], and with
an analysis from [71] has a running time no less than n50. Specifically, if the approximation
ratio of this local search algorithm is fixed to 5/4, then the running time is n18.27, see [31].

To prove these results we develop a payment technique to pay for the greedy solution
via a specially defined class of potential functions. For this new class of potentials on
subcubic graphs, we develop a very specific inductive process, which takes into account
“parities” and priorities of the reductions performed by greedy, to prove that the value of
the potential is kept locally to be at least −1. An additional, global argument is required
to show that the global potential is at least 0.

We complement our positive results with impossibility results which suggest that our
bounds on the design of good tie-breaking rules for greedy are essentially (close to) best
possible, or non-trivial computational problems. This also suggests that the design of rules
for the greedy algorithm is a non-trivial task.

A graph is called well-covered if all of its maximal independent sets are of the same
size, see [126, 127]. Caro et al. [22] study the computational complexity of the problem of
deciding if a given graph is well-covered. They prove that this problem is co-NP-complete
even on K1,4-free graphs.

To prove our lower bounds we resort to a notion which captures the essence of greedy.
Namely, we study the computational complexity of computing a good greedy rule for MIS.
Towards this goal, Bodlaender et al. [16] defined a problem called MaxGreedy, which given
an input graph asks for finding the largest possible independent set obtained by any greedy
algorithm. Thus, MaxGreedy asks for computing the best rule for greedy, i.e., one that
leads to the largest possible greedy independent set. They proved that the problem of
computing a rule which finds an r-approximate solution to the MaxGreedy problem is

3.1. INTRODUCTION 43

co-NP-hard for any fixed rational number r ≥ 1 and that this problem with r = 1 remains
NP-complete [16].

We significantly improve the previously known results on the hardness of computing
good rules for greedy, by obtaining the following new results:

• We prove that the MaxGreedy problem is NP-complete even on cubic planar graphs
(Theorem 3.23). This significantly strengthens the NP-completeness result by Bod-
laender et al. [16] who prove it on arbitrary, not even bounded-degree, graphs. This
result suggests that the problem of designing and analyzing tie-breaking rules for
greedy even on cubic planar graphs is difficult.

• We further prove that MaxGreedy is even NP-hard to approximate to within a ratio
of n1−ε for any ε > 0 by a reduction from 3-SAT, and hard to approximate to within
n/ logn under the Exponential Time Hypothesis (Theorem 3.27). We extend this
construction to the class of graphs with bounded degree ∆. We prove that MaxGreedy
remains hard to approximate to within a factor (∆ + 1)/3−O(1/∆)−O(1/n) on
this class (Theorem 3.28), nearly matching the approximation ratio (∆ + 2)/3 of the
greedy algorithm in this class.

• We prove that the MaxGreedy problem remains hard to approximate on bipartite
graphs (Theorem 3.29). This is quite interesting because it is well known that the
MIS problem is solvable in polynomial time on bipartite graphs.

Finally, we extend a lower bound construction of Halldórsson and Radhakrishnan [73]
to prove that any greedy algorithm (with any, even exponential time, tie-breaking rule)
has an approximation ratio at least (∆ + 1)/3−O(1/∆) on graphs with maximum degree
∆ (Theorem 3.22).

3.1.2 Our technical contributions

Our main technical contributions are a class of potential functions and payment schemes,
together with an inductive proof technique that are used to pay for solutions of greedy
algorithms for MIS. These new techniques lead to tight analyses of the approximation
ratios of greedy algorithms.

Here we will explain intuitions about our proof of the 5/4-approximation ratio of the
ultimate greedy algorithm on subcubic graphs, detailed in Section 3.4, which uses the
full technical machinery of our approach. Let G be a given input graph with an optimal
independent set OPT. The greedy algorithm executes reductions on G, i.e., a reduction
is to pick a minimum degree vertex v in the current graph (root of the reduction) into
the solution and remove its neighbors, see Definition 3.4 and Figure 3.2 for examples of
reductions. Suppose the first reduction executed by Greedy is R and it is bad: its root v has
degree 2, v 6∈ OPT and both neighbors of v are in OPT. Then, locally, the approximation
ratio is 2. To bring the approximation ratio down to 5/4, we must prove that, in the future,
there will exist equivalent of at least three reductions, called good, each of which adds
one vertex to the solution and removes only one vertex from OPT. Moreover, for each
executed bad reduction, there must exist a unique (equivalent of) three good reductions.

Consider, for example, the family of instances Hi+1 of MIS in Figure 3.1. There, black
vertices belong to OPT, while white do not. This class of instances is due to Halldórsson
and Yoshihara [73]. The min-degree greedy algorithm executes on this instance many

44 CHAPTER 3. GREEDY APPROACHES FOR MAXIMUM INDEPENDENT SET

bad reductions, but only at the very end, good reductions, triangles, are executed. It can
easily be checked that there are just enough good reductions to uniquely map three of
those to any executed bad reduction (in fact in the whole process there is exactly one
good reduction that is unused). This essentially shows a lower bound of 5/4 on the ratio
of any greedy when i tends to infinity. We see that the “payment” for bad reductions
arrives, but very late! Such a “payment” may not only be late, but we also do not know
when “good” reductions providing such payment for “bad” reductions are executed. Thus
good reductions might be very irregularly distributed. For instance, suppose that the first
reduction in H ′0 on Figure 3.1, let us call it R, has two of its contact edges (these are the
four edges going down from R’s two black vertices) going to an identical white vertex,
creating a follow up reduction of degree one. Then that degree one reduction is good and
when executed, it can immediately (partially) pay for the bad reduction R.

How do we prove an existence of such a highly non-local and irregular payment scheme?
We will define a potential of a reduction, see Definition 3.5, which will imply the existence
of two sources of “payments” – in the “past,” from the very first executed reduction, and –
in the future, from the executed good reductions. Moreover, our potential will be defined
in such a way that each executed reduction can in some sense be “almost paid for” locally,
so that at every point in time we will keep the value of the potential of each connected
component of at least −1. For example in the instance from Figure 3.1 the execution of the
first bad reduction in graph Hi+1 creates 4 connected components Hi, and then Greedy
executes reductions in each of them independently.

We will have an intricate inductive argument, see the Inductive Low-debt Lemma
3.15, showing that an execution of a sequence of reductions in a connected input graph
will have the total potential at least −1. In the induction step, some reductions R may
create multiple components, each with potential −1. In such cases when we cannot locally
obtain a potential at least −1, we will make sure that even before the execution of R,
such components contain reductions with strictly higher greedy priority than that of R,
thus leading to a contradiction, or that reduction R can pay for such components. Having
proved that the total potential of an execution in the (connected) input graph is at least
−1, we will finally pay for this −1 by the very first executed reduction for which we will
show that it will always possess an extra saving of 1, which is a payment from the “past.”

Intuitively, our potential will imply that we can ship the payments from good reductions
executed anywhere in the graph by the greedy algorithm into the places where bad reductions
need those payments. Such a shipment is unique, in the above sense that there exists three
(equivalent) good reductions per single bad reduction. We will realize this shipment by
deferring the need of payment into the future along edges, called contact edges, which are
incident to the neighbors of the reduction’s root vertex. When these contact edges are
created by a bad reduction R, they will be called loan edges. Each loan edge e created
by R will have a “dual” edge (physically identical to e), called a debt edge, which will be
inherited by the future reductions directly created by R via its contact edges.

Our potential of a reduction R will account for the number of vertices chosen to the
solution, removed from OPT, plus the number of loan edges, minus the number of debt
edges. Thus, we will precisely account for such edges. This process is complicated by
the fact that vertices can be black (in OPT) and white (outside of OPT) and whether a
reduction is “bad” depends on the distribution of black/white vertices in the reduction.
For instance, a reduction like the first one in graph H0 on Figure 3.1 might have a black
root and thus the two root’s neighbors will be white. Such a reduction will in fact be

3.1. INTRODUCTION 45

“good” when executed.
Some reductions are “bad” and they create “many” contact edges, like the first reduction

in graph H ′0 on Figure 3.1 (with white root). Those “many” contact edges, called loan edges,
will in the future create some good reductions that will pay for that bad one. Observe that
such a reduction has more loan edges than debt edges, so it creates a surplus of credit. On
the other hand when the greedy process ends, it can end only with terminal reductions.
Those terminal reductions do not have any contact edges, but they have the property that
for any white vertex added to the solution, they remove only one black vertex. That is
why they can “pay” for the previous bad reductions.

This explains only some intuitions of why such a highly non-local and irregular payment
scheme can have a chance to succeed, Furthermore, and but most importantly, this approach
will enable us to “predict” the precise future graph structure by using the contact edges
(see Lemma 3.15). It also enables us to keep track of the past reductions – by keeping track
of the debt edges and the current state of the savings. And indeed, we have succeeded in
building a theory that delivers a complete and precise such payment scheme.

This approach allows us to achieve a interesting kind of result here – namely, to
(essentially) characterize all graphs that can have negative potential! See the Definition
3.14 and Lemma 3.15. These ideas lead to our analysis which is extremely tight, essentially
up to an additive unit in the following sense. We prove that (a version of) our 5/4-
approximate greedy algorithm finds a solution of size at least 4

5 |OPT|+ 1
5 on any subcubic

graph, whereas when run on the lower bound instances of Halldórsson and Yoshihara [73],
our algorithm finds a solution of size precisely 4

5 |OPT|+ 1
5 . A somehow unusual aspect of

our result is that we can prove that any lower bound example that shows exact tightness
of our guarantee of 4

5 |OPT|+ 1
5 must be an infinite family of graphs, see Section 3.5.3.

3.1.3 Further Related work

In this section we survey some further related work on MIS. It will be selective, because of
vast existing literature on approximating MIS.

On general graphs. The MIS problem is known for its notorious approximation hardness.
Håstad [80] provided a strong lower bound of n1−ε on the approximation ratio of the general
MIS problem for any ε > 0, under the assumption that NP 6⊆ ZPP, where n is the number
of vertices of the input graph. This hardness result has been derandomized by Zuckerman
[148] who showed that the general MIS is not approximable to within a factor of n1−ε for
any ε > 0, assuming that P6= NP. The best known approximation algorithms for general
MIS problem achieve the following approximation ratios: O(n/ log2 n) by Boppana and
Halldórsson [17], that was improved to Õ(n/ log3 n) by Feige [50] (this ratio has some
additional log logn factors).

On graphs with maximum degree ∆. Even if ∆ = 3, MIS is known to be APX-hard,
see [2]. There are also explicit constant hardness ratios known for small constant values of ∆
[30]. As ∆ grows, there are stronger, asymptotic, hardness of approximation results known:
Ω(∆/ log2 ∆), under the Unique Games Conjecture [7], and Ω(∆/ log4 ∆), assuming that
P 6= NP [24].

The first known nontrivial approximation ratio for MIS on graphs with maximum
degree ∆ is ∆, achieved by Lovasz’s algorithmic proof [109] of Brooks’ coloring theorem.

46 CHAPTER 3. GREEDY APPROACHES FOR MAXIMUM INDEPENDENT SET

The best known asymptotic polynomial time approximation ratio for MIS, i.e., when
∆ is large, is O(∆ log log(∆)/ log(∆)), based on a semidefinite programming relaxation
[75]. However, if we allow for some extra time, there exists an asymptotic O(∆/ log(∆))-
approximation algorithm with O(nO(1) · exp(logO(1) n)) running time (Bansal et al. [9]).
And in particular, the best known asymptotic approximation ratio for MIS is O(∆/ log2(∆))
with O(nO(1) · 2O(∆)) running time [10]. For small to moderate values of ∆, Halldórsson
and Radhakrishnan [72, 71], via subgraph removal techniques, obtain an asymptotic ratio
of ∆/6(1 + o(1)) with O(∆O(1) · n) running time for relatively small ∆ ≥ 5, and O(∆

log log ∆)
for larger ∆ with linear running time.

Demange and Paschos [44] prove that a ∆/6-approximation ratio can be obtained in
time O(nm), but this ratio is asymptotic as ∆→∞, where m is the number of edges in
the input graph. They also prove that an ∆/k-approximation ratio can be achieved in time
O(ndk/2e), for any fixed integer k. This second ratio is also asymptotic. Those algorithms
do not apply to ∆ = 3, but to quite large values of ∆. Furthermore, Khanna et al. [92]
obtained a (

√
8∆2 + 4∆ + 1 − 2∆ + 1)/2-approximation for ∆ ≥ 10, with O(∆O(1) · n)

running time by local search.
For any values of ∆, Hochbaum [78], using a coloring technique accompanied with

a method of Nemhauser and Trotter [123] based on linear programming, obtained an
algorithm with a ratio of ∆/2. Berman and Fürer [15] designed an algorithm whose
performance ratios are arbitrarily close to (∆ + 3)/5 for even ∆ and (∆ + 3.25)/5 for
odd ∆. Berman and Fujito [14] obtained a better ratio which is arbitrarily close to ∆+3

5 .
Finally, in the latest previously known results from Chlebík and Chlebíková [31], their
approximation ratio is arbitrarily close to ∆+3

5 − 4(5
√

13−18)
5

(∆−2)!!
(∆+1)!! , which is slightly better

than the previous results. These algorithms are based on local search and they have huge
running times.

On subcubic graphs. For the case of subcubic graphs with ∆ = 3, MIS is known to be
NP-hard to approximate to within 95

94 [30]. Hochbaum [78] presented an algorithm with a
ratio of 3/2. Berman and Fujito [14] obtain a ratio of 6

5 albeit with a huge running time.
Even with a tighter analysis from [71], the time complexity of such local search algorithm
appears to be no less than n50. Chlebík and Chlebíkova [31] show that their approximation
ratio is arbitrarily close to 3−

√
13
2 , which is slightly better than 6

5 . Moreover, the time
complexity of their algorithm is also better. Specially, if the ratio is fixed to 5

4 , then the
running time is n18.27. Halldorsson and Radhakrishnan [72] provided another local search
approach based on [15] and obtain a ratio of 7

5 in linear time, and a (4
3 + ε)-ratio in time

O(ne1/ε). Finally, Halldórsson and Yoshihara [74] presented a linear time greedy algorithm
with an approximation ratio of 3

2 .
2

3.2 Analyzing Greedy: our payment scheme

In this section we present a payment scheme tool to analyze the approximation ratio of
(any sophistication of) the min-degree greedy algorithm for Maximum independent set.

It is clear that at the end of the execution of the greedy algorithm (Algorithm 7), the
solution S returned is an independent set. Let S = {v1, . . . , vk} be the ordered output. Let
Gi denote the graph after removing vertex vi and its neighboring vertices. More precisely,

2They also claim a better ratio of 9/7 in linear time, however, they have retracted this result [69].

3.2. ANALYZING GREEDY: OUR PAYMENT SCHEME 47

G0 = G and Gi = G[V \ NG [{v1, . . . , vi}]], where vi is a vertex in Gi−1 that satisfies
dGi−1(vi) = min

{
dGi−1(v) : v ∈ V (Gi−1)

}
.

3.2.1 Basic reductions

Since the greedy algorithm removes iteratively a vertex and its neighbors from the current
graph, the whole execution of the algorithm can be seen as a sequence of reductions of the
input graph. To analyze an execution of the greedy algorithm we will only require local
information around the vertices picked at each step of the algorithm.

Definition 3.4. Given a graph G, the basic reduction R associated to a vertex
r ∈ V (G) corresponds to the subgraph induced by vertices at distance at most 2 from
r. We refer to r as the root of the reduction. The root and its neighbors, the middle
vertices, form the ground of the reduction, denoted by ground(R). Vertices at
distance two from the root are the contact vertices. The set of contact vertices is
denoted by contact(Ri). Then, the edges between middle and contact vertices are
called contact edges. Finally, the degree of a basic reduction is defined as the
degree of its root vertex.

See Figure 3.2 for an illustration. Each iteration of the greedy algorithm corresponds
to a basic reduction, denoted by Ri, which can be described by a pair (vi, Gi−1). An
execution E := (R1, . . . , Rk) of the greedy algorithm is the ordered sequence of basic
reductions performed by the algorithm. The size k of the solution returned is equal to the
number of basic reductions executed.

From now on, we will consider that two basic reductions R = (v,G) and R′ = (v′, G′)
are “equivalent” if there exists a one-to-one function φ : NG[v] −→ NG′ [v′] such that
φ(v) = v′, u and w are adjacent in G if and only if φ(u) and φ(w) are adjacent in G′, and
if each middle vertex u is incident in G to the same number of contact edges than φ(u) in
G′.

For the min-degree greedy algorithm, Figure 3.2 presents a table of all possible basic
reductions of degree at most two in subcubic graphs. It is important to notice that the
middle vertices must have degrees equal to or greater than the degree of the reduction.

Figure 3.2: Basic reductions of degree at most two in subcubic graphs. We will refer later to these
basic reductions by their names, for instance 2.b is a basic loop reduction. In this picture, we have
drawn contact vertices as distinct vertices, but in a reduction, several contact edges may be incident
to the same contact vertex. When the right-most contact vertex c of 2.e has degree three, this
reduction is an odd-backbone reduction. Notice that in this case, the middle vertex of degree two is
also the root of a basic odd-backbone reduction.

48 CHAPTER 3. GREEDY APPROACHES FOR MAXIMUM INDEPENDENT SET

3.2.2 Potential function of basic reductions

Let G = (V,E) be a connected graph with maximum degree ∆ and E = (R1, . . . , Rk) an
execution of the greedy algorithm on the input graph G.

This execution is associated to a decreasing sequence of subgraphs of G:

G = G0 ⊃ · · · ⊃ Gk = ∅,

where Gi = G
[
V \

⋃i
j=1 ground(Rj)

]
is the induced sub-graph of G on the set of vertices

V \
⋃i
j=1 ground(Rj).

We also fix an independent set I and we say that a vertex v is black if v ∈ I and
white otherwise.

Given a basic reduction Ri = (vi, Gi−1), we define loan edges of Ri as all contact
edges with a white contact vertex. Notice that the middle vertex of a loan edge can either
be black or white.

We also define the debt of a white vertex in the ground of Ri as the number of times
this vertex was incident to a loan edge, let us call it e′, of a reduction that was previously
executed. Such loan edge e′ is also called a debt edge of reduction Ri. It turns out that
the debt of a white vertex corresponds exactly to the difference between its degree in the
original graph G and in the current graph Gi−1. We now define the exact potential of
basic reduction.

Definition 3.5. Given two parameters γ, σ ≥ 0, the exact potential, w.r.t. γ and
σ, of a reduction Ri, for 1 ≤ i ≤ k, as

ΦG,I(Ri) := γ − σ · |I ∩ ground(Ri)|+ loanI(Ri)− debtG,I(Ri),

where loanI(Ri) is the loan of reduction Ri that corresponds to its total number
of loan edges, and debtG,I(Ri) is the debt of a reduction defined as the sum of the
debts of the vertices of its ground:

debtG,I(Ri) :=
∑

u∈ground(Ri)\I

(
dG(u)− dGi−1(u)

)
.

The exact potential of an execution E = (R1, . . . , Rk) is the sum of the exact
potentials of all reductions:

ΦG,I(E) =
k∑
i=1

ΦG,I(Ri).

The choice of the parameters γ, σ depends on the approximation ratio that we want to
establish. We first obtain the following property.

Proposition 3.6. Given an execution E = (R1, . . . , Rk) of the greedy algorithm on a graph
G with an independent set I we have: ΦG,I(E) = γ · k − σ · |I|.

Proof. Since the independent set produced by the greedy algorithm is maximal, each vertex
in the G is removed exactly once, i.e., is in the ground set of exactly one reduction. Thus,∑k
i=1 |ground(Ri) ∩ I| = |I|. Moreover, the total debt

∑
i=1 debtG,I(Ri) and the total

loan
∑
i=1 loanI(Ri) are equal. The equality claimed follows by a by a simple counting

argument.

3.2. ANALYZING GREEDY: OUR PAYMENT SCHEME 49

If we manage to find suitable values γ, σ such that all possible reductions have non
negative potential, then a direct corollary of Proposition 3.6 is that Greedy is an (γ/σ)-
approximation algorithm.

In order to measure the potential of each reduction, we now define a new potential,
called simply potential, that is a lower bound on the exact potential.

As it relies on the notion of debt, the exact potential of a reduction Ri depends on the
original graph G. This lower bound is obtained by supposing that the debt of each white
vertex is maximal, or equivalently, that its degree in the original graph was equal exactly
to ∆, the maximum degree in the input graph. Namely,

debtI(Ri) :=
∑

u∈ground(Ri)\I

(
∆− dGi−1(u)

)
≥ debtG,I(Ri). (3.1)

Then we define the potential, w.r.t. γ and σ, of reduction Ri, which is now independent
from the original graph, as

ΦI(Ri) := γ − σ · |I ∩ ground(Ri)|+ loanI(Ri)− debtI(Ri).

We define the potential of an execution similarly. See Figures 3.3, 3.7 and 3.10 for
examples of the potential of basic reductions in subcubic graphs with parameters γ, σ = 5, 4.
Obviously, this new potential is a lower bound on the exact potential defined previously,
and more precisely, we have the following relation, that follows easily from the above
definitions.

Proposition 3.7. Let G be a graph with maximum degree ∆, I an independent set in G
and E an execution in G. Then,

ΦG,I(E) = ΦI(E) +
∑
v/∈I

(∆− dG(v)).

To evaluate the potential of a reduction, we no longer need to know the set of reductions
previously executed but simply the structure of the graph formed by the vertices at distance
two from the root, and also which vertices are black/white, which reduces to a relatively
small number of cases. With this potential we are already able to obtain tight analysis of
the approximation ratio of the min-degree greedy algorithm, as we will demonstrate in
Section 3.3.1. For this, we simply have to find the right parameters γ, σ, then check that
all basic reductions have non-negative potential, and conclude by the following result:

Corollary 3.8. Let G be a family of graphs, and let R be the set of basic reductions
obtained from graphs in G by a refinement A of the generic greedy algorithm (Algorithm
7). Then, let γ, σ be two parameters such that for any reduction R ∈ R and any
independent set I, we have ΦI(R) ≥ 0 then the greedy algorithm A is a (γ/σ)-
approximation on G.

In the next section, we apply this strategy for three classes of graphs. As we will
primarily see in Section 3.3.3 and later to design the ultimate 5/4-approximation in subcubic
graphs, negative potential reductions are sometimes inevitable. Fortunately, Corollary 3.8
establishes only a necessary condition, since our initial goal is to guarantee that the exact
potential of the whole execution is non-negative (Proposition 3.6). We will see that even
if some basic reductions have negative potential, it is still possible to group these “bad”
reduction with “good” ones, i.e., reductions with positive potential such that the whole
group has non-negative potential.

50 CHAPTER 3. GREEDY APPROACHES FOR MAXIMUM INDEPENDENT SET

3.3 Application to bounded degree graphs

In this section, we use the potential introduced in the previous section to prove Theorem
3.1 and Theorem 3.2. Our proof is simpler and shorter compared to the proof in [73]
and [74]. We additionally prove that the approximation ratio of the min-degree greedy
algorithm can be improved for triangle-free and bounded-degree graphs.

Theorem 3.9. Given a triangle-free graph G with maximum degree ∆, let I be an
independent set outputs by the min-degree greedy algorithm on input G. Then,
|I| ≥ 4

∆ + 6 · α(G)

This new result improves the previous best known greedy ratio of ∆/3.5 +O(1) [70] for
Maximum Independent Set on triangle-free graphs. Compared to the proof in [70], which
uses a technique of Shearer [138], our proof is again extremely simple and short.

3.3.1 Proof of Theorem 3.1

We prove in this section that the min-degree greedy algorithm is a ∆+2
3 -approximation

algorithm for the Maximum independent set problem on graphs with maximum degree ∆.
For this, let us use the potential from the previous section, with parameters

γ = (∆ + b)∆+2
3 and σ = ∆ + b

where b = 1 if ∆ ≡ 2 (mod 3), and b = 0 otherwise. The choice of the value b is
simply to ensure that the potential value is integer. We prove that the potential of
any reduction is non-negative, and apply Corollary 3.8 so that the approximation ratio
of themin-degree greedy algorithm in graphs with maximum degree ∆ is γ/σ = (∆+2)/3.

Let R be the set of all possible basic reductions, and let I be a maximum independent
set in the input graph. We note that although there are many types of reductions in R,
their structure is highly regular. The idea of the proof is to find the worst type reduction
and show that its potential is non-negative. Observe that, if we want to find a reduction
R∗ to minimize the potential, R∗ = arg minR∈RΦI(R), such reduction intuitively needs
more debt edges and vertices in I and less loan edges. Also, if v∗ is the root of reduction
R, then for each v ∈ V (R) \ {v∗}, if dR(v∗) = k, then dR(v) ≥ k, by the greedy rule. For
any reduction R, let i be the number of vertices in I ∩ ground(R) (black vertices), and let
` be the number of vertices in ground(R) \ I (white vertices). We then have the following
bounds:

loanI(R) ≥ (i+ `− 1− `) · i,

debtI(R) ≤ (∆− i− `+ 1) · `.

We will justify these bounds now. Let G′ be the current graph just before R is executed.
Note first that the degree of the root of R is i + ` − 1. The lower bound on loanI(R)
depends on the vertices in I, by the definition. By the min-degree rule, for each of vertex
v ∈ I, dG′(v) ≥ i+ `− 1. There are at most ` vertices not in I which can be connected
to v, thus, the total number of loan edges of v is at least (i + ` − 1 − `), and we have
i such vertices. Note that in this argument we have possibly missed all loan edges that
are contact edges of R with both end vertices from ground(R) \ I. The upper bound on

3.3. APPLICATION TO BOUNDED DEGREE GRAPHS 51

debtI(R) depends on ∆, the degree of the root vertex and the number of vertices not in I.
The number of debt edges is at most ∆− i− `+ 1 for any white vertex, as otherwise it
violates the min-degree rule, and we have ` vertices not in I, that is, white vertices.

ΦI(R) = ∆ + b

3 · (∆ + 2)− (∆ + b)|I ∩ ground(R)|+ loanI(R)− debtI(R)

≥ ∆ + b

3 (∆ + 2)− (∆ + b)i+ (i− 1)i− (∆− i− `+ 1)`

= `2 − (∆− i+ 1)`+ ∆ + b

3 (∆ + 2)− (∆ + b)i+ (i− 1)i

Let F (∆, i, `) = `2− (∆− i+ 1)`+ ∆+b
3 (∆ + 2)− (∆ + b)i+ (i− 1)i. Then, the question

now is to find the minimum value of F (∆, i, `) with constrains ∆, i, ` ∈ Z+ ∪ {0}.
We will first prove that F (∆, i, `) ≥ b/3−b2/3−1/3 for any ∆, i, ` ∈ R+∪{0}. F (∆, i, `)

as a function of ` is a parabola with the global minimum at point ` such that ∂F
∂` = 0,

which gives us that ` = (∆− i+ 1)/2. Plugging ` = (∆− i+ 1)/2 into F (∆, i, `), we obtain
the following function:

F (∆, i, (∆− i+ 1)/2) = F (∆, i) = −1
4(∆− i+ 1)2 + ∆ + b

3 (∆ + 2)− (∆ + b)i+ (i− 1)i

= 3
4 i

2 − (∆/2 + 1/2 + b)i+ ∆ + b

3 (∆ + 2)− 1
4∆2 − 1

2∆− 1
4 .

Similarly, function F (∆, i) = 3
4 i

2 − (∆/2 + 1/2 + b)i+ ∆+b
3 (∆ + 2)− 1

4∆2 − 1
2∆− 1

4 as
a function of i is a parabola with the global minimum at i such that ∂F

∂i = 0, which implies
i = 2

3(∆/2 + 1/2 + b). Plugging i = 2
3(∆/2 + 1/2 + b) in F (∆, i) we obtain the following:

F

(
∆, 2

3 (∆/2 + 1/2 + b)
)

= F (∆) = b/3− b2/3− 1/3.

From the above we have that F (∆, i, `) ≥ b/3− b2/3− 1/3 for any ∆, i, ` ∈ R+ ∪ {0}.
Now, let us observe that if ∆ ≡ 0, 1 (mod 3), then F (∆, i, `) with b = 0 is an integer

whenever ∆, i and ` are integers. This means that in those cases we have F (∆, i, `) ≥ −1/3
which implies that F (∆, i, `) ≥ 0. In case when ∆ ≡ 2 (mod 3), we have that F (∆, i, `)
with b = 1 is an integer when ∆, i, ` are integers. This means that in those cases
F (∆, i, `) ≥ −1/3, implying F (∆, i, `) ≥ 0.

This shows that the potential of any reduction is non-negative for this choice of
parameters γ, σ, and in particular that means that the min-degree greedy algorithm has
an approximation ratio (γ/σ) = (∆ + 2)/3.

3.3.2 Proof of Theorem 3.9

We prove in this section that the min-degree greedy algorithm is a ∆+6
4 -approximation

algorithm for the Maximum independent set problem on triangle-free graphs with maximum
degree at most ∆. For this, let us use the potential function here with parameters:

γ = ∆ · ∆+6
4 and σ = ∆.

We prove that ΦI(R) ≥ 0 for any reduction R, and any independent set I, so that
the approximation ratio of the min-degree greedy algorithm on triangle-free graphs with

52 CHAPTER 3. GREEDY APPROACHES FOR MAXIMUM INDEPENDENT SET

maximum degree ∆ is γ/σ = (∆+6)
4 .

Let us first assume that the root vertex of R is white. Then, as in Section 3.3.1, we
claim that for triangle-free graphs we have:

loanI(R) ≥ (i+ `− 1− 1) · i,

debtI(R) ≤ (∆− i− `+ 1) · `.
Note that the upper bound on debt edges is the same, however, the lower bound on

loan edges is significantly greater for triangle-free graphs. We justify this first lower bound.
Observe, that for a triangle-free graph, for any reduction R, no two middle vertices of R
are adjacent. Note first that the degree of the root of R is i+ `− 1. We obtain a lower
bound on loanI(R) by counting the number of contact edges incident on any middle vertex
v ∈ I of R. By the min-degree rule, for each such vertex v, dG′(v) ≥ i+ `− 1, where G′
is the current graph. Because the root of R was assumed to be white, there is at most one
vertex (the root vertex) not in I which can be connected to v. Thus, the total number
of loan edges of v is at least (i+ `− 1− 1), and we have i such vertices. Then we obtain
further that:

ΦI(R) ≥ ∆
4 (∆ + 6)−∆i+ (i+ `− 2)i− (∆− i− `+ 1)`

= `2 − (∆− 2i+ 1)`+ ∆
4 (∆ + 6)−∆i+ (i− 2)i.

Let F (∆, i, `) = `2 − (∆ − 2i + 1)` + ∆
4 (∆ + 6) − ∆i + (i − 2)i. Then, we show that

F (∆, i, `) ≥ −i+ ∆− 1
4 for any ∆, i, ` ∈ R+ ∪ {0}.

Let now d ≤ ∆ be the degree of the root of R. If d ≥ i + 1, then F (∆, i, `) ≥ 0
and ΦI(R) > 0. Suppose now that d ≤ i, then obviously d = i. In such case, because
d = i+ `− 1, ` = 1, thus:

ΦI(R) ≥ ∆
4 (∆ + 6)−∆d+ (d− 1)d− (∆− d) = d2 −∆d+ ∆2

4 + ∆
2 ≥

∆
2 ,

where the last inequality follows by the fact the quadratic function is minimized for
d = ∆/2.

Let us now assume that the root of R is black. Noting that i = 1 and ` ≤ ∆, we obtain:

ΦI(R) = ∆
4 · (∆ + 6)−∆ · |I ∩ ground(R)|+ loanI(R)− debtI(R)

≥ ∆
4 · (∆ + 6)−∆ + 0− (∆− 1− `+ 1)` = `2 −∆`+ ∆2

4 + ∆
2 ≥

∆
2 .

As above, the last inequality follows by the fact that the quadratic function is minimized
for ` = ∆/2. This shows that the potential of any reduction is non-negative for this choice
of parameters γ, σ, and in particular that means that the min-degree greedy algorithm
has an approximation ratio (γ/σ) = (∆ + 6)/4.

3.3.3 Proof of Theorem 3.2

We prove in this section that the more-edges greedy algorithm is a 3
2 -approximation

algorithm for the Maximum independent set problem on subcubic graphs. For this, let us
use the potential function here with parameters:

3.3. APPLICATION TO BOUNDED DEGREE GRAPHS 53

γ = 6 and σ = 4.

Input: A subcubic graph G.
Output: An independent set S in G.
S ← ∅;
while G 6= ∅ do

if G has minimum degree 2 and maximum degree 3 then
Let v be a vertex of degree two with a neighbor of degree three.

else
Let v be any vertex of minimum degree.

S ← S ∪ {v};
G← G \NG[v]);

return S;
Algorithm 8: the more-edges greedy algorithm.

We first start by looking at the potential of each basic reduction R (see Figure 3.2) for
all possible independent sets in ground(R). This can be easily done “by hand” since there
is a small number of such reductions. We realize that all reductions have potential at least
−1 and that the only reduction with potential −1 corresponds to reduction 2.d in Figure
3.2 where the root is white and its two neighbors are black, like in Figure 3.3. Let us call
this particular reduction R′.

The objective of the more-edges rule is to guarantee that when reduction R′ is
executed by the more-edges greedy algorithm, then it must be followed by at least one
reduction with potential at least +1. Intuitively, this last reduction will “pay” for the
reduction of potential −1 and this payment is unique so that the potential of the whole
execution is non-negative.

Given a graph and an independent set I, consider an execution of the more-edges
greedy algorithm. Suppose that at some point of the execution of the more-edges greedy
algorithm, the current graph G has minimum degree two and maximum degree three. Then,
there is necessarily a vertex u of minimum degree two that has at least one neighbor of
degree three. In this situation, according to the more-edges rule, we prefer picking the
reduction with root vertex u than R′ that has two neighbors of degree two. This means
that when R′ is executed, the current graph must be 2-regular, i.e., a disjoint union of
cycles. Let us call C the cycle where R′ is executed and E ′ the sequence of reductions
executed in C. We show that the potential of E ′, i.e., the sum of the potential of the
reductions executed in C, is at least one.

Suppose that C has b black vertices and w white vertices, where b+ w = |C|. Since R′
is executed, we can assume that b ≥ 2 and b ≤ α(C) = b|C|/2c.

Before the execution, each white vertex has a debt equal to one, so that the total debt
is w. Also, the loan is zero after the execution. Moreover, the greedy algorithm is optimal
in graphs with maximum degree two, which means that in C, the solution returned has
size b|C|/2c. Then,

ΦI(E ′) = 6 · b|C|/2c − 4 · b− w + 0 ≥ 2b|C|/2c − w ≥ b− 1 ≥ 1

Thus, the whole execution has non-negative potential which implies that the more-
edges greedy algorithm is a 6/4-approximation on subcubic graphs.

54 CHAPTER 3. GREEDY APPROACHES FOR MAXIMUM INDEPENDENT SET

Figure 3.3: Basic reductions with negative potential, where γ, σ = 5, 4. The root vertex of reductions
is denoted by the letter r. Dotted edges represent the debt of each white vertex. Grey vertex can
either be black or white.

3.4 The ultimate greedy algorithm for subcubic graphs

In this section, we present a new rule called ultimate for subcubic graphs such that the
corresponding ultimate greedy algorithm achieves an approximation ratio of 5/4.

The exact potential that we use for subcubic graphs is given by the values γ = 5
and σ = 4. A table in Figure 3.3 shows the potential of several basic reductions for
some different independent sets. Unfortunately, as one can see in Figure 3.3, there exists
reductions with negative potential. The goal of the ultimate rule will be to deal with
these cases.

The first step is to collect some consecutive basic reductions into one extended reduction,
so that the potential of some basic reductions is balanced by that of the others. For
instance, one way to deal with the basic reduction 2.d in Figure 3.2, which can have
potential −2 (see (a) in Figure 3.3), is to force the greedy algorithm to prioritize a vertex
of degree two with a neighbor of degree three. Therefore, if at some point a reduction 2.d
is executed, it means that the current graph is an union of disjoint cycles. This allows us
to consider that the whole cycle forms an extended reduction — that we will call as cycle
reduction — and we will see later that its potential will be at least −1.

An useful observation in order to define an appropriate extended reduction is to notice
that the (basic) path reduction (1.b from Figure 3.2) has potential at least zero. This
observation suggests to introduce the following notion. Given a graph G = (V,E) we
will say that the set B = {w, v1, . . . , vb, w

′} ⊂ V is a backbone if the induced subgraph
G[{v1, . . . , vb}] is a path and if w and w′ both have degree three. In this case, w and
w′ are called the end-points of the backbone B. Moreover, when b is odd (resp. even),
we will say that B is an even (resp. odd) backbone — notice the asymmetry — which
corresponds to the parity of the number of edges between the end-points. As an example,
the ground of the basic even-backbone reductions (2.f and 2.c in Figure 3.2) are special
case of an even-length-backbone (of edge-length two).

3.4.1 Extended reductions

An extended reduction R = (R1, . . . , Rs) is a sequence of basic reductions Ri of special
type that we will precisely describe in the next paragraph. All different extended reductions
are summarized in Proposition 3.10. To facilitate the discussion, when there is no risk of

3.4. THE ULTIMATE GREEDY ALGORITHM FOR SUBCUBIC GRAPHS 55

Figure 3.4: Some examples of (extended) reductions of degree two and size at least two. Light grey
areas indicate the ground of each executed basic reduction, that together form the ground of the
(extended) reduction. Vertices surrounded by grey rings are the roots of the corresponding basic
reductions.

confusion, we will simply call it a reduction.
The size of an extended reduction R, written |R| is the number of executed basic

reductions. Its ground naturally corresponds to the union of the grounds of its basic
reductions, ground(R) :=

⋃
i ground(Ri) and its root is the same as the root of the first

basic reduction. Finally, the contact vertices correspond to all contact vertices of its basic
reductions that are not in ground(R). The degree of a reduction is the degree of the first
executed basic reduction. All basic reductions of Figure 3.2 except 2.d will be considered
as (extended) reductions of size one. In particular, all (extended) reductions of degree
one considered by the algorithm have size one. Other considered (extended) reductions of
degree two have a ground which is a backbone (except the case of odd-backbone where one
end-point is excluded). When the two end-points of the backbone are the same vertex, it
corresponds to a loop reduction. Otherwise, reductions associated to an even and odd
backbone are, respectively, called even-backbone and odd-backbone reductions. When
these reductions have size at least two, they correspond to a sequence R = (R1, . . . , Rs) of
basic reductions where:

• The first (basic) reduction R1 is 2.e from Figure 3.2.

• Intermediate reductions Ri, with 2 ≤ i ≤ s− 1, are basic path reduction (1.b from
Figure 3.2), where the root vertex of Ri is the contact vertex of Ri−1.

• The final (basic) reduction Rs corresponds to:

– branching (1.c) or path (1.b), when R is an even-backbone reduction. The
case Rs = path, occurs when the end-points are adjacent.

– path (1.b), when R is an odd-backbone reduction.
– point (0.a) or edge (1.a), when R is a loop reduction, depending on the parity

of the length of the backbone. Recall that the two end-points are identical in
this case.

We give examples of different types of extended reductions of degree two in Figure 3.4.
Some further remarks are in place here:

56 CHAPTER 3. GREEDY APPROACHES FOR MAXIMUM INDEPENDENT SET

• The following basic reductions in Figure 3.2 are special case of (extended) reduction
of size one.

2.a : cycle reduction.
2.c and 2.f : even-backbone reduction.
2.e : odd-backbone reduction. This applies only when the right-most contact vertex

c has degree three.
2.b : loop reduction.

• The root of an even-backbone, odd-backbone or loop reduction is always the neighbor
of one of the end-points of the backbone. For even-backbone and loop reduction of
even-length, any of the two choices leads to the same solution. In the case of an
odd-loop reduction, the size of the solution — and therefore also the potential —
and the ground of the reduction is exactly the same. For loop and even-backbone
reductions, the ground of the reduction is the full backbone. However, for odd-
backbone reductions, given one backbone, there are two distinct possible roots,
associated to two distinct grounds. For each odd-backbone reduction, only one
end-point is contained in the ground. See Figure 3.4.

• All basic reductions of an extended reduction, except the first one have degree at
most one, so that at any given moment, any executed basic reduction has minimum
degree in the current graph. This means that we are allowed to execute the full
extended reduction without violating our original greedy rule.

In what follows, we will refer to an extended reduction in two different (and equivalent)
ways. We will either write its name with the first capital letter or we will write its name
with the first lower-case letter followed by the word “reduction”. Thus, for example, we will
say a loop reduction or just Loop, or an even-backbone reduction or just Even-backbone,
etc. Note that basic reductions are special case of extended reductions, and therefore we
may also follow this convention for them.

3.4.2 The ultimate greedy algorithm

We now describe the ultimate rule used to reach the best possible greedy approximation
of Maximum Independent Set in subcubic graphs.

This ultimate rule can be described as the conjunction of different criteria, and the
vertex picked (i.e., the reduction executed) by the ultimate greedy algorithm must satisfy
all these criteria.

When the input graph G is cubic, i.e., each vertex has degree exactly three, then the
first reduction has degree three. However, this is the only degree three reduction executed
during the whole execution since there will always be a vertex with degree at most two.
We explain how to deal with the very first choice in the last paragraph and assume from
now that any step of the algorithm there is a vertex of degree at most two.

The first criterion is to execute basic reductions such that the obtained sequence can
be grouped in a sequence of extended reductions as described above. This is justified by
Proposition 3.10. This choice is always possible since all basic reductions from Figure 3.2,
except 2.d, are special cases of extended reductions. In the case where any minimum degree
vertex is the root of a basic reduction 2.d, the graph must be a disjoint union of cycles.

3.4. THE ULTIMATE GREEDY ALGORITHM FOR SUBCUBIC GRAPHS 57

In this case we are able to execute the ultimate greedy algorithm so that its execution
corresponds to a sequence of cycle reductions. This argument leads to Proposition 3.10.

Proposition 3.10. For each subcubic graph with minimum degree at most two, it is always
possible to execute one of the following (extended) reductions:

Point - Edge - Path - Branching - Loop - Cycle - Even-backbone - Odd-backbone.

When several choices of reductions are possible, we want to pick in priority a reduction
with positive potential. The ultimate greedy algorithm will have to select one with the
highest priority extended reduction, according to the following order from the highest
to lowest priority:

1. Point, Edge, Path, Branching,

2. Cycle or Loop,

3. Even-backbone,

4. Odd-backbone.

Any two reductions among the first group or any two reductions among the second group
can be arbitrarily executed first, as soon as both have the minimum degree. We say that
a reduction is a priority reduction if there exists no reduction in the same graph with
strictly higher priority. Thus a priority reduction is any of the highest priority reductions
in the current graph. One implication of this order is that when an Even-backbone is
executed, it means that the current graph does not contain any degree one vertices, or any
loop reduction. Additionally, when the priority reduction is Odd-backbone, the graph does
not contain any Even-backbone. These structural observations will be useful later.

Even-backbone rule. Suppose that at some point of the algorithm the priority reduction
is an Even-backbone. Unfortunately, it turns out that picking an arbitrarily one of these
reductions can lead to a solution with poor approximation ratio. For instance, consider
the graph Hi in Figure 3.5, highly inspired by [31]. The difficulty here comes from the
fact that executing an even-backbone reduction can split the graph into several connected
components, each of them having a negative potential, thus implying an approximation
ratio worse than 5/4. To address this issue, we want to make sure that we are able to
“control” the potential of almost all of these connected components. In order to achieve a
5/4-approximation, we need to pick the right even-backbone reduction, and this can be
done by applying the following Lemma.

For any reduction R in a graph G we say that R creates connected components
H1, . . . ,Hs if they are the connected components of the graph G[V \ground(R)]. Intuitively,
it suffices to execute an even-backbone reduction R such that all other even-backbone
reductions are all present in the same connected component created by R.

Lemma 3.11. Let G be a connected graph, with no degree one vertices, and no loop
reduction. Let B = {R1, . . . , Rp} be the set of all even-backbone reductions in G. Each
even-backbone reduction Ri has two root vertices, ri and r′i. In the case when Ri has only
one root, we set ri = r′i.

58 CHAPTER 3. GREEDY APPROACHES FOR MAXIMUM INDEPENDENT SET

Figure 3.5: For any i ≥ 0, the highest priority reduction in Hi is Even-backbone, and picking
recursively the top vertex leads to a solution where the approximation ratio tends to 17/13 > 5/4
when i tends to infinity.

Then, there exists one even-backbone reduction, say R1, that satisfies the following
property. Let H1, . . . ,Ht be the connected components created by R1, with 1 ≤ t ≤ 4.
Then either t = 1, or t ≥ 2 and then the following is true. If there exist ri, rj for some
i, j ≥ 2 and i 6= j, such that ri ∈ V (H1) and rj ∈ V (H2) (in words: ri and rj belong to
two different connected components among H1, . . . ,Ht), then at least one of ri, r′i, rj , r′j is
a contact vertex of R1.

Proof. (Lemma 3.11) Let a ∈ V (G) be any degree three vertex. Consider a graph G̃
obtained from G by replacing each backbone from ri to r′i by a single degree two vertex
which is also called ri. On this contracted graph, let d

G̃
(u, v) denote the shortest path

distance (i.e., with minimum number of edges) between vertices u, v ∈ V (G̃) in G̃. Now,
let us pick the root ri in G̃ that has the largest distance dmax := maxi dG̃(ri, a) from
a. Without loss of generality this is r1 : d

G̃
(r1, a) = dmax. Denote by H1, . . . ,Ht the

connected components created after executing the corresponding even-backbone reduction
R1. At most one connected component, say H1, contains a. Suppose that there is another
connected component, i.e., H2, that contains a vertex rj . Any path from rj to a intersects
ground(R1), including the shortest one, and d

G̃
(rj , a) = d

G̃
(r1, a) = dmax. It follows that

rj and r1 have one common neighbor b, so that d
G̃

(r1, rj) = 2. In particular, in the original
graph G, r1 (or r′1) is at distance two from rj (or r′j) which means that this vertex is a
contact vertex of R1.

The above proof is constructive and lets us find the appropriate Even-backbone in time
O(|V |).

Odd-backbone rule. Suppose now that the priority reduction is the odd-backbone
reduction. In this case, the ultimate greedy algorithm chooses the one that was created
latest.

More formally, suppose that we are given a partial execution R1, . . . , Rj in a graph
G such that the priority reduction in Gj is an odd-backbone reduction, where Gi is the
subgraph of G obtained from G after the execution of R1, . . . , Ri, for i = 1, . . . , j. We
associate to each vertex v of degree two a creation time tv ∈ {0, . . . , j − 1}, such that tv
is the greatest integer such that v had degree three in Gtv−1. Moreover, if v had already
degree two in the original graph G, then we set tv = 0. When tv ≥ 1, this means that v
was a contact vertex of tv-th reduction. Then, the creation time of an (odd) backbone B is

3.4. THE ULTIMATE GREEDY ALGORITHM FOR SUBCUBIC GRAPHS 59

the greatest creation time over all vertices of degree two in B.

The ultimate greedy algorithm picks the odd-backbone reduction that has the greatest
creation time, among all possible odd-backbone reductions. If several choices are possible,
it can pick any of them.

Remark. We believe that this rule is not necessary in the sense that it does not improve the
approximation ratio. However, this rule makes the algorithm easier to analyses. Intuitively,
with this rule, we can not have several successive reductions with negative potential within
the same connected component.

Rule for cubic graphs. When the input graph G is cubic, we guess the first degree
three vertex to pick, so that the potential of the associated execution is positive. By
guessing, we mean choosing any single fixed vertex u and then trying all four executions,
each starting from a vertex in the closed neighborhood of vertex u. We show later that the
first step can only increase the total potential of the whole sequence. When the graph is
connected, all following reductions have degree at most two.

Remark. This special rule helps to guarantee that the approximation ratio of our algorithm
is 5/4. One can show, using Lemma 3.15 that without this rule, i.e., picking initially any
degree-three vertex can lead to a solution of size 4

5α(G)− 1
5 .

Input: A subcubic graph G.
Output: An independent set S in G.
S ← ∅;
if all vertices have degree three then

Let u be any vertex;
Execute four times the while loop just below, starting with S = {v} and
G = G \NG[v], for all v ∈ NG[u] and output the maximum size solution;

while G 6= ∅ do
if the priority reduction (according to the ultimate greedy algorithm order) in
G is Even-backbone then

Let R be the Even-backbone given by Lemma 3.11 (Even-backbone rule);
if the priority reduction in G is Odd-backbone then

Let R be the latest created Odd-backbone (Odd-backbone rule);
else

Let R be any priority reduction;
Let v1, . . . , vs denote the roots of the basic reductions of R;
S ← S ∪ {v1, . . . , vs};
G← G \ ground(R)

return S
Algorithm 9: the ultimate greedy algorithm.

It is clear that the set returned by Algorithm 9 is an independent set. In the next
section, we will establish its approximation ratio.

60 CHAPTER 3. GREEDY APPROACHES FOR MAXIMUM INDEPENDENT SET

3.5 Analysis of the ultimate approximation ratio

In this section, we prove that the ultimate greedy algorithm is a 5/4-approximation
algorithm for the Maximum Independent Set problem in graphs with maximum degree at
most three.

Let E = (R1, . . . , R`) be a sequence of extended reductions performed by the ultimate
greedy algorithm on an input connected graph G. In order to analyze the approximation
ratio of the ultimate greedy algorithm , we use our potential function in subcubic graphs
(∆ = 3) with parameters γ, σ = 5, 4. Given an independent set I in G, the potential of an
(extended) reduction R is

ΦI(R) = 5 · |R| − 4 · |I ∩ ground(R)|+ loanI(R)− debtI(R).

In Section 3.5.1 we present a lower bound on the potential of different extended
reductions. As we have seen in Section 3.3.3, we are here able to avoid reduction with
potential −2 (Figure 3.3 (a)) by grouping this basic reduction with the following ones,
so that the resulting (extended) reduction, a cycle reduction, has now only potential
−1. Unfortunately, we can not use the same trick to avoid reductions with potential −1.
Moreover, such reductions: edge, (odd) cycle and odd-backbone reductions can not be
avoided if we want to respect the original greedy constraint which is to pick a vertex with
minimum degree.

In order to prove that the ultimate greedy algorithm delivers a 5/4-approximation,
we show that the exact potential of any execution on a connected subcubic graph is non-
negative. Unfortunately, it is not true that the potential of any execution is non-negative.
For instance, picking the top vertex of H0 in Figure 3.5 produces an execution with potential
−1. We will prove that −1 is the worst value for the potential of any execution.

A potential problem arises when an execution creates a lot of connected components
where each corresponding execution has negative potential. This could lead to an execution
with arbitrarily negative potential. Such connected components can be created by reductions
having many contact vertices, such as the even-backbone reduction. Our Even-backbone
rule was designed to keep the potential of the created connected components under control,
ensuring that at most one (or two) of them have negative potential.

This suggests that to solve our problem we could characterize the type of graphs that
can have negative potential, i.e., for which there exists an execution with negative potential.
Finding such a characterization is difficult but since we know which reduction’s potential
is −1, we are able to formulate a necessary condition together with a suitable induction
hypothesis.

In Section 3.5.2, we describe such a class of graphs called potentially problematic
graphs. Notice that ’potentially’ refers to the potential function and at the same time to
the fact that there exist some executions on some potentially problematic graphs with
non-negative potential. The other potentially problematic case is when the first reduction
of an execution has negative potential, namely the bad odd-backbone reduction. Based on
these two potentially problematic cases, we present the inductive low-debt Lemma 3.15
that establishes that the potential of any execution is at least −1.

3.5.1 Potential of extended reductions

We start by looking at the potential of (extended) reductions.

3.5. ANALYSIS OF THE ULTIMATE APPROXIMATION RATIO 61

Claim 3.12. For any independent set I we have the following potential estimates for the
reductions:

ΦI(Edge) ≥ −1 ΦI(Path) ≥ 0 ΦI(Point) ≥ 1
ΦI(Cycle) ≥ −1 ΦI(Loop) ≥ 0 ΦI(Branching) ≥ 1

ΦI(Odd-backbone) ≥ −1 ΦI(Even-backbone) ≥ 0

For basic reductions, one can easily check by hand all possible cases. Notice that the
worst case potential always arises when I is maximum in the ground of a reduction. Figure
3.3 presents these worst cases for basic reductions: Edge, Cycle and Odd-backbone. Figure
3.7 shows the worst potential cases of the remaining basic reductions: Path, Even-backbone,
Loop, Point, and Branching. From the worst case potential of basic reductions, we can
lower-bound the potential of (extended) reductions.

Proof. (Claim 3.12) It remains to prove lower-bounds for reductions of arbitrary size. See
Figure 3.6. An odd-backbone reduction is a sequence of basic reductions starting with
2.e (in Figure 3.2), which has a potential at least −1 (Figure 3.3 (d)), and a certain
number of path reductions, with potential at least zero (Figure 3.7 (a) and (b)), so that
the total potential is at least −1. More generally, the potential of an extended reduction is
lower-bounded by the sum of the potentials of the first and the last basic reduction. For
Even-backbone with non-adjacent backbone end-points, these first and last basic reductions
are 2.e (Φ ≥ −1) and Branching (Φ ≥ 1, see Figure 3.7 (g) and (h)) so that the sum is
non-negative.

Consider now a cycle reduction R of length n ≥ 3. Let us denote by b and w, respectively,
the number of black and white vertices, i.e., b = |I ∩ ground(R)| and b + w = n. Since
Greedy is optimal in degree at most two graphs and the size of I is at most

⌊
n

2

⌋
, we have:

ΦI(R) = 5
⌊
n

2

⌋
− 4b− w = 5

⌊
n

2

⌋
− 3b− n ≥ 5

⌊
n

2

⌋
− 3

⌊
n

2

⌋
− n ≥ −1. (3.2)

For Loop and Even-backbone with adjacent end-points, simply observe that their ground
is a cycle with one or two additional edges. Each of these edges is either a debt edge — the
loan increases by one — or the corresponding middle white vertex has now degree three —
the debt decreases by one. In any case, the potential increases by the number of added
edges, so that we proved what we wanted.

Notice that the worst potential of Cycle and Loop depends on the length of the ground
and the worst case corresponds to odd-length cycles. Moreover, notice that when its two
end-points are adjacent, the potential of an Even-backbone is at least one.

3.5.2 The inductive low-debt Lemma

Given a graph G and an independent set I in G, recall that a vertex v ∈ V (G)∩ I from I is
black, and white otherwise. We say that a backbone B = {w, v1, . . . , vb, w

′} is alternating
for I (or simply alternating) when vi is black (or white) if and only if i is even. See Figure
3.8 for an example of an odd alternating backbone. Notice that there is no restriction on
the types of the end-points of the backbone.

62 CHAPTER 3. GREEDY APPROACHES FOR MAXIMUM INDEPENDENT SET

Figure 3.6: A cycle reduction. On the left, a even cycle with potential ΦI(R1, R2, R3) = −2+0+2 = 0
and on the right a odd cycle with potential −1. Vertices surrounded by a grey disk are the ones
picked by the algorithm and dotted edges are debt edges.

Figure 3.7: Basic reductions with worst potential equal to 0 or 1. Dotted edges translate the debt
of each white vertex. Grey vertex can either be black or white.

3.5. ANALYSIS OF THE ULTIMATE APPROXIMATION RATIO 63

The next definition of the white and black type reductions is crucial to our proof.
Intuitively, these reductions will have the greedy priority strictly higher than that of an
odd-backbone reduction, and in many cases, also higher than that of an even-backbone
reduction. However we must be careful here because what will matter will be in some
sense a “parity” of the reductions. Namely, the first observation is that the potential of
an odd-backbone reduction, let us call it R, can be −1 in the case when all its contact
vertices are white (see Figure 3.3 (d)). Therefore when such a reduction R is executed
first, then we need to “pay” for it by showing that the potential of the following reductions
in the connected components it creates will in total be zero (as this is the only way of
keeping the total value of the potential to be at least −1). What we now want is that if a
potential of a connected component H created by R is negative, then because R has only
white contact vertices in H, even before R is executed, H must contain a reduction with
higher priority than R, thus leading to a contradiction. Our definition below will ensure
this by guaranteeing that such a reduction in H exists with a black root vertex in H by
R’s contact edges.

A similar while high priority reduction is also needed in H. Imagine namely that the
first executed reduction R, that created component H, is also an odd-backbone reduction
but its contact vertices are all black. Then they will “block” the black vertices in H. Our
definition below still guarantees an existence of a reduction in H, before executing R, which
has a white root vertex and has priority strictly higher than R.

The third possibility is when R is an odd-backbone reduction with a white and black
contact vertex. This is not a problem because the potential of such a reduction is non-
negative or even positive.

It turns out that we can deal with R being an even-backbone reduction in a different
way. There are some further technicalities and details and they can be read in the details
of our full proof.

Definition 3.13 (Black and white type reductions). Given a graph G and an in-
dependent set I in G, we define the black or white type reductions in G by the
following rules:
(1) Any path reduction or branching reduction in G with black root and white middle
vertex (resp. with white root vertex and black middle vertex) is a black (resp. white)
type reduction.
(2) Any Loop reduction R in G, where I ∩ ground(R) is a maximum independent
set in ground(R), whose both root vertices are white (resp. whose at least one root
vertex is black) is called a white (resp. black) type reduction.
(3) Any even-backbone reduction R in G, with an alternating backbone, whose both
root vertices are white (resp. black) is called a white (resp. black) type reduction.

We note here that the black and white reductions correspond to the worst case of the
potential (see Figures 3.3 and 3.7). We also say that an an odd-backbone reduction R is
bad for I (or simply bad) if ΦI(R) = −1, see Figure 3.3 (d). More generally, given an
independent set I, we will say that a reduction R is bad when its potential is minimized
by I, i.e., ΦI(R) = min{ΦI′(R) : I ′ independent set}.

Definition 3.14. Let G be a connected graph with minimum degree at most 2 and I
an independent set in G. We say that G is potentially problematic for I (or just
potentially problematic), if either:

64 CHAPTER 3. GREEDY APPROACHES FOR MAXIMUM INDEPENDENT SET

(1) G is an odd cycle or an edge and I is maximum in G.
(2) or, there exists one reduction of black type and one reduction of white type in G.

Notice that Cycle (and also Edge) reduction has potential −1 if and only if its ground
has odd-length and I is maximum (Claim 3.17). In this situation, we will call these graphs
bad cycle and bad edge.

The following Lemma states that any execution has a potential always at least −1. We
prove this result by induction together with a necessary condition characterizing executions
with minimum potential.

Lemma 3.15 (Inductive low-debt Lemma). Let G be a connected graph with minimum
degree at most two, I an independent set in G and E = (R1, . . . , Rκ) an execution (of
the ultimate greedy algorithm) on G. Then
(1) ΦI(E) ≥ −1

(2) If ΦI(E) = −1, then

(a) either the first reduction R1 is a bad odd-backbone reduction,
(b) or G is potentially problematic.

3.5.3 Proof of Theorem 3.3

We now have the material needed to prove that the ultimate greedy algorithm achieves
a 5/4-approximation in subcubic graphs. Let G be a connected subcubic graph, I an
independent set in G, and E an execution. Our goal is to show that the exact potential is
non-negative :

ΦG,I(E) ≥ 0 (3.3)
Suppose this is true. Then from Proposition 3.6 we have that 5|E| − 4|I| ≥ 0, which can be

re-written as |I|
|E|
≤ 5

4 , and because this is true for any independent set, we have established
the desired approximation, thus proving Theorem 3.3. There are two cases depending on
whether in input graph is cubic or not.

Case 1: The input graph has at least one vertex with degree at most 2. With Lemma
3.15, we know that ΦI(E) ≥ −1. Suppose that the inequality is tight. Then, the first
reduction is a bad odd-backbone reduction or G is potentially problematic. In any case
there exists in G a white vertex with degree at most two — that is the root of the first
Odd-backbone or of the white reduction in G — so that, using Claim 3.7 we have:

ΦG,I(E) = ΦI(E) +
∑
v/∈I

(3− dG(v)) ≥ −1 + 1 = 0.

Case 2: all vertices in G have degree three. Assume that I is maximal, so that for any
vertex u, |NG[u] ∩ I| ≥ 1. Then, let us consider any degree 3 vertex u. One of the four
executions of the algorithm will be execution with v ∈ NG[u] being black, and let us call
this first reduction R∗. We detect which of those four executions to consider by taking the
one that leads to the greatest size solution. By Claim 3.21 it implies that this execution
has the largest potential.

On the other hand, let us consider the execution E of R∗ with its black root v. Let
H1, . . . ,Hs denote the connected components created by R∗, and E1, . . . , Es the correspond-
ing executions. Without loss of generality we have E = (R∗, E1, . . . , Es). To prove that the

3.6. PROOF OF THE INDUCTIVE LOW-DEBT LEMMA 65

exact potential of E in G is positive, the trick is to consider that the first reduction R∗
does not use any loan from its loan edges, so that its potential is exactly 1. This implies
also that each connected component will not have any debt edges. Then as we proved
before, since each connected component Hi has a vertex with degree at most two, its exact
potential in Hi is non-negative. Therefore, we have

ΦG,I(E) = 1 +
s∑
i=1

ΦHi,I(Ei) ≥ 1

which concludes the proof of Theorem 3.3.
Remark. Our analysis actually implies that the size of the solution has size at least
(4/5)OPT + 1/5. Moreover, if the first reduction R is a bad even-backbone reduction,
and G is not a problematic graph, then our analysis proves that the ultimate greedy
solution’s size is at least (4/5)OPT + 1/5. This precisely matches the size of the lower
bound example of Halldórsson and Yoshihara in Figure 3.1. Our analysis even indicates
that this lower bound example has the worst possible approximation ratio for any ultimate
greedy algorithm. Indeed, this counter example is actually a sequence of graphs (Gn)n,
and the solution returned by any refinement of the min-degree greedy algorithm has size
(4/5)OPT(Gn) + 1/5, and therefore the corresponding approximation ratio tends to 5/4
when the size of Gn tends to infinity. However, our previous analysis indicates that there
is no (finite) graph G, such that the min-degree greedy algorithm produces a solution of
size exactly (4/5)OPT(G).

Indeed, this graph must satisfy (2a) or (2b) from Lemma 3.15, otherwise our the
ultimate greedy algorithm outputs a solution of size at least (4/5)OPT(G) + 1/5. Then,
for any maximum independent set, this graph must have at least one black minimum degree
vertex, and in this situation, we could for instance try all possible minimum degree vertices
(only for the first step), and pick the execution of maximum size. This modified greedy
algorithm returns a solution at least (4/5)OPT(G) + 1/5, for any input graph G.
Remark. We can obtain a greedy algorithm with an approximation ratio of 4

3 but with
linear running time. Observe that if we set γ = 4 and σ = 3, the minimum potential of
an odd-backbone reduction changes from −1 to 0. Now, only Cycle has potential value of
−1. With this observation, we are able to extend Loop in a particular way, which implies,
finally, that we are able to exclude even-backbone reductions from the definition of black
and white type reductions, and also preserve the induction hypothesis in our inductive
proof. It implies that the Even-backbone rule is not necessarily needed. Without this rule
this greedy algorithm can be optimized to run in linear time.

3.6 Proof of the inductive low-debt Lemma
In this section we prove the Inductive Low-debt Lemma:

Lemma 3.15 (Inductive low-debt Lemma). Let G be a connected graph with minimum
degree at most two, I an independent set in G and E = (R1, . . . , Rκ) an execution (of
the ultimate greedy algorithm) on G. Then
(1) ΦI(E) ≥ −1

(2) If ΦI(E) = −1, then

66 CHAPTER 3. GREEDY APPROACHES FOR MAXIMUM INDEPENDENT SET

(a) either the first reduction R1 is a bad odd-backbone reduction,
(b) or G is potentially problematic.

Along the proof we will refer to several technical claims about extended reductions
proved in Section 3.6.1.

We prove the Inductive low-debt Lemma by induction on the number κ of extended
reductions in the execution E . First, if κ = 1, then since G is connected, the reduction is a
terminal reduction, i.e., point, edge or cycle reduction, and by Claim 3.12 we know that
their potential is at least −1. Moreover, if the potential is exactly −1, it is not difficult to
see from the proof of Claim 3.12 that the reduction is either an edge or odd cycle reduction,
which are potentially problematic graphs. For a detailed proof of this fact see Claim 3.17.

Suppose now that E consists of κ ≥ 2 extended reductions. We will treat all cases
depending on the first extended reduction R1. We denote its root and the contact vertices
by letters r and ci, with 1 ≤ i ≤ 4, respectively. In all these cases we will apply the
induction hypothesis to each connected component of the graph after executing the first
reduction. Recall that we say that R1 creates connected components H1, . . . ,Hs if they are
connected components of the graph G[V \ ground(R1)]. Here, s with 1 ≤ s ≤ 4, denotes
the number of connected components created by R1. Reductions executed by the ultimate
greedy algorithm in distinct connected components are independent. Therefore, without
loss of generality we can assume that each execution on Hi corresponds to a sub-execution
Ei of E so that E = (R1, E1, . . . , Es). Notice that according to Proposition 3.6, we have

ΦI(E) = ΦI(R1) + ΦI(E1) + · · ·+ ΦI(Es).

We establish hypothesis (1) and (2) in three separated cases depending on whether the
first reduction is (1) Path, Branching or Loop, (2) even-backbone or (3) odd-backbone.

Case (1): R1 is Path, Branching or Loop. These are easy cases because the number of
created connected components (and therefore the potential of each corresponding execution)
is always balanced by the potential of the reduction. This is precisely captured in the
following fact that can be easily verified thanks to Figure 3.2 and Claim 3.12.

For any independent set I, and any reduction R that is Path, Branching or Loop:

ΦI(R) ≥ |contact(R)| − 1.

Remark. The inequality is also valid for an even-backbone reduction whose both end-points
are adjacent.

Then, if R1 is a path, branching, or loop reduction then the number of connected
components is at most the number of contact-edges, therefore by the induction hypothesis
(1) on each connected component of G[V \ ground(R1)], we have

ΦI(E) = ΦI(R1) + ΦI(E1) + · · ·+ ΦI(Es)
≥ ΦI(R1) + (−1)s ≥ ΦI(R1) + (−1)|contact(R1)| ≥ −1.

Moreover, if ΦI(E) = −1, then all these inequalities are tight and in particular, the potential
of R1 is minimum. This implies that R1 must be a reduction of black or white type (see
Claim 3.18), and additionally, it must create exactly |contact(R1)| connected components,
and each one must have potential −1. Applying the inductive assumption (2) to these
connected components, together with the following Claim 3.16 implies property (2b) for G.

3.6. PROOF OF THE INDUCTIVE LOW-DEBT LEMMA 67

Figure 3.8: Existence of a black reduction in proof of Claim 3.16. B is an alternating odd backbone in
H. Grey end-points illustrate the fact that these vertices can either be black or white. Dashed edges
are contact edges from R1. Before the execution, there exists a black (alternating) Even-backbone
in G between w′, c1 and c1, c2.

Claim 3.16. Let G be a connected graph, and I an independent set in G. Consider an
execution E = (R1, . . . , Rκ) in G. Let H be a connected component created by the first
reduction R1, such that all contact vertices of R1 that are in H are all white (resp. all
black). Then, if H is potentially problematic or if the first reduction executed in H is a
bad odd-backbone reduction, then there exists a black (resp. white) reduction R in G such
that ground(R) ⊆ V (H).

We will prove that in this situation, R1 can not be an Odd-backbone, since this would
not be the priority reduction according to the ultimate greedy algorithm order. This
claim is useful in the sense that, when the potential of R1 is minimum then R1 is white (or
black) and its contact vertices are all white (or all black) (Claims 3.17,3.18,3.19), so that
G is a potentially problematic graph.

Proof. (Claim 3.16) Suppose thatH is created by R1 with contact vertices c1, . . . , ct ∈ V (H)
that are all white (resp. all black), with 1 ≤ t ≤ 4. We show that there exists one black
(resp. white) reduction R in G such that ground(R) ⊆ V (H).

First, assume that the first executed reduction in H, say R2, is a bad odd-backbone
reduction. Denote by B = {w, v1, . . . , v2b, w

′} its backbone, with end-points w and w′.
Since ΦI(R2) = −1, its backbone is alternating (Claim 3.20) and without loss of generality
we assume that vj is white if and only if j is odd.

According to the Odd-backbone-rule, at least one of the contact vertices ci must be one
vertex of its backbone. Since all ci are white (resp. black), the distance along B between
any pair of {c1, . . . , ct, w

′} ∩ B (resp. {w, c1, . . . , ct} ∩ B) is even. Therefore, there is an
alternating even-length-backbone between any two consecutive ones. This implies the
existence of a black (resp. white) even-backbone reduction in G, see Figure 3.8.

Now, assume that H is a potentially problematic graph, and suppose first that there
is one black (resp. white) reduction R2 with a black (resp. white) root vertex r in H.
Notice that this vertex is distinct than all ci, and then has the same degree in G. Then, if
dH(r) = dG(r) = 1, then r is also the root of a black (resp. white) reduction in G. Then,
suppose that dH(r) = dG(r) = 2.

If r is the root of a black (resp. white) even-backbone reduction R2 in H, with backbone
end-points w and w′, then any two consecutive vertices of the set {w,w′, c1, . . . , ct} along
this backbone form an alternating even-length-backbone. In particular, r is the root of a
black (resp. white) Even-backbone in G.

The case when R2 is a Loop is similar, but slightly more technical. First, if there
is no ci in the ground of R2, the root of this reduction is obviously also the root of an

68 CHAPTER 3. GREEDY APPROACHES FOR MAXIMUM INDEPENDENT SET

Figure 3.9: Different types of black, (a) and (b), and white Loop (c). Dashed edges are contact
edges.

black (resp. white) Loop in G. Now, suppose that there is at least one contact vertex ci in
ground(R2). Let w be the vertex of degree three in ground(R2), and r, r′ its two neighbors.
Let us focus on the first two contact vertices c and c′ that are met when we sweep the loop
from w in each direction (or just c is the only present contact vertex). We claim that at
least one of r or r′ is the black (resp. white) root of an (alternating) black (resp. white)
Even-backbone in G. See Figure 3.9 (a) and (b) (resp. (c)). Form left to right on Figure
3.9 this vertex is respectively r′, r and r.

We now turn our attention to the case when H is a bad3 Edge or Cycle. If H is a bad
Edge, then its black (resp. white) vertex has degree one in G, and therefore is the root of
black (resp. white) path or branching reduction in G. Similarly to the case when R2 is a
Loop, if H is a bad Cycle, then there exists a black (resp. white) vertex r′ ∈ V (H) that
is the root of a black (resp. white) Loop in G, when R1 has one contact vertex in H, or
the root of a black (resp. white) Even-backbone in G, when R1 has more than one contact
vertex in H.

We now turn our attention to the case when R1 is a backbone reduction.

Case (2): R1 is an even-backbone reduction. If the first reduction executed in G is
an Even-backbone, it means, according to the greedy order, that graph G does not contain
any degree one vertices or any loop reductions. All degree two vertices are contained in
some backbones linking two distinct degree three vertices. If the end-points of the backbone
of R1 are adjacent, then R1 satisfies Observation 3.6, so that this case was treated in the
previous section. From now on, let us assume that these end-points are independent. In
the following, we use the same terminology as in Lemma 3.11.

• If all contact vertices of R1 are white (resp. black), then at most one connected
component created by R1 has potential −1. Indeed, suppose for a contradiction, that
Hi, with i ≥ 2, has potential −1. By the induction hypothesis, each Hi must satisfy
assumptions (2a) or (2b) of Lemma 3.15. According to Claim 3.16, there was a black
(resp. white) reduction in Hi before R1 was executed. This reduction is neither a
degree one nor a loop reduction, so it must be an even-backbone reduction. Because
these reductions are black (resp. white), the root vertices of these reductions are

3meaning here that I is maximum in H.

3.6. PROOF OF THE INDUCTIVE LOW-DEBT LEMMA 69

distinct from R1’s contact vertices, which contradicts Lemma 3.11. We proved (1)
when all contact vertices of R1 are all white (resp. black).
For (2), if ΦI(E) = −1, then one created connected component, say H1, has potential
−1, which by the induction hypothesis satisfies (2a) or (2b) and ΦI(R1) = 0, so
that R1 is a white reduction with only white contact vertices (Claim 3.19). Claim
3.16 guarantees the existence of a black reduction in G, so that G is potentially
problematic.

• If some of R1’s contact vertices are both black and white, then we argue that
ΦI(E) ≥ 0. First, the potential of R1 is at least two4 (Claim 3.19). Therefore we
should argue that there are at most two connected components with potential −1.
This is true because there are at most two connected components with strictly more
than one contact vertex, and at most one connected component with exactly one
contact vertex can have potential −1. Indeed, for connected components with only
one contact vertex, Claim 3.16 applies so that we can use the same argumentation as
in the previous paragraph.

case (3): R1 is an odd-backbone reduction.

• Assume first that R1 has potential ΦI(R1) = −1 (resp. ΦI(R1) = 0). Then, Claim
3.20 indicates that all its contact vertices are white (resp. black).

(1) We prove that all connected components created by R1 have potential at least zero.
Assume that it is not true for the component H1. By the induction hypothesis, it
satisfies (2a) or (2b). By Claim 3.16, there exists a black (resp. white) reduction
in H1 before R1 is executed which contradicts the greedy order, because any black
or white reduction has a strictly higher priority than that of an Odd-backbone.

(2) When R1 is supposed to be a bad Odd-backbone by assumption, (2a) is always
true, and otherwise, if ΦI(R1) = 0, we just proved that ΦI(E) ≥ 0.

• Suppose that ΦI(R1) ≥ 1. We claim that at most one component created by R1 can
have potential −1. First note that R1 has three contact edges and thus at most three
contact vertices. Indeed, at most one created connected component has at least two
contact vertices, and no created connected component H with exactly one contact
vertex can have potential −1, because Claim 3.16 would imply the existence of a
strictly higher priority reduction in H.

This concludes the proof of Lemma 3.15.

3.6.1 Technical claims

Claim 3.17. Given a connected graph G, where any execution consists of one extended
reduction R, i.e., Point, Edge or Cycle, and if ΦI(R) = −1, for a given independent set I
in G, then G is either a bad odd-length cycle, or a bad Edge, and I is maximum in G.

Proof. First, by Claim 3.12, if R is a Point then ΦI(G) ≥ 1. Then, if it is an edge reduction,
since it is a basic reduction, it is easy to check that ΦI(R) = −1 only when one vertex is
black, i.e., I is maximum, see Figure 3.3(b).

4We assume here that the two end-points of the corresponding backbone are not adjacent.

70 CHAPTER 3. GREEDY APPROACHES FOR MAXIMUM INDEPENDENT SET

Figure 3.10: Some examples of good case potential value.

Finally, when G is a cycle then, the corresponding cycle reduction has potential −1
when all inequalities from Equation (3.2) in the proof of Claim 3.12 are tight. In particular,
the number b of black vertices must be maximum, and

⌊
n
2
⌋
−
⌈
n
2
⌉

= 1, that only arises
when the length n of the cycle is odd.

Claim 3.18. Any Path, Branching, or Loop with minimum potential have type black (or
white, resp.), and have contact vertices that are all black (all white, resp.).

Proof. For (basic) path and branching reductions, with the worst case potential (Figure
3.7 (a),(h) — resp. (b),(g)) are white (resp. black) reductions, with white (resp. black)
contact vertices.

Furthermore, as noticed before, the potential of a Loop, is correlated to the potential of
the cycle reduction obtained by removing its contact edge. That is, because adding an edge
to a ground of the reduction either increases by one the loan or decreases by one the debt,
so that the potential increases by one or by two. In particular, when Loop has minimum
potential, the corresponding cycle has also minimum potential. By Claim 3.17, we know
that the independent set must be maximum, and its backbone must have odd-length, so
that the loop reduction must have type black or white. Moreover, when the potential is
minimum, the contact edge can not be incident to two white vertices, as otherwise, making
the contact vertex black would decrease the potential. Therefore, when ΦI(R) = −1, the
contact vertex has the same type as the reduction.

Claim 3.19. Let R be Even-backbone, then for each independent set I we have ΦI(R) ≥ 0,
and

1. if ΦI(R) = 0, then R is a white reduction with only white contact vertices.

2. if the end-points of R’s backbone are not adjacent, and if its contact vertices are not
all white or all black, then ΦI(R) ≥ 2.

Proof. 1. Suppose that the potential of an Even-backbone R = (R1, . . . , Rt) is minimum
: ΦI(R) = 0. We know that its end-points are not adjacent, as otherwise it has
potential at least one, and the potential of all basic reductions Ri must be minimum.
When R has size one, the worst case arises only when I is such as in Figure 3.7(e),
that is, a particular case of white reduction with white contact vertices. For greater
sizes, i.e., t ≥ 2, this implies that the first basic reduction R1 is like Figure 3.3(d).
Then, R2 must be a Path with minimum potential and white root, like in Figure
3.7(a), and so on for all path reductions. The final branching reduction Rt has

3.6. PROOF OF THE INDUCTIVE LOW-DEBT LEMMA 71

minimum potential and white root, as in Figure 3.7(h). Finally, we proved that
this backbone is alternating and the root is white, so that R is a white reduction.
Moreover, all its contact vertices must be white.

2. In the following, we will say that a reduction is mixed is it has two different type
contact vertices. When R has size one and is mixed, we can easily check by hand, that
its potential is at least two (Figure 3.10(a),(b)). Consider now a mixed even-backbone
reduction R = (R1, . . . , Rt), and without loss of generality5, assume that the last
branching reduction Rt has at least one black contact vertex.

First, if R1 or Rt are mixed, then their potential is respectively at least 1 and 2 (see
Figure 3.10 (c),(d) and (e)) so that ΦI(R) ≥ 2.

Otherwise, assume that R1 and Rt have only respectively white and black contact
vertices. In particular, the root r of the first Path R2 is white. If the root r′ of the
last branching reduction is white then6, its potential is at least 3 (Figure 3.10(f)), so
that ΦI(R) ≥ 2. Then, if r′ is black, since the distance between r and r′ is even, we
must find a Path Ri with both root and middle white vertices. Such a reduction has
potential at least 2 (Figure 3.10(g)), so that ΦI(R) ≥ 2.

Claim 3.20. Let R be Odd-backbone, then for each independent set I we have ΦI(R) ≥ −1,
and

1. if ΦI(R) = −1, then it has an alternating backbone, white root and only white contact
vertices.

2. if ΦI(R) = 0, then it has an alternating backbone, black root and only black contact
vertices.

Proof. These facts can easily be checked by hand for odd-backbone reduction R of size one,
see Figure 3.3(d) and Figure 3.10(h). Suppose now that R = (R1, . . . , Rt) has size at least
two, where R1 is the basic odd-backbone reduction, and Ri are path reductions, for i ≥ 2.

1. If ΦI(R) = −1, then necessarily, ΦI(R1) = −1 and for all Path, ΦI(Ri) = 0. The first
reduction has only white contact vertices (Figure 3.3(d)), and then R2 has white
root, so it must be as in Figure 3.7(a). In particular, it must have a white contact
vertex, so that R3 has white root, and so on and so forth. This implies that the
corresponding backbone is alternating, and the root vertex and all contact vertices
are white.

2. If ΦI(R) = 0, then either case 1 : all basic reductions have potential zero, or case
2 : ΦI(R1) = −1 and there is one Path Rj with potential one.

case 1 : R1 must be like in Figure 3.10(h), and using exactly the same argument
as in the previous paragraph, we show that all following path reductions are
like in Figure 3.7(b), so that R’s backbone is alternating, R has black root and
contact vertices.

5Recall that we are free to choose the root of Even-backbone.
6We assume here that at least one contact vertex is black.

72 CHAPTER 3. GREEDY APPROACHES FOR MAXIMUM INDEPENDENT SET

case 2 : we show that this case is impossible. Indeed, as before all path reductions
Ri, with i < j have a white contact vertex (Figure 3.7(a)), so that Rj has white
root. Since it has potential one, its middle vertex must be white (otherwise its
potential is zero, see Figure 3.7(a)), and in this case its potential is at least two
(Figure 3.10(g)).

Claim 3.21. Let G be a connected graph and I an independent set in G. Let E =
(R1, R2, . . . , Rκ) be an execution of greedy on G, and let this execution produce a solution
of size sr. Let E ′ = (R′1, R

′
2, . . . , R

′
κ′) correspond to another execution of greedy on G

producing a solution of size sr′. Then if sr > sr′ then ΦI(E) > ΦI(E ′), and otherwise, if
sr < sr′ then ΦI(E ′) > ΦI(E).

Proof. We know that ΦI(E) = 5sr−4|I∩V (G)|, and ΦI(E ′) = 5sr′−4|I∩V (G)|. Therefore,
ΦI(E) < ΦI(E ′) if and only if sr < sr′ .

3.7 Limits of the greedy approach.

In the section we focus on the limitations of the greedy approach for finding large in-
dependent sets. Given a graph G = (V,E), we say that I is a greedy set of G, if
I is an independent set, and its elements can be ordered, I = {v1, . . . , vk} in such a
way that, for all 1 ≤ i ≤ k, the vertex vi has minimum degree in the subgraph Gi,
where Gi := G[V \ NG[{v1, . . . , vi−1}]]. The size a maximum (resp. minimum) greedy
set in G is denoted by α+(G) (resp. α−(G)). Any solution returned by the min-degree
greedy algorithm on input graph G has size at least α−(G) and at most α+(G). We have
α−(G) ≤ α+(G) ≤ α(G).

We call MaxGreedy the maximization problem that consists in finding a maximum
size greedy set in a given graph G. This problem was shown to be NP-hard [16].

3.7.1 Limitations of the min-degree rule.

Halldórsson and Radhakrishnan showed in [73] constructions of graphs with maximum
degree δ where the minimum greedy set is small compared to the maximum independent set.
More precisely, for these graphs the the ratio between α(G) and α−(G) is ∆+2

3 −O(∆2/n).
In particular, this implies that the analysis of the min-degree greedy algorithm is tight,
for all ∆ ≥ 3.

However, on these examples there exist several vertices with minimum degree and picking
the right minimum degree vertex leads greedy to an optimal solution, i.e., α+(G) = α(G).
We prove that we can extend these examples such that we now compare the maximum
independent set to the maximum greedy set while keeping roughly the same ratio. This
suggests that any (even exponential time) tie-breaking rules for the min-degree greedy
algorithm cannot improve significantly the approximation ratio when ∆ is large.

Theorem 3.22. There exists a graph G with maximum degree ∆ such that

α(G)
α+G

≥ ∆ + 1
3 −O(1/∆).

3.7. LIMITS OF THE GREEDY APPROACH. 73

Figure 3.11: An example when ` = 3. K` and K` respectively denotes a clique and an independent
set of size `.

Figure 3.12: The construction when ∆ = 3`− 2.

Proof. We show this construction for the case ∆ ≡ 2 (mod 3). See Figure 3.11. Let ` be
the integer such that 3`− 1 = ∆. The graph consists in a chain of subgraphs, alternating a
clique on ` vertices and an independent set of size `. Each subgraph is completely connected
with the adjacent subgraphs in the chain. This structure ends with a complete graph on `
vertices. The degree of the vertices in the first and the last clique is 2`− 1, while the degree
of vertices of other cliques and independent sets are respectively ∆ = 3`− 1 and 2`. The
greedy algorithm picks one vertex in each clique while the optimal solution is the union of
all vertices in the independent sets. If n denotes the number of vertices in the graph, the
ratio between the size of the optimal solution and the size of the solution returned is

(n− `)/2
(n− `)/2`+ 1 = `− `

(n− `)/2`+ 1 = `−O(`2/n) = ∆ + 1
3 −O(∆2/n)

In particular for any instance where n = Ω(∆3), we get the expected result.
For the case ∆ ≡ 1 (mod 3), we need a more complicated graph that can be describe

as a chain of groups of six subgraphs. Consider the integer ` such that 3`− 2 = ∆. Each
group is formed by a chain of subgraphs of size ` or `− 1 that are alternatively a clique and
an independent set. The total graph consists in a chain of `(`− 1) + 1 such groups where
the last independent set and the first clique of the next group are completely connected.
Then, this chain ends with a clique of size ` totally connected with the last independent set
of the last group. Additionally, add a matching of size `− 1 between the first independent
set of each group to the first clique of the next group. Since these independent sets have
size `, there is one unmatched vertex per each such independent set. Finally add an edge
from each of these vertices to the final clique. It is not difficult to see that this can be done
so that all vertices of the final clique have degree 3`− 2 = ∆. See Figure 3.12. We can see
that on this graph, the maximum degree is ∆ = 3`− 2, the vertices of the first clique of
the first group have degree 2`− 2, while all independent set vertices have degree 2`− 1.
It is not difficult to check that any greedy set contains one vertex from each clique for a
total of 3(`(` − 1) + 1) + 1 vertices while the maximum independent set consists of the
union of all independent sets from each group. This number is (3`− 1)(`(`− 1) + 1). The

74 CHAPTER 3. GREEDY APPROACHES FOR MAXIMUM INDEPENDENT SET

corresponding ratio is

3`− 1
3 − 3`− 1

9(`(`− 1) + 1/3) = ∆ + 1
3 −O(1/∆)

The case ∆ ≡ 0 (mod 3) is treated similarly than the previous one, using instead the
following group

K`−1 −K`+1 −K` −K` −K` −K`

and where matchings are between the first independent set and the first clique of the
following group and between the last independent set and the last clique of the next group.
Details of the construction and calculation are left to the curious reader.

3.7.2 Hardness in cubic planar graphs

As we know now, there are examples of graphs where the maximum greedy set can be
small compare to the maximum independent set. In this section, we show that computing
this maximum greedy set is NP-hard even in the restricted class of cubic planar graphs.

Theorem 3.23. MaxGreedy remains NP-complete for planar cubic graphs.

The proof is a reduction from Maximum Independent Set in cubic planar graphs, which
is NP-hard [59].

Proof. Let G = (V,E) be a cubic planar graph with m edges. Let us construct a graph G′
by replacing each edge uv ∈ E by the structure Huv described in Figure 3.13. We call

V ′ := V (G′) = V ∪
⋃
e∈E

V (He)

and
E′ := E(G′) =

⋃
uv∈E

(E(He) ∪ {au, gv})

where au and gv correspond to the edges connecting u and v to the graph Huv.
G′ has order |V |+ 22m and can be computed in polynomial time.

Claim 3.24. Let S′ ⊆ V ′ be an independent set in G′ and e = uv ∈ E. Then,
|V (He)

⋂
S′| ≤ 9. Moreover, if both u and v belong to S′ then |V (He)

⋂
S′| ≤ 8.

We can easily check that |A∩S′| ≤ 2, |D∩S′| ≤ 2, |C ∩S′| ≤ 3 and |{a, b, d, g}∩S′| ≤ 2.
Thus, |V (He)

⋂
S′| ≤ 9. Moreover, if both u and v belong to S′ then {a, g} ∩ S′ = ∅ and

then |{a, b, d, g} ∩ S′| ≤ 1 which gives |V (He)
⋂
S′| ≤ 8.

Claim 3.25. α(G′) ≤ α(G) + 9m

Let S′ ⊆ V ′ be an independent set in G′. Denote by F the set of edges of G which
have both end nodes in S′. We have

|S′ ∩ V | − |F | ≤ α(G)

Indeed, (S′∩V)\{xe, e ∈ F} is an independent set in G where xe is one of the two vertices
incident to an edge e ∈ F . Then,

|S′ ∩ V | − |F | ≤ |(S′ ∩ V) \ {xe, e ∈ F}| ≤ α(G)

3.7. LIMITS OF THE GREEDY APPROACH. 75

Figure 3.13: Each edge e = uv is replaced by this gadget He.

It follows that

|S′| = |S′ ∩ V |+
∑
e∈E
|He ∩ S′|

≤ (α(G) + |F |) + (
∑
e∈F
|He ∩ S′|+

∑
e/∈F
|He ∩ S′|)

≤ (α(G) + |F |) + (
∑
e∈F

8 +
∑
e/∈F

9)

= (α(G) + |F |) + (
∑
e∈E

9−
∑
e∈F

1)

= α(G) + 9m

Since this inequality is true for any independent set S′, we have α(G′) ≤ α(G) + 9m.

Claim 3.26. There exists a greedy set S′ in G′ of size α(G) + 9m.

Let S be a maximum independent set in G. Construct the set S′ as follows

• While there exists some unpicked nodes in G′ do

1. If there exists an unpicked vertex u ∈ S with minimum degree, add u to S′ and
nodes b and g in all adjacent gadgets Huv (see Figure 3.13)

2. Otherwise, there exists a vertex of type a with minimum degree in some gadget
Huv.
– If v ∈ S, add a and d to S′

– If v /∈ S, add a and g to S′

• Run Greedy on the remaining connected components A,D and C of graphs He
which have not been picked yet.

At the end, we have S′ ∩ V = S and |S′ ∩ V (He)| = 9 for all e in E. Then the greedy set
S′ has the desired size.

76 CHAPTER 3. GREEDY APPROACHES FOR MAXIMUM INDEPENDENT SET

Therefore, α+(G′) = α(G′) = α(G) + 9m and then for any integer k we have

α+(G′) ≥ k + 9m if and only if α(G) ≥ k.

3.7.3 Hardness of approximation

In this section we establish hardness of approximation for finding maximum greedy sets
in three classes of graphs: general graphs, graphs with maximum degree ∆ and bipartite
graphs.

For any class of graphs, one can find worst case examples where the size of any greedy
set is small compare to the size of the maximum independent set. In the following, we will
call such examples hard graphs. For such graphs, there is an unique greedy set, meaning
that at any stage of the algorithm the choice of the minimum degree vertex is unique,
and the ratio of its size to that of the maximum independent set is minimized. For a
given class of graphs, we will call this ratio an ultimate lower bound w.r.t the class of
graphs considered, and it shows the limitation of our initial greedy rule. However, since our
original motivation was to design additional tie-breaking rules for the min-degree greedy
algorithm, in order to measure the difficulty of designing such rules, we need to compare
ourselves to the maximum greedy set in the given graph. And for these examples, since the
size of the greedy solution is unique, the min-degree greedy algorithm is optimal when
we compare to the maximum size of a greedy set.

In what follows, we show that MaxGreedy is hard to approximate in different classes
of graphs, within to an inapproximability factor that matches the ultimate lower bound.

Theorem 3.27. MaxGreedy is hard to approximate within a factor of n1−ε, for
any constant ε > 0, assuming P 6= NP and hard to approximate within a factor of
n/ logn, assuming the Exponential Time Hypothesis.

Theorem 3.28. For graphs with maximum degree ∆ ≥ 7, MaxGreedy is hard to
approximate within a factor of (∆ + 1)/3−O(1/∆)−O(1/n), assuming P 6= NP.

Theorem 3.29. For bipartite graphs, MaxGreedy is hard to approximate within a
factor of n1/2−ε, for any constant ε > 0, assuming P 6= NP.

Here, n refers here to the number of vertices of the graph considered. Notice that since
the size of a maximum greedy set is upper bounded by the size of a maximum independent
set, a lower bound on the approximability of MaxGreedy is necessarily smaller than the
best approximation ratio achieved by one particular tie-breaking greedy algorithm. This
suggests that our inapproximability results are (almost) tight.

A way of proving these inapproximability lower bounds is the following. Given a class
of graphs, we first find a hard graph B, where the greedy set is unique. In particular,
there exists exactly one minimum degree vertex r in B, that we call the root of the hard
graph. We ask additionally these hard graphs to have the following property. If the root is
removed from B, then the min-degree greedy algorithm outputs a maximum independent
set: Greedy(B \ r) = α(B).

3.7. LIMITS OF THE GREEDY APPROACH. 77

Figure 3.14: A example of the construction of Hϕ, where ϕ contains clauses C1 = xyz and C2 = zw.
Cliques K6 ensure that vertices of this graph are executed by Greedy in the right order.

Now, we add an anchor graph H connected to B by the root vertex r. Intuitively,
the sub-graph encodes an instance of an NP-hard problem, in such way that there exists a
greedy set that does not contain r if and only if the instance is positive.

When the size of H is arbitrarily small compared to α(B), then the gap introduced
will be arbitrarily close to the approximation ratio of the greedy algorithm in B, i.e., the
ultimate lower bound for the class of graphs considered.

Precisely, let ϕ be a formula of SAT, with n variables and m clauses. Without loss of
generality, we can assume that :

(1) Each clause contains two or three literals.

(2) Each positive (resp. negative) literal appears in exactly two (resp. one) clauses.

Indeed, given a 3-SAT formula, if a variable y occurs k times, then we replace each
occurrence by new variables y1, . . . , yk, and add the new clauses y1 ⇒ y2, . . . , yk ⇒ y1.
Now, (1) is satisfied and each variable appears exactly three times. Finally, if a variable
does not satisfy (2), simply exchange its positive and negative literal. This new formula has
polynomial size in n,m and is satisfiable if and only if the original formula is satisfiable.

Now we build the anchor graph Hϕ as follows. First create a vertex r′. Create two
adjacent literal vertices x and x, for each variable x and create a gadget HC (see Figure
3.14) for each clause C. In particular, this gadget has one vertex vC,` for each literal ` in
C and a vertex rC . Connect vC,` to the corresponding literal vertex ` and each rC to r.
Finally, we increase the degree of negative literal vertices by one, by adding a clique of 6
vertices with one connected to the literal vertex. Then, each literal vertex has now exactly
degree three. Let G be the graph obtained by connecting Hϕ and B with their respective
vertices r′ and r. See Figure 3.14.

Any execution of the min-degree algorithm in G, resulting in a greedy set S at the
end, consists of three phases. During phase 1, the minimum degree vertices are the literal
vertices, with degree three. Greedy has to decide either to pick x or x, for each literal
x. This is exactly choosing a valuation ν such that x is in S if and only if ν(x) = true.
During the second phase, all remaining vertices in H are removed, such that at the end, r′

78 CHAPTER 3. GREEDY APPROACHES FOR MAXIMUM INDEPENDENT SET

Figure 3.15: hard general graph.
The greedy algorithm returns r
and one vertex from the clique,
while the maximum independent is
{x1, . . . , xk}. The ratio is k

2 = n−1
4 .

Figure 3.16: hard bipartite graph. |U1| = · · · =
|Un| = |V ′| = k. Any vertex is Ui is adjacent to
V ′ ∪{xi, . . . , xn}. The greedy algorithm outputs V ′ ∪
{x1, . . . , xn} while the maximum independent set is⋃
i Ui. The gap is k/2 = Θ(

√
n).

is in S if and only if ϕ is true for ν. To see this, notice that vC,` or v′C,` have now minimum
degree four, and the clause C is not satisfied by ν if and only if for all literals ` in C, the
corresponding vertices vC,` are still in the graph. This implies picking all these vertices,
and later the vertex rC in S, so that r′ /∈ S. Finally, the last phase consists in executing
the greedy algorithm in B: if the formula is not satisfied then, the root r is picked and
the number of vertices picked during this phase is Greedy(B), and otherwise α(B) by the
assumption.

To summarize, we build a graph G such that

• If ϕ is satisfiable then, there exists a greedy set of size at least α(B).

• otherwise, if ϕ is not satisfiable then, any greedy set has size at most |V (Hϕ)| +
Greedy(B),

where |V (Hϕ)| = Θ(m + n). Then, when the hard graph has arbitrarily large size, one
can introduce a gap arbitrarily close to the ratio α(B)/Greedy(B). We use hard graphs
in Figure 3.15 (general graphs), Figure 3.16 (bipartite graphs) and the hard graphs of
bounded degree presented in Theorem 3.22, to obtain the above results that are are detailed
subsequently below.

Hardness of approximation for general graphs. Consider the hard graph B given
by Figure 3.15. For any ε > 0, choose its size n such that |ϕ| < nε. The size of G is a
polynomial in n. This implies that MaxGreedy is hard to approximate to within n1−ε.
Interestingly, Håstad proved that Maximum Independent Set is also hard to approximate
to within the same factor [80].

Further, assuming the Exponential Time Hypothesis, that there exists a constant ε > 0,
such that 3-SAT cannot be solved in time 2εn, implies that MaxGreedy is hard to
approximate to within a factor of n/ logn. To see this, one may use the same construction
with a bad graph of size 2ε′|ϕ| for a suitable value ε′ > 0. In particular this suggests that a
greedy algorithm will not do as well as Feige’s algorithm that achieves an O(n/(logn)3)
approximation [50].

3.8. CONCLUSION 79

Hardness of approximation for graphs with maximum degree ∆. We use hard
graphs described in the proof of Theorem 3.22, see Figures 3.11 and 3.12. Recall that the
structure of these graphs depends on the value ∆ mod 3. As defined before, these hard
graphs have several vertices of minimum degree, that make a clique K. Then, add a vertex
r′′, adjacent to all vertices in K and a root vertex r adjacent to r′′. Now, these graphs
have a unique root and the size of the greedy set and the maximum independent set only
grew up by an additive constant factor. Since ∆ ≥ 7, all vertices in B have degree at least
5 so that the greedy algorithm will execute first all vertices in the anchor graph.

All vertices in G have degree at most ∆, except the root r′ that has degree equal to a
least the number of clauses. To overcome this issue, we can replace edges (rC , r) by a tree
of bounded degree, rooted in r′, such that the distance from and rC to r is odd, and such
that vertices at odd distance from r′ have smaller degree than the ones at even distance.
We can finally add several cliques to increase the degree of vertices of this tree so that,
they all have degree at least five. If at some point a vertex rC is picked by the greedy
algorithm — meaning that the formula is not satisfied — then all vertices at odd distance
from r′ on the path from rC to r will be picked in S, so that r′ /∈ S.

Hardness of approximation for bipartite graphs. Figure 3.16 presents an example
of an hard bipartite graph, with a ratio Θ(

√
n). When the root r is removed from B, then

the vertices in U1 have minimum degree 2k − 1 while all vertices x1 have degree at least
2k. Therefore, in this situation the greedy set returned is the union of all Ui, that is a
maximum independent set in B.

To make the anchor graph bipartite, we first change the structure of gadgets K6 used to
increases the degree of some vertices. For instance, a simple bipartite complete graph K6,6
fulfils exactly the same function. Then, one might still find some odd-cycles left due to
edges between literal vertices and gadgets. These can be avoided using a NP-hard version
of the satisfaction problem called Monotone 3-SAT-4, where each variable appears four
times and additionally that containing three literals, each clause contains only positive, or
only negative literals. See [43] for more details.

Since an optimal independent set can be computed in polynomial time in a bipartite
graph, the greedy algorithm is not a good algorithm for this class. However, this negative
result suggests that even knowing a maximum independent set may not be helpful in order
to design good tie-breaking rules.

3.8 Conclusion

Our main technical contribution is a non-local payment scheme together with an inductive
argument that can be embedded with greedy-style algorithms for the Maximum Independent
Set problem on bounded degree graphs. These techniques imply best possible approximation
guarantees of greedy on subcubic graphs. We have also shown versatility of these techniques
by proving (via simple proofs) that they imply close to best possible greedy guarantees on
graphs with maximum degree ∆, for any ∆.

Furthermore, we showed that in our original paper [101] that these techniques also
imply improved fast approximation algorithms for the minimum vertex cover problem
on bounded degree graphs. We obtained a fast O(n2)-time 6/5-approximation for the
Minimum Vertex Cover problem on subcubic graphs. The best algorithm for this problem
is a 7/6-approximation with a running time of at least n50 [71]. Even obtaining the

80 CHAPTER 3. GREEDY APPROACHES FOR MAXIMUM INDEPENDENT SET

6/5-approximation for the Minimum Vertex Cover problem on subcubic graphs required a
running time of n18.27 [31].

We have complemented these results by hardness results, showing that it is hard to
compute good tie-breaking rules for the greedy algorithms.

Our techniques have a potential for further generalizations and applications. Our
potential function and the inductive argument are quite general and they could be applied
to other related problems on bounded degree graphs. Such general problem should have the
following features: given a graph, the optimal solution should be ubiquitously “distributed”
over the input graph, and therefore also a feasible solution should be computable sequen-
tially/locally by “choosing parts of the graph”, debt and loan should be definable on such a
problem as problem specific, depending on the problem’s constraints. Possible candidates
are, for instance, the set packing and set covering problems with sets of bounded size and
bounded element occurrences.

Finally, we also mention some more specific directions for further study. Can we obtain
a greedy rule to design a (∆ + 1)/3-approximation for any value of ∆? We think that it
should be possible with our techniques, by a careful and refined analysis. For instance, we
can already easily prove an 9/5-approximation when ∆ = 4, and a 13/6-approximation
when ∆ = 5. This already improves on the previous ratios that follow from the known
bound of (∆ + 2)/3 on any greedy: 2 for ∆ = 4, and 7/3 for ∆ = 5.

4 | Approximating Integral Mul-
tiflows on the Plane

4.1 Introduction

The edge-disjoint paths problem (EDP) is a fundamental problem in combinatorial op-
timization, consisting of connecting as many demand pairs as possible in a graph via
edge-disjoint paths. There is a large body of literature studying this problem in various
settings. A primary goal has been to find conditions under which there is a solution
satisfying all demands, e.g. when the cut condition is sufficient; see Frank’s survey [54] or
part VII of Schrijver’s book [133].

Unfortunately many cases of EDP are NP-hard, so it is natural to look for approxima-
tion algorithms. However there is no general theory and constant-factor approximations
can only be expected in special cases.

One of the landmark results in this area is due to Seymour. Let G+H denote the union
(of the edge sets) of the supply graph G and the demand graph H. Seymour [137] proved
that if G+H is planar and Eulerian, the cut condition guarantees a solution to connect
all demand pairs; such a solution can be found in polynomial time. Seymour’s result has
motivated a sequence of follow-up works investigating EDP when G+H is planar. We
refer the readers to Frank’s surveys [54, 55] and Schrijver’s book [133, in particular Chapter
74.2] for an overview of these results. For example, one can decide in polynomial time
whether all demand pairs can be connected when G+H is planar and the demand pairs
lie on a bounded number of faces of G [117].

Unfortunately the general case that G+H is planar is one of these cases in which EDP
is NP-hard, as Middendorf and Pfeiffer [117] proved. Very little seems to be known about
approximation in that setting. Korach and Penn [98] showed that, given the cut condition,
one can satisfy all demands except one for each face of G, and such a solution can be found
in polynomial time. However, this does not imply an approximation ratio in general.

4.1.1 Our Results

Before we present our main results, let us define the edge-disjoint paths problem formally:

Definition 4.1. The EdgeDisjointPaths problem (EDP) takes as input a supply
graph G = (V,E) and a demand graph H = (V,D) and asks for a maximum-
cardinality set of pairwise edge-disjoint cycles such that each cycle consists of an edge
{u, v} in D and a path between u and v in E.

The conditions that the set C of cycles in G + H must satisfy can equivalently be

81

82 CHAPTER 4. APPROXIMATING INTEGRAL MULTIFLOWS ON THE PLANE

written as: (1) ∀C ∈ C, |C ∩ D| = 1, (2) ∀e ∈ D ∪ E, |{C | C ∈ C, C 3 e}| ≤ 1. Our
results extend to the natural generalization when edges have integral capacities (the Integer
Multiflow problem; see Section 4.5.2); for the sake of simplicity, we present our algorithms
for the uncapacitated case. We consider the case when G + H is planar and present a
constant-factor approximation algorithm:

Theorem 4.2. There is a polynomial-time 24-approximation algorithm for EdgeDis-
jointPaths if G+H is planar.

We prove this theorem in Sections 4.2 and 4.3. Our proof is based on rounding a
fractional solution to a certain LP relaxation to obtain a subset of demand edges for which
the cut condition is satisfied, i.e., no cut has more of these demand edges than supply
edges: in the planar dual, this translates into what we call the NonNegativeCycles
problem.

Definition 4.3. The NonNegativeCycles problem (NNC) takes as input a supply
graph G = (V,E) and a demand graphH = (V,D) and asks for a maximum-cardinality
set D′ ⊆ D of demand edges such that

|C ∩D′| ≤ |C ∩ E| for every cycle C in G+H.

In other words, if edges in E have weight 1, edges in D′ have weight −1, and edges
in D \ D′ have weight 0, then every cycle must have non-negative total weight. The
NonNegativeCycles problem is NP-hard even when G+H is planar (Section 4.6), but
we give an approximation algorithm (see Theorem 4.6). Once this rounding is done and
we have an approximate solution of NonNegativeCycles, we can obtain edge-disjoint
paths for at least half of these demand edges (see Theorem 4.8). We use the four color
theorem in several places.

Section 4.5 analyzes the integrality gaps of various LPs. By comparing the output of
our algorithm to the value of the natural LP relaxation, we get an upper bound of 24 on its
integrality gap. A special case, when every demand edge has an infinite (or large enough)
number of parallel copies, has been called maximum integer multiflow. In this case the
dual LP is a relaxation of the multicut problem, which asks for a smallest set of supply
edges whose deletion destroys all paths for all demand edges. We show that this dual LP
has an integrality gap of at most 2 if G+H is planar. This yields:

Theorem 4.4. If G+H is planar, the minimum cardinality of a multicut is at most
48 times the maximum value of an integer multiflow.

This is one of the few cases with a constant upper bound on the ratio of the smallest
multicut and the largest integer multiflow (see, e.g., [144]). Another such case is when G
arises from a tree by duplicating edges; then this ratio is 2 [63]; in general the ratio can be
as large as Θ(|D|), even when G is planar (see Figure 5.7).

4.1.2 Further Related Work

Hardness. The decision version of EDP is one of Karp’s original NP-complete prob-
lems [90], and remains NP-complete even in many special cases [122], including the case of
interest in this paper, namely even when G+H is planar [117]. In terms of approximation,
EDP is APX-hard [3]. Assuming that NP 6⊆DTIME(nO(logn)), where n = |V |, there is

4.1. INTRODUCTION 83

no 2o(
√

logn)-DTIMEapproximation for EDP, even when G is planar and subcubic and
each demand edge has one of its endpoints on the outer face of G [35]. Assuming that for
some δ > 0, not all problems in NP can be solved in randomized time 2nδ , there is no
nO(1/(log logn)2)-approximation even when G is a wall graph [36]. As far as we know, no
stronger hardness result is known for integral mutliflows.

The difficulty is further illustrated by the integrality gap of a natural LP relaxation:
even when G is planar and subcubic, the integrality gap is already in the order of Θ(

√
n) [63],

see Figure 5.7.

Positive results. EDP can be solved in polynomial time when the number of demand
edges is bounded by a constant [132]. The same holds for integral multiflows when G+H
is planar [135]. The best known approximation guarantee is O(

√
n) [27], even when G is

planar.
Nonetheless, there are some special cases for which significantly better approximation

ratios are known: for instance, when G is planar and Eulerian, or planar and 4-edge-
connected, there is an O(logn)-approximation [91], improving on a previous O(log2 n)-
approximation algorithm for Eulerian planar graphs [97]. When G is a grid, there is an
O(log2 n)-approximation [6]. When G is a wall graph, there is a Õ(n1/4)-approximation [33].
When in addition all demand edges have one endpoint at the boundary of the wall, there
is an 2O(

√
logn·log logn)-approximation [36]. Yet none of those results gets to the range of a

constant-factor approximation.

Variants. One way to relax EDP is to allow for congestion c, that is, in the solution, up
to c paths may share the same edge. It is known that EDP becomes significantly easier
with congestion: with congestion 2, there is a polylogarithmic approximation [32], and
when in addition G is planar, there is a constant-factor approximation [136].

A closely-related but more difficult problem is the Node-Disjoint Paths (NDP) problem,
in which two paths may not even share a common node. EDP can be reduced to NDP by
taking the line graph of the supply graph, but this reduction does not preserve planarity.
If G+H is planar, however, Middendorf and Pfeiffer [117] showed how to reduce EDP to
NDP while preserving planarity. Hence the Õ(n9/19)-approximation algorithm for NDP
with planar supply graphs [34] implies the same approximation ratio for EDP with G+H
planar.

Another more general version of EDP is its directed version (one can reduce EDP to its
directed version by replacing each edge by a simple gadget). The directed version seems
to be strictly harder than the undirected EDP; for example it is even NP-hard for two
demand edges [53].

4.1.3 Preliminaries

We assume throughout, without loss of generality, that G+H is connected. We recall here
some notions and well-known properties related to cuts, cycles, planar duality, and T -joins.

A D-cycle is a cycle that contains exactly one edge of D. Then EdgeDisjointPaths
asks for a maximum number of pairwise disjoint D-cycles.

We say an instance of EDP has a complete solution if there are |D| pairwise disjoint
D-cycles. For the existence of a complete solution, a necessary condition is the cut

84 CHAPTER 4. APPROXIMATING INTEGRAL MULTIFLOWS ON THE PLANE

condition:
|C ∩D| ≤ |C ∩ E| for every cut C. (4.1)

It is necessary because every cycle intersects every cut in an even number of edges. In fact
it is equivalent to requiring Equation 4.1 only for simple cuts, i.e., edge sets δ(U) where
both U and V \ U induce connected subgraphs.

The cut condition is very useful although in general it is NP-hard to check (this
is an unpublished observation of Sebő). The reason is that in many special cases, e.g.
when G+H is planar and Eulerian [137], it is sufficient and then can also be checked in
polynomial time. However, the cut condition is not sufficient in general, even when G+H
is planar. For instance, if G+H is K4, the complete graph on four vertices, and D is a
perfect matching, then the cut condition is satisfied but there is no complete solution., see
Figure 4.5 (a).

Let us call a simple cut that contains exactly one edge of D a D-cut. Then an equivalent
formulation of EDP, if G+H is planar, asks for finding a maximum number of pairwise
disjoint D-cuts in the planar dual graph (G+H)∗. The cut condition translates to the
cycle condition in the planar dual graph:

|C ∩D| ≤ |C ∩ E| for every cycle C. (4.2)

Deleting an edge in a planar graph is equivalent to contracting the corresponding edge
in the planar dual. These operations preserve planarity.

T -Joins. Condition Equation 4.2 is well known in the context of T -joins. For an edge set
F , let odd(F) denote the set of vertices whose degree is odd in (V, F). For a subset T ⊆ V ,
a T -join is a set F of edges with odd(F) = T . If F is a minimum-cardinality odd(F)-join,
then F is called a join. Guan [66] observed that F is a join if and only if

|C ∩ F | ≤ |C \ F | for every cycle C. (4.3)

For any connected graph, any T with |T | even, and any real edge weights, a minimum-weight
T -join can be computed in polynomial time [45].

If we have a set of pairwise disjoint D-cuts and D′ ⊆ D is the set of demand edges that
belong to one of these cuts, then we must have

|C ∩D′| ≤ |C ∩ E| for every cycle C. (4.4)

This is equivalent to saying that D′ is a join after contracting the edges in D \ D′.
Although this condition is again not sufficient, we will first find a set D′ ⊆ D satisfying
Equation 4.4 (in the planar dual graph).

4.2 Roadmap

4.2.1 Satisfying the Cycle Condition

The preceding considerations motivate studying the NonNegativeCycles problem in
the planar dual graph.

The NonNegativeCycles problem is NP-hard even when G + H is planar; see
Section 4.6. We devise a 16-approximation algorithm if G + H is planar. It begins by

4.2. ROADMAP 85

solving the following linear programming relaxation, which we call the non-negative cycle
LP:

max
∑
e∈D

xe (4.5)

∑
e∈C∩D

xe ≤ |C ∩ E| ∀ cycles C

0 ≤ xe ≤ 1 ∀e ∈ D

Lemma 4.5. The non-negative cycle LP (4.5) can be solved in polynomial time.

Proof. By the equivalence of optimization and separation [65], it is sufficient to solve the
separation problem. To this end, given x ∈ RD, define weights w(e) := −xe for e ∈ D and
w(e) := 1 for e ∈ E. Then the separation problem reduces to finding a negative-weight cycle
or deciding that there is none. This can be done by computing a minimum-weight ∅-join J .
If w(J) ≥ 0, then there is no negative-weight cycle. Otherwise J can be decomposed into
cycles, and at least one of them will have negative weight.

The second step of our algorithm will round the LP solution. In Section 4.3 we will
prove:

Theorem 4.6. Let x be a feasible solution to the non-negative cycle LP (4.5). Then there
is a polynomial-time algorithm to construct an integral feasible solution that has value at
least 1

16
∑
e∈D xe.

4.2.2 Packing T -Cuts

Let x be an integral feasible solution to the non-negative cycle LP (in the planar dual),
and let J ⊆ D contain those demand edges e for which xe = 1. So J is an NNC solution.
If we delete the other demand edges (or contract them in the planar dual), the resulting
instance now satisfies the cut condition (the cycle condition in the planar dual). Let
G′ = (V, J ∪̇E)∗ be the graph that arises from the planar dual by contracting the edges in
D \ J . Then J is a join in G′. Our goal is now to find as many pairwise disjoint J-cuts
in G′ as possible because after uncontracting, these will correspond to pairwise disjoint
D-cuts in (G+H)∗ and hence to pairwise disjoint D-cycles in G+H.

Edmonds and Johnson [45] and Lovász [108, 110] showed that a perfect half-integral
packing of J-cuts exists and can be computed in polynomial time:

Theorem 4.7. For every graph G and every join J in G there exist vertex sets U1, . . . , U2|J |
(not necessarily distinct) that form a laminar family, such that |δ(Ui) ∩ J | = 1 for all i
and for every edge e of G there are at most two indices i with e ∈ δ(Ui). Such sets can be
computed in polynomial time.

This theorem has been called the T -cut packing theorem because if J is a T -join (for
some vertex set T) then the cuts will be T -cuts, i.e., cuts δ(U) with |U ∩ T | odd. However,
we prefer to continue speaking of J-cuts because this is what we need. See [55] and Theorem
4.15 for extensions of this result. Using planarity one can deduce from this a large number
of pairwise disjoint J-cuts. The following theorem follows from the proof of Theorem 1 in
Fiorini et al. [51] (that theorem is originally due to Král’ and Voss [100]).

86 CHAPTER 4. APPROXIMATING INTEGRAL MULTIFLOWS ON THE PLANE

Theorem 4.8. Let G be a planar graph and J a join in G. Then there is a family of at
least |J |2 pairwise disjoint J-cuts in G, and such a family can be computed in polynomial
time.

For completeness, we give a proof of this result in Section 4.4.

4.2.3 A 32-approximation algorithm

We have now all ingredients to prove a constant-factor approximation. The overall algorithm
can be summarized as follows. The input consists of two graphs G = (V,E) and H = (V,D)
such that G+H is planar.

Step 0: Construct a planar dual graph (G+H)∗

Step 1: Solve the non-negative cycle LP Equation 4.5 in the planar dual graph (G+H)∗,
to get a fractional solution x;

Step 2: Use the algorithm of Theorem 4.6 (proved in Section 4.3) to deduce an integral
feasible solution x′ with

∑
e∈D x

′
e ≥ 1

16
∑
e∈D xe. Let J := {e ∈ D : x′e = 1} be the

corresponding NNC solution.

Step 3: Contract the edges in D \ J (in the planar dual graph) and use the algorithm of
Theorem 4.8 to compute at least |J |2 pairwise disjoint J-cuts. By planar duality, these
correspond to at least |J |2 pairwise disjoint D-cycles in G+H. Output these.

Theorem 4.9. The above is a polynomial-time 32-approximation algorithm for EdgeDis-
jointPaths when G+H is planar.

Proof. A J-cut in (V, J ∪̇E)∗ indeed corresponds to a J-cycle in (V, J ∪̇E) and hence in
G + H. Therefore the output is a feasible solution. By Lemma 4.5, Theorem 4.6, and
Theorem 4.8, the algorithm runs in polynomial time. The number of D-cycles that it
computes is at least 1

32 times the LP value.
On the other hand, consider an optimum solution, say consisting of OPT many D-

cycles. Then there is a set D̄ ⊆ D such that |D̄| = OPT and (G, (V, D̄)) has a complete
solution. This instance must therefore satisfy the cut condition, in other words we have
|C ∩ D̄| ≤ |C ∩E| for every cut C in G+H. Therefore, in the planar dual, setting x̄e := 1
for e ∈ D̄ and x̄e := 0 for e ∈ D \ D̄ defines a feasible solution to the non-negative cycle
LP. Hence the LP value is at least OPT.

See Section 4.3.3 for a slight variant of this algorithm reducing the approximation ratio
from 32 to 24, hence Theorem 4.2.

4.3 Rounding the Non-negative Cycle LP
In this section we show how to round the non-negative cycle LP and prove Theorems 4.6
and 4.2. Let us first recall the statement of Theorem 4.6.

Theorem 4.6. Let x be a feasible solution to the non-negative cycle LP (4.5). Then there
is a polynomial-time algorithm to construct an integral feasible solution that has value at
least 1

16
∑
e∈D xe.

4.3. ROUNDING THE NON-NEGATIVE CYCLE LP 87

4.3.1 Algorithm

Starting from a feasible solution x of the non-negative cycle LP (4.5), we first contract all
cycles in (V,D). Every edge e ∈ D that vanishes in this contraction has xe = 0, therefore
this preprocessing will not change

∑
e∈D xe. Now (V,D) is a forest. Then we execute the

following two algorithms and pick the better of the two solutions S1 and S2 obtained from
Algorithms 10 and 11 respectively.

The first algorithm is independent of the fractional solution x and simply picks a subset
of edges incident to leaves. It is the better choice if (V,D) has many leaves (degree-1
vertices).

Input: an NNC input G+H such that (V,D) is a forest.
Output: a feasible solution S1 to NonNegativeCycles.
Find a 4-coloring of G+H, consider a color class containing the largest number of
leaves of (V,D), and let I be the set of leaves of that color.
Let S1 be the set of edges in D that are incident to a leaf in I.
return S1

Algorithm 10: The leaf algorithm.

The second algorithm does a careful rounding of the fractional LP solution; see Figure
4.1 for an example.

Input: an NNC input G+H such that (V,D) is a forest, and a feasible solution
x to the non-negative cycle LP Equation 4.5.

Output: a feasible solution S2 to NonNegativeCycles.
For each connected component of the forest (V,D): Root the tree arbitrarily. Let
B denote the set of vertices with at least two children, and let L denote the set
of leaves.
For each b′ ∈ B ∪ L and b ∈ B \ {b′} such that b is an ancestor of b′ and each
inner vertex of the b-b′-path has exactly one child: subdivide the first edge on
this path, thus inserting an artificial edge ab,b′ incident to b, and set xab,b′ = 0.
Let A denote the set of artificial edges.
Define a budget function y : D ∪A→ R≥0. Initially ye = xe for all e ∈ D ∪A.
For each artificial edge ab,b′ ∈ A follow the path from b down to b′. For each
traversed edge e ∈ D, decrease ye and increase yab,b′ by the same amount. Do
this until yab,b′ = 1 or we reach b′.

Consider the edges e ∈ D in an order of non-increasing distance from the root (in
the graph (V,D ∪A)), and for each such edge e = (u, v), if ye > 0 then: Follow
the path from u up to the root. For each traversed edge e′ ∈ D ∪A, decrease ye′
and increase ye by the same amount. Do this until ye = 2 or we reach the root.
S0

2 ← {e ∈ D : ye > 0}.
Contract each tree of (V,D), find a 4-coloring of the resulting graph, inducing a
4-coloring of the trees, choose the color class maximizing the number of edges of
S0

2 in trees of that color, and let S2 denote that subset of S0
2 .

return S2
Algorithm 11: The internal algorithm.

88 CHAPTER 4. APPROXIMATING INTEGRAL MULTIFLOWS ON THE PLANE

(a) root
.8

.9

.7

.9

.3

.9

.4

.8.3

.5 .8

.4

.6

.8

.9

.8

.1

(b) root
.8

0
.9

.7

.9

0.3

.9

.4

0 .80.3

0.5 0 .8

.4

0 .6

.8

.9

.8

.1

(c) root
.8

1
0

.6

.9

10

.2

.4

.8 0.30

.50 1 0

.2

1 0

.4

.9

.8

.1

(d) root
0

.5
0

0

e32

00

e41.9

0

.8 000

.50 0 0

e1 2

0 0

e5 1.2

0

0

e2 2

Figure 4.1: Illustrating Algorithm 11. (a): the original tree with an arbitrarily chosen root; vertices
of B are red squares; next to each edge e the value xe is shown. (b): the rooted tree after inserting
the artificial edges (red, dotted) and the initial budgets ye (after step 3). (c): each artificial edge
has collected up to one unit from below (in step 4). (d): edges e1, . . . , e5 (shown in blue, bold) are
collecting up to two units from above (in step 5) and are included into S0

2 (in step 6). We see the
final distribution if the edges are considered in this order. The green and yellow shades show from
where the final budgets ye1 , . . . , ye5 come from.

4.3.2 Analysis

These algorithms are well-defined and polynomial time by Theorem 1.1. We will prove
that S1 and S2 are feasible NonNegativeCycles solutions (Lemmas 4.10 and 4.12,
respectively) and that max{|S1|, |S2|} ≥ 1

16
∑
e∈D xe (Lemma 4.13), thus establishing

Theorem 4.6.

Lemma 4.10. S1 is a feasible solution for NonNegativeCycles.

Proof. Let C be a cycle in G+H. By definition of S1 each edge of C ∩ S1 is incident to
at least one vertex of I, and since vertices of I are leaves of (V,D) those vertices are all
distinct, so |C ∩ S1| ≤ |V (C) ∩ I|. Each vertex of V (C) ∩ I is incident to at most one edge
of C ∩D, hence to at least one edge of C ∩ E. Since I is an independent set in G, those
edges are all distinct, so |V (C) ∩ I| ≤ |C ∩ E|.

To prove that S2 is also a feasible solution for NonNegativeCycles, we first show
the following key inequality:

Lemma 4.11. Let P be the set of edges of a path in (V,D). Then∑
e∈P

xe ≥ 2|S2 ∩ P | − 2. (4.6)

Proof. We may assume that S2 ∩ P 6= ∅, for the assertion is trivial otherwise. Let v be the
vertex in P that is closest to the root (picked in step 1 of Algorithm 11) of the connected
component of (V,D) that contains P . Then P is the union of two paths P1 and P2 that
both begin in v and go down the tree. One of these paths may be empty. Let i ∈ {1, 2}
with S2 ∩ Pi 6= ∅, and let ehi be the edge of S2 ∩ Pi that is closest to v (and to the root).
After step 5 of Algorithm 11, every edge e of (S2 ∩Pi) \ {ehi } has ye = 2, and these budgets
come from edges of Pi. The latter is because

4.3. ROUNDING THE NON-NEGATIVE CYCLE LP 89

(i) ehi is the only edge in S2 ∩ Pi to which budget that is originally from closer to the
root than v can be moved, and

(ii) budget that was moved towards the root (to an artificial edge) in step 4 remains at
this artificial edge or is moved in step 5 to an edge that is not closer to the root than
the edge where the budget was initially.

Thus, ∑
e∈Pi

xe ≥
∑

e∈S2∩Pi,e 6=ehi

ye = 2(|S2 ∩ Pi| − 1).

This already implies Equation 4.6 if S2 ∩ P = S2 ∩ Pi.
It remains to consider the case that neither S2 ∩ P1 nor S2 ∩ P2 is empty. Then v ∈ B,

and after step 2 there is an artificial edge incident to v on the path from v to ehi (for each
i ∈ {1, 2}). Let fi be the last artificial edge on the path from v to ehi . Since ehi ∈ S2, we
had yehi > 0 after step 4 (i.e., even before we started augmenting yehi in step 5). Therefore
yfi = 1 after step 4 (and, by the same argument as before, this budget comes from edges
of Pi), and yehi ≥ 1 after step 5. Thus

∑
e∈Pi

xe ≥ 1 +
∑

e∈S2∩Pi,e 6=ehi

ye = 1 + 2(|S2 ∩ Pi| − 1) = 2|S2 ∩ Pi| − 1.

Adding this for P1 and P2 yields Equation 4.6.

Lemma 4.12. S2 is a feasible solution for NonNegativeCycles.

Proof. Let C be a cycle in G+H that contains at least one demand edge. Since (V,D) is
a forest, C contains at least one supply edge. The cycle C alternates between D-segments
(maximal subpaths of C all whose edges belong to D) and E-segments. Suppose there is
some cycle C with |C ∩ S2| > |C ∩E|. Among those cycles C, choose one such that C has
as few D-segments as possible.

We claim that for every tree T of D, C ∩ T is connected. Assume not; then there is
a path P ⊆ D whose endpoints u and v belong to V (C), but no edge of P belongs to C.
The two endpoints u and v of P partition C into two u-to-v paths, P1 and P2. One of the
two cycles C1 = P1 ∪ P and C2 = P2 ∪ P must have |Ci ∩ S2| > |Ci ∩ E| and has strictly
fewer D-segments than C, contradicting the choice of C. This proves the claim.

Thus each D-segment of C belongs to a different tree. By Lemma 4.11, every D-segment
P satisfies Equation 4.6. Moreover, since x is a feasible solution to the non-negative cycle
LP,

∑
e∈C∩D xe ≤ |C ∩ E|.

If |C ∩E| = 1, then Equation 4.6 yields 2|C ∩ S2| ≤ 2 +
∑
e∈C∩D xe ≤ 2 + |C ∩E| = 3,

implying |C ∩ S2| ≤ 1 = |C ∩ E|. Otherwise, thanks to selecting an independent set in
the contracted graph in step 7, if there is more than one D-segment, every E-segment
has at least two edges. Summing Equation 4.6 over all D-segments P yields 2|C ∩ S2| ≤
|C ∩ E|+

∑
e∈C∩D xe ≤ |C ∩ E|+ |C ∩ E|. Therefore, |C ∩ S2| ≤ |C ∩ E| as required.

Lemma 4.13.
∑
e∈D xe ≤ 8(|S1|+ |S2|).

Proof. The construction of Algorithm 11 maintains the invariant
∑
e∈D xe =

∑
e∈D∪A ye.

Since edges of S0
2 have ye ≤ 2, artificial edges have ye ≤ 1, and other edges have ye = 0, we

90 CHAPTER 4. APPROXIMATING INTEGRAL MULTIFLOWS ON THE PLANE

can write
∑
e∈D∪A ye ≤ 2|S0

2 |+ |A|. Observe that the number of artificial edges is at most
2|L| − 2. By construction |L| ≤ 4|S1| and |S0

2 | ≤ 4|S2|. Combining, we conclude∑
e∈D

xe ≤ 2|S0
2 |+ 2|L| ≤ 8|S2|+ 8|S1|.

Lemma 4.13 immediately implies max{|S1|, |S2|} ≥ 1
16
∑
e∈D xe, finishing the proof of

Theorem 4.6.

4.3.3 Proof of Theorem 4.2: Improving the approximation ratio from
32 to 24

Lemma 4.13 also implies max{|S1|, 1
2 |S2|} ≥ 1

24
∑
e∈D xe. This yields Theorem 4.2: we

have |S1| pairwise disjoint D-cuts from Algorithm 10, the singleton cuts of the leaves, and
we also get 1

2 |S2| pairwise disjoint D-cuts by applying Theorem 4.8 to S2. We output the
larger of the two.

4.4 Packing Cuts (Proof of Theorem 4.8)
In this section we prove Theorem 4.8, whose statement we now recall.

Theorem 4.8. Let G be a planar graph and J a join in G. Then there is a family of at
least |J |2 pairwise disjoint J-cuts in G, and such a family can be computed in polynomial
time.

Recall that a J-cut is a simple cut that contains exactly one edge from J . An example
by Korach and Penn [98] shows that the factor 2 in Theorem 4.8 is best possible. Without
planarity we cannot hope for any constant factor, e.g.if G is a complete graph and J a
perfect matching in G, then there are no two disjoint J-cuts.

Let J be a join in a planar graph G. Middendorf and Pfeiffer [117] showed that
it is NP-complete to decide whether there are |J | pairwise disjoint J-cuts. Hence also
finding the maximum number of pairwise disjoint J-cuts is NP-hard. However, we give an
approximation algorithm in the following. Our proof is inspired by the paper of Korach
and Penn [98].

Recall that a family of subsets of V is laminar if for any two of those sets either they
are disjoint or one is a subset of the other. It is cross-free if for any two of those sets, either
they are disjoint, or one is a subset of the other, or their union is V . We will show the
following:

Lemma 4.14. Let G = (V,E) be a connected planar graph. Let L be a laminar family of
(not necessarily distinct) vertex sets of G such that δ(U) is a simple cut for all U ∈ L and
every edge is contained in at most two of these cuts. Then there exists a polynomial-time
algorithm to compute a sub-family L′ ⊆ L such that |L′| ≥ 1

4 |L| and the cuts δ(U) for
U ∈ L′ are pairwise disjoint.

Again, the example by Korach and Penn [98] shows that the factor 4 in Lemma 4.14
is best possible. Without planarity we cannot hope for any constant factor, e.g.if G is a
complete graph and L contains all singletons.

Before we prove Lemma 4.14, let us first see how it implies Theorem 4.8.

4.4. PACKING CUTS 91

Proof. (Theorem 4.8) Let J be a join in G. By Theorem 4.7, we can compute vertex sets
U1, . . . , U2|J | (not necessarily distinct) that form a laminar family L, such that |δ(Ui)∩J | = 1
for all i and every edge is contained in at most two of the cuts δ(Ui), i = 1, . . . , 2|J |. Before
applying Lemma 4.14, we want to make sure that these cuts are all simple cuts, and this
will be achieved in the following by a sequence of transformations.

For i = 1, . . . , 2|J | let U ′i ⊆ Ui be the vertex set of the connected component of G[Ui]
for which |δ(U ′i)∩ J | = 1. Then δ(U ′i) ⊆ δ(Ui). We claim that the sets U ′1, . . . , U ′2|J | form a
laminar family L′. Let 1 ≤ i < j ≤ 2|J |. If Ui ∩Uj = ∅, then U ′i ∩U ′j = ∅. If Ui ⊆ Uj , then
the vertex sets of the connected components of G[Ui] are subsets of the vertex sets of the
connected components of G[Uj], so U ′i is either disjoint from U ′j or a subset of U ′j . The
case Uj ⊆ Ui is symmetric.

Now G[U ′i] is connected for all i. For i = 1, . . . , 2|J | let U ′′i ⊆ V \ U ′i be the vertex set
of the connected component of G[V \U ′i] for which |δ(U ′′i)∩ J | = 1. Then δ(U ′′i) ⊆ δ(U ′i) ⊆
δ(Ui). Note that for each i, G[U ′′i] and G[V \ U ′′i] are connected and |δ(U ′′i) ∩ J | = 1. In
other words, δ(U ′′1), . . . , δ(U ′′2|J |) are J-cuts.

We claim that the sets U ′′1 , . . . , U ′′2|J | form a cross-free family L′′. Let 1 ≤ i < j ≤ 2|J |.
If U ′i ⊆ U ′j , then the vertex sets of the connected components of G[V \ U ′j] are subsets of
the vertex sets of the connected components of G[V \ U ′i], so U ′′j is either disjoint from U ′′i
or a subset of U ′′i . The case U ′j ⊆ U ′i is symmetric.

It remains to consider the case U ′i ∩ U ′j = ∅. Suppose X := V \ (U ′′i ∪ U ′′j) is nonempty.
Since G is connected, we have ∅ 6= δ(X) = δ(U ′′i ∪U ′′j) ⊆ δ(U ′i \U ′′j)∪ δ(U ′j \U ′′i), where the
last step is because all edges with exactly one endpoint in U ′′i have the other endpoint in
U ′i , and all edges with exactly one endpoint in U ′′j have the other endpoint in U ′j . Hence at
least one of U ′i \U ′′j or U ′j \U ′′i is nonempty. Suppose, without loss of generality, U ′i \U ′′j 6= ∅.
Because G[U ′i] is connected, U ′i is a subset of the vertex set of a connected component
of G[V \ U ′j]. So U ′i ∩ U ′′j = ∅. But then U ′′j is a subset of the vertex set of a connected
component of G[V \ U ′i], and thus it is a subset of U ′′i or disjoint from U ′′i .

So indeed L′′ is cross-free. To obtain a laminar family, choose v ∈ V arbitrarily, and
for every U ′′ ∈ L′′ with v ∈ U ′′, replace U ′′ by V \ U ′′. We obtain a laminar family L′′′
of 2|J | (not necessarily distinct) vertex sets such that δ(U) is a J-cut for all U ∈ L′′′ and
every edge is contained in at most two of these cuts. It is obvious that all the above steps
can be performed in polynomial time. Applying Lemma 4.14 concludes the proof.

To prove Lemma 4.14, consider the following recursive algorithm:

92 CHAPTER 4. APPROXIMATING INTEGRAL MULTIFLOWS ON THE PLANE

Input: a planar graph G = (V,E) and a laminar family L of (not necessarily
distinct) nonempty subsets of V such that G[U] and G[V \ U] are
connected for all U ∈ L and every edge is contained in at most two of the
cuts δ(U), U ∈ L.

Output: a subset L′ ⊆ L such that the cuts δ(U), U ∈ L′, are pairwise disjoint
if the elements of L are pairwise disjoint then /* case 1 */

Consider the planar graph P obtained by contracting each U ∈ L into a single
vertex and deleting all other vertices. Compute a 4-coloring on P .
return a subset of L that corresponds to a maximum-cardinality color class

if there exist U1, U2 ∈ L such that U1 = U2 then /* case 2 */
return {U1} ∪CutPacking(G,L \ {U1, U2})

/* case 3 */
Let U ∈ L be a set that is not minimal but all sets U1, . . . , Ul ∈ L that are proper
subsets of U are minimal (inclusionwise).
Consider the planar graph P obtained by contracting each Ui into a normal
vertex, deleting all other vertices in Ū , and contracting all vertices outside U into
a single special vertex.
Find a 4-coloring of P and choose a color class K with the largest number of
normal vertices. If all color classes contain l

4 normal vertices, choose the one that
contains the special vertex. Let L′ ⊂ L be the set of U ∈ L that correspond to
normal vertices in K.
if K contains more than l

4 normal vertices then /* case 3a */
return L′ ∪CutPacking(L \ {U,U1, . . . , Ul})

else /* case 3b */
return L′ ∪CutPacking(L \ {U1, . . . , Ul})

Algorithm 12: CutPacking .

Proof. (Lemma 4.14) We show the assertion by induction on |L|. We say here that a
subset L′ ⊆ L is stable if all δ(U) for U ∈ L′ are pairwise disjoint. We apply Algorithm 12.
Note that the graphs P in step 2 and step 7 are indeed planar because we only contract
connected vertex sets. By Theorem 1.1, the algorithm runs in polynomial time. We start
with the base case of our induction.
Case 1: The elements of L are pairwise disjoint. Let L′ ⊆ L be the solution returned. L′

Case 1: Case 2: Case 3a:

Ū

Case 3b:

Ū

Figure 4.2: The different cases in the proof of Lemma 4.14.

4.5. MAX-MULTIFLOW MIN-MULTICUT GAP (PROOF OF THEOREM 4.4) 93

corresponds to an independent set in P , so it is stable and has size at least |V (P)|/4 = |L|/4.
Notice that when L = ∅, case 1 applies, and the empty set is returned.
Case 2: Some U1, U2 ∈ L are equal. By the induction hypothesis CutPacking(G,L \
{U1, U2}) is stable and CutPacking(G,L\{U1, U2}) has size at least (|L|−2)/4. First, the
solution returned has size |L|−2

4 +1 = |L|+2
4 > |L|

4 . To prove that {U1}∪CutPacking(G,L\
{U1, U2}) is stable, we only have to check that δ(U1) ∩ δ(U) = ∅ for all U ∈ L \ {U1, U2}.
This holds since any edge in δ(U1) is also contained in δ(U2) and is contained in at most
two of the cuts.
Case 3: There exists a set U ∈ L that is not minimal but all sets U1, . . . , Ul ∈ L that are
proper subsets of U are minimal. Therefore the sets Ui (i = 1, . . . , l) are pairwise disjoint.
Then consider the graph P constructed in step 7 of the algorithm and a partition of its
vertex set into four independent sets. Now we consider two subcases.

If one of these independent sets contains at least l+1
4 normal vertices (case 3a), then

by induction hypothesis, the solution has size at least l+1
4 + |L|−(l+1)

4 = |L|
4 . Otherwise

(case 3b) all these independent sets contain exactly l
4 normal vertices and we break ties by

taking the one that contains the special vertex. Using the induction hypothesis again, the
solution returned has size at least l

4 + |L|−l
4 = |L|

4 .
After using induction hypothesis, this solution is stable because any edge in δ(Ui)∩δ(U)

for U ∈ L such that U ⊆ V \ U would also be contained in δ(U), but no edge is contained
in three of the cuts. If U ∈ CutPacking(L \ {U1, . . . , Ul}), then the special vertex is in
the independent set K, and hence δ(U) ∩ δ(Ui) = ∅ for all Ui ∈ L′.

4.5 Max-Multiflow Min-Multicut gap (Proof of Theorem
4.4)

4.5.1 Linear Programming Relaxations and Integrality Gaps

EdgeDisjointPaths consists of finding as many D-cycles as possible. If C denotes the
set of all D-cycles, then we look for a maximum subset of C whose elements are pairwise
disjoint. The natural fractional relaxation is (along with its linear programming dual):

max
∑
C∈C

fC∑
C∈C:e∈C

fC ≤ 1 ∀e ∈ D ∪̇E

fC ≥ 0 ∀C ∈ C.

min
∑

e∈D ∪̇E
ye∑

e∈C
ye ≥ 1 ∀C ∈ C

ye ≥ 0 ∀e ∈ D ∪̇E

Figure 4.3: The D-cycle packing LP and its dual, the D-cycle covering LP.

If we go to the planar dual graph and let U denote the set of vertex sets inducing
D-cuts, these LPs become

It turns out that the D-cut packing LP is equivalent to the non-negative cycle LP.
We need the following well-known generalization of Theorem 4.7 (see, e.g., [134] and the
references therein):

94 CHAPTER 4. APPROXIMATING INTEGRAL MULTIFLOWS ON THE PLANE

max
∑
U∈U

fU∑
U∈U :e∈δ(U)

fU ≤ 1 ∀e ∈ D ∪̇E

fU ≥ 0 ∀U ∈ U .

min
∑

e∈D ∪̇E
ye∑

e∈δ(U)
ye ≥ 1 ∀U ∈ U

ye ≥ 0 ∀e ∈ D ∪̇E

Figure 4.4: The D-cut packing LP and its dual, the D-cut covering LP.

Theorem 4.15. For every graph G = (V,E) with capacities u : E → R≥0 and every set
J of edges such that u(C ∩ J) ≤ u(C \ J) for every cycle C, one can compute in strongly
polynomial time a laminar family L of vertex sets with weights w : L → R>0 such that
|δ(U) ∩ J | = 1 for all U ∈ L,

∑
U∈Lw(U) =

∑
e∈J u(e), and

∑
U∈L:e∈δ(U)w(U) ≤ u(e) for

all e ∈ E. If u is integral, than w can be chosen half-integral.

Using this, we can show:

Lemma 4.16. The D-cut packing LP is equivalent to the non-negative cycle LP (4.5).
Their values are the same, from an optimum solution to the former we can get an optimum
solution to the latter in polynomial time, and vice versa.

Proof. For any feasible solution f of the D-cut packing LP define a vector x by xe :=∑
U∈U :e∈δ(U) fU for e ∈ D. Then x is a feasible solution to the non-negative cycle LP

because for every cycle C in G+H we have∑
e∈C∩D

xe =
∑

e∈C∩D

∑
U∈U :
e∈δ(U)

fU =
∑
U∈U

fU |C ∩D ∩ δ(U)|

≤
∑
U∈U

fU |C ∩ E ∩ δ(U)| =
∑

e∈C∩E

∑
U∈U :
e∈δ(U)

fU ≤ |C ∩ E|.

Here the first inequality holds because a cycle C and a cut δ(U) intersect in an even number
of edges, and for U ∈ U at most one edge in the intersection belongs to D. We also have∑
e∈D xe =

∑
U∈U fU .

Conversely, let x be a feasible solution to the non-negative cycle LP. Define u(e) := xe
for e ∈ D and u(e) := 1 for e ∈ E. By Theorem 4.15 (applied to G + H and J := D),
one can compute a laminar family L of vertex sets with weights w : L → R>0 such that
|δ(U)∩D| = 1 for all U ∈ L,

∑
U∈Lw(U) =

∑
e∈D u(e), and

∑
U∈L:e∈δ(U)w(U) ≤ u(e) for all

e ∈ D ∪̇E. Set fU := w(U) for U ∈ L and fU := 0 otherwise. Then f is a feasible solution
to the D-cut packing LP with

∑
U∈U fU =

∑
U∈Lw(U) =

∑
e∈D u(e) =

∑
e∈D xe.

This implies:

Corollary 4.17. If G + H is planar, the integrality gap of the D-cut packing LP (and
hence the integrality gap of the D-cycle packing LP) is at least 2 and at most 24.

Proof. We showed in the proof of Theorem 4.2 that there is an algorithm that computes an
integral solution of the D-cut packing LP of at least 1

24 times the value of the non-negative
cycle LP. By Lemma 4.16 this implies the upper bound.

The lower bound of 2 is attained for G+H = K4 (the complete graph on 4 vertices) if
D is a perfect matching in G+H, see Figure 4.5 (a).

4.5. MAX-MULTIFLOW MIN-MULTICUT GAP 95

For the non-negative cycle LP the integrality gap could be smaller. We know that it is
between 3

2 (shown by G+H = K4 and D = δ(u) for an arbitrary vertex u, see Figure 4.5
(b)) and 16 (shown by Theorem 4.6).

We now observe that the dual LPs have integrality gap at most 2.

Lemma 4.18. The integrality gap of the D-cut covering LP (and hence the integrality gap
of the D-cycle covering LP if G+H is planar) is at most 2, and it is at least 3

2 even if
G+H is planar.

Proof. The lower bound follows from an example by Cheriyan, Karloff, Khandekar, and
Könemann [29] for the tree augmentation problem (let D contain the tree edges and E
contain the links of this example, then their LP is equivalent to the D-cut covering LP).
See Figure 4.5 (c).

We now show the upper bound. The D-cut covering LP is equivalent to

min
∑

e∈D ∪̇E
ye (4.7)

∑
e∈δ(U)

ye +
∑

e∈δ(U)∩D
ze ≥ 2 ∀U ⊆ V with D ∩ δ(U) 6= ∅

ye ≥ 0 ∀e ∈ D ∪̇E
0 ≤ ze ≤ 1 ∀e ∈ D

because in Equation 4.7 we can assume that ze = 1 for all e ∈ D, and then it is exactly the
same as the D-cut covering LP. Now Equation 4.7 is a survivable network design LP of the
type

min
∑
e∈E′

c(e)xe∑
e∈δ(U)

xe ≥ f(U) ∀U ⊆ V

0 ≤ xe ≤ 1 ∀e ∈ E′

for the graph whose edge set E′ consists of an edge e of cost c(e) = 1 for each e ∈ D ∪̇E
and another parallel edge e′ = {v, w} with c(e′) = 0 for each {v, w} ∈ D. The requirement
function f : 2V → Z≥0 is given by f(U) = 2 if D ∩ δ(U) 6= ∅ and f(U) = 0 otherwise.
This function f is easily seen to be proper (and thus weakly supermodular), and hence
Jain’s iterative rounding theorem [86] tells that there is an integral feasible solution (y, z)
to Equation 4.7 of cost at most twice the LP value. Then y is an integral feasible solution
to the D-cut covering LP of the same cost.

We remark that even if just G is planar (not G+H) the integrality gap of the D-cycle
covering LP is bounded by a (large) constant [141].

4.5.2 Multiflows and Multicuts

A natural generalization of EDP takes as input, in addition to G and H, a capacity
function u : D ∪̇E → Z>0 and asks for a maximum number of D-cycles such that each
edge e ∈ D ∪̇E belongs to at most u(e) of them. If u(e) = 1 for all e ∈ D∪E, this is EDP.

96 CHAPTER 4. APPROXIMATING INTEGRAL MULTIFLOWS ON THE PLANE

(a) The integrality
gap of the D-cut
packing LP is at
least 2.

(b) The integral-
ity gap of the non-
negative cycle LP
is at least 3

2 .

(c) The integrality gap of the D-cut covering LP is at least 3
2 .

Bold black edges form an optimum integral solution. Values 1
3

and 2
3 on the black edges form a feasible fractional solution.

Figure 4.5: Examples for lower bounds of integrality gaps. Solid black edges belong to E, dashed
red edges belong to D.

This generalization reduces to EDP by replacing each edge e by u(e) parallel edges of
unit capacity. In the planar dual, this corresponds to replacing e by a path with u(e) edges.
If u is given in binary representation, this reduction should of course not be performed
explicitly. Nevertheless our algorithm can easily be generalized to run in polynomial time
for general capacities. A dual of a weighted planar graph can be coded by a weighted
planar graph where an edge e of weight we represents a path of length we.

All algorithms can be easily extended to weighted instances, as we elaborate now.
Solving the weighted version of the non-negative cycle LP is straightforward. Algorithm
10 does not change. In Algorithm 11, an edge e ∈ D with weight u(e) has initial budget
ye = u(e)xe. If, during step 5, an edge has budget more than 2, we pick multiple copies of
it, namely dye2 e many copies. Once we have a weighted feasible solution J that respects the
non-negative cycle condition, we apply Theorem 4.15 to get a weighted laminar family of
J-cuts. This can still be viewed as a half-integral packing of J-cuts in the graph in which
every edge e is replaced by a path of length u(e), and the proof of Theorem 4.8 works as
before, without the need to store that graph explicitly. The final feasible solution of EDP
can be represented by an integral flow of a certain value for some demand edges. These
flows can be decomposed into (and hence represented by) at most |E| paths by standard
flow decomposition.

If u(e) =∞ (or large enough) for all e ∈ D, the problem has been called the maximum
integer multiflow problem. (Note that u(e) = ∞ for all e ∈ D can in fact be assumed
without loss of generality because a demand edge e = {v, w} with capacity u(e) can be
replaced equivalently by a demand edge {v, x} of infinite capacity and a supply edge {x,w}
of capacity u(e), where x is a new vertex.)

If we do not require integrality, the maximum multiflow problem is of course a linear
program:

max
∑
C∈C

fC∑
C∈C,C3e

fC ≤ u(e) ∀e ∈ E

fC ≥ 0 ∀C ∈ C.

min
∑
e∈E

u(e)ye∑
e∈C∩E

ye ≥ 1 ∀C ∈ C

ye ≥ 0 ∀e ∈ E

Figure 4.6: The multiflow LP and its dual, the multicut LP.

4.6. NP-COMPLETENESS OF NONNEGATIVECYCLES 97

The feasible solutions to the multiflow LP are called multiflows (here we use the form
after flow decomposition). The integral feasible solutions to the dual LP correspond to
edge sets F ⊆ E such that deleting F destroys all D-cycles. They are called multicuts.
The capacity of a multicut is the total capacity of its edges. Of particular interest is the
worst ratio of the minimum capacity of a multicut and the maximum value of an integer
multiflow. The (integer version of the) famous max-flow min-cut theorem says that this
ratio is 1 if |D| = 1. However in general, even if G is sub-cubic and planar the ratio can
be as large as Θ(|D|) [63]. Besides when G is a tree (then the ratio is 2 [63]), when G is
planar and has bounded tree-width [12] or when G + H is series-parallel [41] (then the
ratio is 1), very few cases are known where the ratio can be bounded by a constant. We
can now show a constant upper bound when G+H is planar. This is Theorem 4.4, which
we restate here:

Theorem 4.4. If G+H is planar, the minimum cardinality of a multicut is at most
48 times the maximum value of an integer multiflow.

Proof. The integrality gap of the multiflow LP equals the integrality gap of the D-cycle
packing LP, as the two problems can be reduced to each other: the gap cannot be smaller
because given an instance of the D-cycle packing LP, as said above, we can replace a
demand edge {v, w} by a demand edge {v, x} of infinite (or very large) capacity and a
supply edge {x,w} of capacity 1 to form a multiflow instance.

Conversely, the gap also cannot be larger since we can reduce the multiflow problem to
D-cycle packing by replacing every edge e by u(e) parallel edges with unit capacity. Note
that both reductions preserve planarity. The integrality gap of the multicut LP equals the
integrality gap of the D-cycle covering LP by the same argument. Now Corollary 4.17 and
Lemma 4.18 imply the assertion.

Determining the exact integrality gaps remains an open question. Without the planarity
assumption, all the LPs except for the D-cut covering LP have unbounded integrality gap
(for the D-cycle packing LP, a well-known example in [63] shows that the gap is in the
order of Ω(

√
n), even when G is planar, subcubic, and all demand pairs lie in the boundary

of the outer face of G; for the D-cut packing LP and the non-negative cycle LP, consider
G + H = Kn and D = δ(v) for some vertex v; for the D-cycle covering LP, let G be a
bounded-degree expander graph with n vertices and D the set of n2

4 vertex pairs with
largest distance [62]).

4.6 NP-completeness of NonNegativeCycles
In this section we prove that NonNegativeCycles is NP-hard. In fact, we consider the
NonNegativeCycles decision problem, which takes as input an instance of NonNeg-
ativeCycles and an integer k, and asks whether there exists a solution of cardinality
k.

Theorem 4.19. The NonNegativeCycles decision problem is NP-complete even when
G+H is planar.

To prove membership in NP, here is a polynomial-time algorithm that, given an
instance G = (V,E) and H = (V,D) and a subset D′ ⊆ D of cardinality k, verifies whether
D′ is a solution: As in the proof of Lemma 4.5, assign weight 1 to edges of E, −1 to edges

98 CHAPTER 4. APPROXIMATING INTEGRAL MULTIFLOWS ON THE PLANE

Figure 4.7: The reduction from vertex cover in planar graphs. On the left-hand side picture, the
vertices surrounded by a circuit form a minimum vertex cover X in G. On the right-hand side, the
supply edges are shown in black, and the demand edges are colored (red or blue). The solution to
NNC corresponding to X is the set of thicker edges. It is obtained by taking the red edges in each
gadget associated to a vertex in X and the blue edges otherwise.

of D′, and 0 to edges of D \D′; compute a minimum-weight ∅-join; then D′ is a solution if
and only if that minimum weight is 0.

To prove NP-completeness, recall the vertex cover problem: given a graph G and an
integer k, it asks whether G has a vertex cover of size k. This problem is well-known to be
NP-complete even in planar graphs [60]. We give a polynomial-time transformation from
that problem.

Let G = (V,E) be a planar graph. Let G2 := (V,E ∪̇E) denote the (multi)graph
where each edge of G is duplicated. We construct an instance G̃ + H̃ = (Ṽ , Ẽ ∪̇ D̃) of
NonNegativeCycles as follows, illustrated in Figure 4.7.

For each vertex v ∈ V of degree d = dG(v) in G, there is a gadget (Ṽv, Ẽv ∪̇ D̃v) built
as follows. The vertex set Ṽv consists of 4d vertices zv, bv,1, rv,1, bv,2, . . . , rv,2d−1, bv,2d. The
supply edge set Ẽv consists of edges {bv,i, rv,i} and {rv,i, bv,i+1}, for 1 ≤ i ≤ 2d− 1. The
demand edge set D̃v consists of B̃v ∪ R̃v, where B̃v := {{zv, bv,i} | 1 ≤ i ≤ 2d} and
R̃v := {{zv, rv,i} | 1 ≤ i ≤ 2d− 1}.

To complete the construction of (G̃, H̃), starting from a planar embedding of G2, replace
each vertex v by the corresponding gadget, and each edge e = {u, v} in G2 by a supply
edge {bu,i, bv,j} in Ẽ, where i and j are chosen so that G̃+ H̃ is planar.

The construction of G̃+ H̃ can be done in polynomial time. Hence the following lemma
completes the proof of Theorem 4.19.

Lemma 4.20. Let G be a graph. There exists a vertex cover in G of size k if and only if
there exists a subset D′ ⊆ D̃ of size 4|E| − k that is a feasible solution to NonNegative-
Cycles in G̃+ H̃.

Proof. (⇒) Let X be a vertex cover of size k in G. Define D′ :=
(⋃

v∈X R̃v
)
∪
(⋃

v/∈X B̃v
)
.

It is easy to check that D′ has size 4|E| − k. We show now that D′ is a feasible solution
for NonNegativeCycles. Let Ĩ denote the set of |D′| vertices naturally associated to
D′, taking the endpoint of each edge of D′ that is not zv for any v ∈ V . By construction
and since X is a vertex cover in G, Ĩ is an independent set in G̃ + H̃. Hence

{
δ({ṽ}) |

ṽ ∈ Ĩ
}
is a D′-cut packing. For each cycle C̃ in G̃ + H̃, and for each ṽ ∈ Ĩ, we have

4.7. CONCLUSION 99

|C̃ ∩ δ({ṽ}) ∩D′| ≤ |C̃ ∩ δ({ṽ}) ∩ Ẽ| and thus

|C̃ ∩D′| =
∑
ṽ∈Ĩ

|C̃ ∩ δ({ṽ}) ∩D′| ≤
∑
ṽ∈Ĩ

|C̃ ∩ δ({ṽ}) ∩ Ẽ| ≤ |C̃ ∩ Ẽ|.

(⇐) Assume now that we are given a feasible solution D′ for NonNegativeCycles
in G̃+ H̃ of size 4|E| − k. We define X := {v ∈ V | D′ ∩ D̃v 6= B̃v}. We show that X is a
vertex cover in G with size at least k. If there was an edge {u, v} ∈ E with u /∈ X and
v /∈ X, then there would be a cycle, induced by vertices {zu, bu,i, bv,j , zv, bv,j+1, bu,i+1} in
G̃+ H̃ for some indices i, j, that contains four edges in D′ but only two supply edges. We
now prove that |X| ≤ k.

Since D′ is a feasible solution, we have |D′ ∩ D̃v| ≤ 2dG(v) for all v ∈ V , for otherwise
one could find a triangle in G̃v + H̃v with two edges in D′. Moreover, |D′ ∩ D̃v| = 2dG(v)
only if D′ ∩ D̃v = B̃v, i.e., only if v /∈ X. This implies

|X| ≤
∑
v∈V

(
2dG(v)− |D′ ∩ D̃v|

)
≤ 4|E| − |D′| = k.

4.7 Conclusion
We designed a constant-factor approximation algorithm for EdgeDisjointPaths if G+H
is planar.

If all demand edges lie on a single face of a planar embedding of G, then the planar dual
H∗ has only one nontrivial connected component (and isolated vertices). In this case, any
instance satisfying the cut condition has a complete solution [98]. Then a 3-coloring of the
outerplanar graph G[L] in Algorithm 10 and a small modification of Algorithm 11 (reducing
the upper bounds on y from 1 and 2 to 1

2 and 1) yields a 4-approximation. If we could
solve NonNegativeCycles in this case, we would even obtain an exact algorithm. This
motivates the following open question: can NonNegativeCycles be solved in polynomial
time if H has only one nontrivial connected component?

One attempt, also to reduce the constant factor that we lose when rounding a solution
to the non-negative cycle LP (4.5) in general, would be to find a characterization of optimal
LP solutions. However, this seems to be difficult. Figure 4.8 shows that there are instances
in which the unique optimum LP solution is not half-integral.

Note: After finishing this work, we learned from Naveen Garg, Nikhil Kumar, and András
Sebő that they had independently discovered a 4-approximation for the edge-disjoint paths
problem when G+H is planar [61].

They proceed by first obtaining a half-integral multiflow and then using the four color
theorem to round it to an integral solution. The main difference of the two works is the
way such half-integral multiflows are obtained. In the paper of Garg et al. [61], it is
constructed by uncrossing a fractional multiflow (see Section 5.4 in the next chapter for a
definition) to construct a certain network matrix, which is known to be totally unimodular.

100 CHAPTER 4. APPROXIMATING INTEGRAL MULTIFLOWS ON THE PLANE

Figure 4.8: This instance shows that the non-negative cycle LP (4.5) does not always have half-
integral optimal solutions. Black (solid) edges are supply edges, red (dashed) edges represent
demand edges together with their value in the unique optimum fractional solution.

5 | Approximating Integral Mul-
tiflows on Orientable Surfaces

5.1 Introduction

Multi-commodity flows, or multiflows for short, are well-studied objects in combinatorial
optimization; see, e.g., Part VII of [133]. A multiflow of maximum total value can be found
in polynomial time by linear programming. Oftentimes, a multiflow must be integral, and
then the problem is much harder; the well-known edge-disjoint paths problem is a special
case. In Chapter 4, we gave a constant-factor approximation algorithm for maximum
edge-disjoint paths and integral multiflows in fully planar instances, i.e., when G+H, the
supply graph together with the demand edges, can be embedded in the plane. Garg et
al. independently discovered a 4-approximation for the problem [61]. We generalize these
results to surfaces of bounded genus and devise the first constant-factor approximation
algorithm for that case.

Beyond using some ideas of Chapter 4 and the paper of Garg et al. [61], we need
several new ingredients. We start by computing an optimal (fractional) multiflow. If this
multiflow has constant value then we use the algorithm in [132] to compute an optimal
solution. Otherwise like [61] we “uncross” the cycles in its support as much as possible,
but uncrossing is significantly more complicated on general surfaces than in the plane.
Next, we need to deal with two cases separately: depending on whether most of the
fractional multiflow is on separating cycles (that case is similar to the planar case) or on
non-separating cycles. In the latter case we partition the cycles into free homotopy classes
and pick a set of free homotopy classes that form a family of pairwise non-crossing cycles.
We define a cyclic order in each such free homotopy class, which is possible due to the
uncrossing and allows for a simple greedy algorithm.

5.1.1 Our results

The (fractional) maximum multiflow problem can be described as follows. An instance
consists of an undirected graph (V,D ∪̇E) whose edge set is partitioned into demand edges,
in D, and supply edges, in E. We write G = (V,E), H = (V,D), and G+H = (V,D ∪̇E).
Moreover we have a function u : D ∪̇E → Z>0 which defines a capacity u(e) for each
supply edge e ∈ E and a demand u(d) for each demand edge d ∈ D. The goal is to satisfy
as much of the demand as possible by routing flow on supply edges. More precisely, we ask
for an s-t-flow fd of value at most u(d) for every demand edge d = {t, s} such that the
total flow on each supply edge is at most its capacity and the total value of all those flows
is maximum.

101

102 CHAPTER 5. APPROXIMATING INTEGRAL MULTIFLOWS ON SURFACES

It is well known that every s-t-flow can be decomposed into flows on s-t-paths and
on cycles, and for integral flows there is an integral decomposition. The cycles in such
a decomposition do not contribute to the value of the s-t-flow and can be ignored. An
s-t-path in (V,E) together with the demand edge d = {t, s} forms a D-cycle: a cycle in
G+H that contains exactly one demand edge. Letting C denote the set of all D-cycles in
G+H, we can write the maximum multiflow problem equivalently as

max
∑
C∈C

fC s.t.
{ ∑

C∈C:C3e fC ≤ u(e) for all e ∈ D ∪̇E
fC ≥ 0 for all C ∈ C (5.1)

In some previous work, the problem has been defined with u(d) =∞ for d ∈ D, and
this variant is easily seen to be equivalent. We call the linear program (5.1) the maximum
multiflow LP. The maximum integral multiflow problem is identical, except that the flow
must be integral:

max
∑
C∈C

fC s.t.
{ ∑

C∈C:C3e fC ≤ u(e) for all e ∈ D ∪̇E
fC ∈ Z≥0 for all C ∈ C (5.2)

The special case where u(e) = 1 for every edge e ∈ D ∪̇E is known as the maximum
edge-disjoint paths problem. Even that special case is unlikely to have a constant-factor
approximation algorithm for general graphs (see Section 5.1.2). Our main result is a
constant-factor approximation algorithm in the case when G+H can be embedded on an
orientable surface of bounded genus.

Theorem 5.1. There is a polynomial-time algorithm which takes as input an instance
(G,H, u) of the maximum integral multiflow problem such that G+H is embedded on
an orientable surface of genus g, and which outputs an integral multiflow whose value
is at most a factor O(g2) smaller than the value of any integral multiflow.

See Section 5.2 for an outline of the algorithm and the proof. We will use the maximum
(fractional) multiflow as a bound forOPT when the value of maximum (fractional) multiflow
is Ω(g3) (see step 1). In particular this algorithm implies a bound O(g3) on the integrality
gap of the LP (5.1) when G+H has bounded genus g. By a slight modification of the
algorithm, we can obtain a better bound on the integrality gap.

Theorem 5.2. There is a polynomial-time algorithm which takes as input an instance
(G,H, u) of the maximum integral multiflow problem such that G+H is embedded on an
orientable surface of genus g, and which outputs an integral multiflow whose value is at
most a factor O(g2 log g) smaller than the value of any fractional multiflow.

It is worth pointing out that almost all known hardness results for the maximum
edge-disjoint paths problem hold even when G is planar (see Section 5.1.2). Theorem 5.1,
along with the previous chapter and the recent paper [61], highlight that for tractability
one needs more than the planarity of G alone. The topology of G+H together plays an
important role.

The dual LP of (5.1) is:

min
∑

e∈D∪̇E
u(e)ye s.t.

{ ∑
e∈C ye ≥ 1 for all C ∈ C

ye ≥ 0 for all e ∈ D ∪̇E (5.3)

5.1. INTRODUCTION 103

and this may be called the minimum fractional multicut problem. The minimum multicut
problem results from replacing the inequality ye ≥ 0 in (5.3) by ye ∈ {0, 1} for all edges
e ∈ D ∪̇E. Again, many previous work considered the equivalent special case where
u(d) = ∞ for d ∈ D, in which case no dual variable for demand edges is needed. By
weak duality, the value of any multiflow is at most the capacity of any multicut. Using
Theorem 5.2 and a previous result of [141], we obtain (in Section 5.8.2):

Corollary 5.3. For any instance (G,H, u) of the maximum integral multiflow problem
such that G+H is embedded on an orientable surface of genus g, the minimum capacity
of a multicut is at most O(g3.5 log g) times the maximum value of an integral multiflow.

In general the integral multiflow-multicut gap1, and even the integrality gap of Equa-
tion 5.1, can be as large as Θ(|D|), even when G is planar and G+H is embedded in the
projective plane [63] (see Figure 5.7). In this paper we consider orientable surfaces only.
Corollary 5.3 states that the gap becomes constant when G+H has bounded genus. So far
very few such constant integral multiflow-multicut gaps are known, for example when G is
a tree [63], or when G+H is planar, as recently shown in the previous chapter and [61].

5.1.2 Related Work

See Section 4.1.2 for approximation algorithms and inapproximability results for the
edge-disjoint paths problem and the maximum integral multiflow problem.

Minimum multicut problem. The minimum multicut problem is NP-hard even when
there are only three demand edges [42]. In general, assuming that the Unique Games
conjecture holds, there is no O(1)-approximation [26], but a O(log |D|)-approximation
algorithm [62]. Better approximations also have been shown for special cases; see [63, 141]
and the references therein. In particular, when G + H is planar, Klein et al. [95] gave
an approximation scheme. When G has genus g, an FPT-approximation scheme with
parameters of g and |D| has been proposed [38].

Tools from topology. The design of multiflows on surfaces is closely related to the
properties of systems of curves on surfaces. More specifically, a set of essential curves that
are any two curves cross at most once and are not freely homotopic is called a 1-system
[88]. In a recent breakthrough, Przytycki [128] proved that the size of a 1-system on a
closed orientable surface of genus g is O(g3), improving on the previous exponential upper
bound by [113]. Very recently, this number was shown to be O(g2 log g) (Theorem 5.24) by
Greene [64], which almost matches the lower bound Ω(g2) on the size of 1-systems [113].
We will use in Section 5.6 the fact that any curve in a 1-system crosses at most O(g2) other
curves [128] (Theorem 5.17).

5.1.3 Preliminaries

Consider an instance (G,H, u) of the maximum integral multiflow problem. Throughout
the chapter, we assume that the graph G + H is connected, otherwise we can run the

1There is a closely related, but different, notion of integral flow-cut gap introduced in [28]: they study
the smallest constant c such that whenever u(C ∩E) ≥ u(C ∩D) for every cut C (the cut condition), there
is an integral multiflow satisfying all demands and violating capacities by at most a factor c.

104 CHAPTER 5. APPROXIMATING INTEGRAL MULTIFLOWS ON SURFACES

Figure 5.1: Some cycles on an orientable surface of genus 2. On the left, two separating cycles. On
the right, three non-separating cycles. C and C ′ are freely homotopic and their union disconnects
the surface.

algorithm on each of its connected components.

Homotopy. Given a surface S, a (simple) topological cycle is a continuous injective
map γ from the unit cycle S1 := {z ∈ C, ||z|| = 1} to S. Two topological cycles γ1 and
γ2 are freely homotopic if there exists a continuous function ϕ : [0, 1] × S1 → S such
that ϕ(0, ·) = γ1 and ϕ(1, ·) = γ2. Intuitively, cycle γ1 is transformed into cycle γ2 by
continuously moving it along the surface. Free homotopy is an equivalence relation.

Given an embedding of the graph G + H on S, we say that a cycle C in G + H is
represented by a topological cycle γ of S if the image of γ is the embedding of C on S2.

In the sequel, we use the following well-known fact.

Fact 5.4. If two cycles C and C ′ are freely homotopic, then their symmetric difference is
a dual cut. If C and C ′ are additionally disjoint and non-separating, then their union is a
simple dual cut.

Intuitively, the image of the continuous homotopy function from C to C ′ on the surface
forms an annulus [46]. See Figure 5.1 for an illustration.

5.2 Overview

In this section, we give an overview of our constant-factor approximation algorithm for the
maximum integral multiflow problem when G+H is embedded on an orientable surface
Sg of genus g, where g is a constant (Theorem 5.1). Again, without loss of generality,
we assume that G + H is connected. Here is the main algorithm. Steps 1,2,3,4 will be
described in detail in Sections 5.3, 5.4, 5.5, 5.6, respectively.

1. Solve the linear program (5.1) to obtain a (fractional) multiflow f∗. If its value is
|f∗| < β · g3 where β > 0 is a universal constant to be defined later, then we can
compute a maximum integral multiflow in polynomial time [132]. Otherwise, we can
assume for the following steps that |f∗| ≥ β · g3.

2. Construct another multiflow f such that any two cycles in the support of f cross at
most once (Lemma 5.7). See Definition 5.6 for the definition of “crossing.”

3. If at least half of the total value of f is contributed by separating cycles, these cycles
now form a laminar family. Construct a half-integral multiflow fhalf (Theorem 5.9),

2Topological cycles are considered up to orientation-preserving reparameterization. Therefore, a cycle in
G+H may be represented by a topological cycle from two classes, one for each orientation: the class of γ
and the class of γ′ where γ′(eiθ) = γ(e−iθ).

5.3. FINDING A LARGE FRACTIONAL MULTIFLOW (STEP 1) 105

and from there, using the map-coloring theorem (Theorem 1.1), compute an integral
multiflow f ′ (Lemma 5.10), which is the output.

4. Otherwise, compute a large set of non-separating and pairwise non-crossing cycles
in the support of f (Lemma 5.13). Partition this set into free homotopy classes.
For each class, define a new capacity function, and greedily construct an integral
multiflow (Lemmas 5.22 and 5.21). Output the union of these multiflows.

We will prove that we lose only a constant factor the approximation at every step of
the algorithm: see Section 5.7 for the analysis of the above algorithm.

5.3 Finding a large fractional multiflow (Step 1)

A feasible solution f to the maximum multiflow LP (5.1) will be simply called a multiflow.
Recall that C denotes the set of all D-cycles, i.e., all cycles in G+H that contain precisely
one demand edge. We denote by |f | =

∑
C∈C fC the value of f , and by C(f) := {C ∈

C | fC > 0} the support of f . Although formulation (5.1) has an exponential number of
variables, it is well known that it can be reformulated by polynomially many flow variables
and constraints (see, e.g., [52, 1]) and thereby solved in polynomial time:

Proposition 5.5. There is an algorithm that finds an optimal solution f∗ to the maximum
multiflow LP (5.1) such that |C(f∗)| ≤ |D||E|. Its running time is polynomial in the size
of the input graph.

Proof. By introducing flow variables xde :=
∑
C∈C:d,e∈C fC for all d ∈ D and e ∈ D ∪̇E we

can maximize the total value
∑
d∈D x

d
d subject to non-negativity and flow conservation

constraints (for each d ∈ D and for each vertex). This is a linear program of polynomial
size. By flow decomposition, one can then construct a feasible solution to Equation 5.1 of
the same value and with support at most |D||E|.

Suppose that |f∗| < β · g3. Then the maximum integral multiflow fOPT is constant, so
we can guess in time |D|O(g3) the value of the flow fOPT(d) through each demand edge
d ∈ D. For each guess, we create an instance of EdgeDisjointPaths problem replacing
each demand edge d ∈ D by fOPT(d) parallel demand edges of demand one, and each
supply edge e ∈ E by min(u(e), dβg3e) parallel edges of unit capacity. It is easy to see
that this graph has polynomial size. Since the number of demand edge is bounded by a
constant, we can apply the polynomial time algorithm from [132] or [85] to decide whether
it is a yes instance or not for the decision question.

In the following we can assume that |f∗| ≥ β · g3. Later we will restrict a multiflow
to subsets of D-cycles. For C′ ⊆ C we define a multiflow f ′ by f ′C := fC for C ∈ C′ and
f ′C := 0 for C ∈ C \ C′, and write f(C′) := f ′.

5.4 Making a fractional multiflow minimally crossing (Step
2)

In this section we show that for a given embedding, we can “uncross” a multiflow in such a
way that any two D-cycles in the support cross at most once. While doing this we will lose
only an arbitrarily small fraction of the multiflow value.

106 CHAPTER 5. APPROXIMATING INTEGRAL MULTIFLOWS ON SURFACES

Uncrossing is a well-known technique in combinatorial optimization, but in most cases
it is applied to families of subsets of a ground set U . Such a family is said to be cross-free
if, for any two of its sets, A and B, at least one of the four sets A \B, B \A, A ∩B, and
U \ (A ∪B) is empty. Here we want to uncross D-cycles in the topological sense, and this
can be reduced to the above (with some extra care) only if all these cycles are separating
(which, for example, is always the case if G+H is planar; cf.[61]).

Definition 5.6. We say that two D-cycles C1 and C2 cross if there exists a path P
(possibly a single vertex), which is a subpath of both C1 and C2, and such that in the
embedding, after contracting the edges of P , the vertex v thus obtained is incident to two
edges of C1 and to two edges of C2, all distinct, and in the embedding the restriction of the
cyclic order of δ(v) to those four edges alternates between an edge of C1 and an edge of C2.

d1=d2

d1
d2

d1

d2

Figure 5.2: Each of the two figures on the left show two D-cycles, C1 (red, dotted) and C2 (blue,
solid). The edges belonging to D are marked as d1 and d2. Edges are arranged at every vertex
in the order of their embedding. Crossings are marked by yellow shade. The two D-cycles on the
left cross three times. The two D-cycles in the middle cross four times. The figure on the right
shows two D-cycles C1 and C2 that cross twice, and a third D-cycle C3 (green, dashed) that crosses
neither C1 nor C2. Uncrossing C1 and C2 here generates a crossing of C3 with a new D-cycle.

Two cycles may cross multiple times. We denote by cr(C,C ′) the number of times that
C and C ′ cross. See Figure 5.2 for three examples. In contrast to the planar case, it is
possible that two cycles cross exactly once and cannot be uncrossed. The third example in
Figure 5.2 shows another difficulty: when uncrossing two D-cycles it might be unavoidable
to generate new crossings with other cycles.

Lemma 5.7. Let ε > 0 be fixed. Given a multiflow f whose support has size at most
|E||D|, there is a polynomial-time algorithm to construct another multiflow f , of value
at least |f | ≥ (1− ε)|f |, and such that any two cycles in the support of f cross at most
once.

Proof. First we discretize the multiflow, losing an ε fraction in value; then we iteratively
modify it, without changing its value, to reduce the number of crossings or the total amount
of flow on all edges; finally we analyze the process and argue that the number of iterations
is polynomially bounded.

Discretization. The statement is trivial if |f | = 0. Otherwise, before uncrossing,
we round down the flow on every D-cycle to integer multiples of ε|f |

|E||D| . That is, we
define f ′C := ε|f |

|E||D|

⌊
|E||D|fC
ε|f |

⌋
for all C ∈ C. Note that f ′ is a multiflow. We claim that

5.4. MAKING A FRACTIONAL MULTIFLOW MINIMALLY CROSSING 107

|f ′| ≥ (1− ε)|f |. Indeed,

|f ′| =
∑
C∈C

f ′C ≥
∑

C∈C(f)

(
fC −

ε|f |
|E||D|

)
= |f | − |C(f)| ε|f |

|E||D|
≥ |f | − ε|f |.

The discretized multiflow f ′ can be represented by a multi-set S of unweighted D-cycles: if
f ′C = k ε|f |

|E||D| , then k identical copies of cycle C are added to S. The number of cycles in S
(counting multiplicities) is at most |E||D|ε because |S| =

∑
C∈C f

′
C
|E||D|
ε|f | ≤

∑
C∈C fC

|E||D|
ε|f | =

|E||D|
ε .

Uncrossing. To construct f , we perform a sequence of transformations of the multiflow.
We will modify S while maintaining the following invariants:

(a) The number of elements of S (counting multiplicities) remains constant.

(b) For every e ∈ D ∪̇E, the number of elements of S (counting multiplicities) that
contain e never increases.

Thanks to (b), at any stage, f is a multiflow, where f is defined by fC = k ε|f |
|E||D| for C ∈ C,

where k is the multiplicity of C in S. Initially f = f ′. Thanks to (a), the value of the
multiflow is preserved. In the following we work only with S.

While there exist two cycles C1 and C2 in S that cross at least twice, do the following
uncrossing operation (on one copy of C1 and one copy of C2). Let d1 be the edge in C1∩D,
and let d2 be the edge in C2 ∩D. Let P and Q be two paths where C1 and C2 cross, such
that Q contains only edges of E. Orient C1 so that in that orientation, when traversing
the entirety of P and then walking towards Q, edge d1 is traversed before reaching Q. Let
~C1 denote the resulting directed cycle. Let a be the first vertex on P in the orientation of
~C1, and let b be an arbitrary vertex on Q. Vertices a and b partition ~C1 into a path C+

1
from a to b that contains d1 and a path C−1 from b to a that does not contain d1.

Case 1: P contains an edge of D. Then this edge is d1 = d2. We orient C2 so that the
orientation on P agrees with the orientation of ~C1 on P . Let ~C2 denote the resulting
directed cycle. Then the vertices a and b also partition ~C2 into a path C+

2 from a to b that
contains d2 and a path C−2 from b to a that does not contain d2.
Case 2: P contains edges of E only. Then we orient C2 so that in that orientation,
when traversing the entirety of P and then walking towards Q, edge d2 is traversed before
reaching Q. Let ~C2 denote the directed cycle. With that orientation, vertices a and b also
partition ~C2 into a path C+

2 from a to b that contains d2 and a path C−2 from b to a that
does not contain d2.

To obtain C ′1, we concatenate C+
1 and C−2 , remove any cycle that does not contain d1,

and remove the orientation. To obtain C ′2, we concatenate C+
2 and C−1 , remove any cycle

that does not contain d2, and remove the orientation. Note that C ′1 and C ′2 are D-cycles
because each of C+

1 and C+
2 contains exactly one demand edge, and C−1 and C−2 contain

no demand edge.

See Figure 5.3 for two examples, one for each case.

108 CHAPTER 5. APPROXIMATING INTEGRAL MULTIFLOWS ON SURFACES

(a)

P

Q

a

b

d1=d2

(b) d1=d2

(c)

Q

P

bad1
d2

(d)

d1
d2

Figure 5.3: Uncrossing the pairs of D-cycles from Figure 5.2. (a) and (b) show an example for Case
1, (c) and (d) an example for Case 2. The initial situation (C1 red, dotted, and C2 blue, solid) and
a possible choice of P,Q, a, b and the resulting orientation is shown in (a) and (c). As the result of
the uncrossing operation, shown in (b) and (d), we have the new D-cycles C ′1 (red, dotted) and C ′2
(blue, solid) with fewer crossings among each other.

Analysis. From the construction it follows that C ′1 and C ′2 are D-cycles and C ′1 ∪̇C ′2 ⊆
C1 ∪̇C2. Hence removing one copy of C1 and C2 from S and adding one copy of C ′1 and
C ′2 to S maintains the invariants (a) and (b).

To show that the after a polynomial number of uncrossing operations any pair of
cycles in S crosses at most once, we consider the total number of edges Φ1 =

∑
C∈S |C|

(counting multiplicities) and the total number of crossings Φ2 =
∑
C,C′∈S cr(C,C ′) (where

we again count multiplicities). Note that |S| remains constant by invariant (a), and Φ1
never increases by invariant (b). Moreover 0 ≤ Φ1 ≤ |V ||S| and 0 ≤ |Φ2| ≤ |V ||S|2. We
claim:

Each uncrossing operation either decreases Φ1 or leaves Φ1 unchanged and decreases Φ2.
(5.4)

This will conclude the proof because Φ1 decreases at most |V ||S| times, and while Φ1
remains constant, Φ2 decreases at most |V ||S|2 times, so the total number of uncrossing
operations is at most |V |2|S|3 ≤ |V |

2|E|3|D|3
ε3 .

To prove Equation 5.4, consider an uncrossing operation that replaces C1 and C2 by
C ′1 and C ′2, and suppose that Φ1 remains the same, so C ′1 consists of C+

1 plus C−2 , and
C ′2 consists of C+

2 plus C−1 . We first observe that cr(C ′1, C ′2) < cr(C1, C2). Indeed, the
crossings at P and at Q go away, and no new crossing arises.

Finally we need to show that for any cycle C ∈ C,

cr(C,C ′1) + cr(C,C ′2) ≤ cr(C,C1) + cr(C,C2). (5.5)

To show Equation 5.5, consider a crossing of C and C ′ ∈ {C ′1, C ′2} at a path R. Let
e′1 = {v0, v1}, . . . , e′k = {vk−1, vk} be the edges of R (k ≥ 0), and let e0, ek+1, e

′
0, e
′
k+1

be edges such that e0, e
′
1, . . . , e

′
k, ek+1 are subsequent on C and e′0, e

′
1, . . . , e

′
k, e
′
k+1 are

5.5. SEPARATING CYCLES: ROUTING AN INTEGRAL MULTIFLOW (STEP 3)109

subsequent on C ′. After contracting R, the incident edges e0, e
′
0, ek+1, e

′
k+1 are embedded

in this cyclic order. (Note that e0 = ek+1 or e′0 = e′k+1 is possible if k ≥ 1, then contracting
R yields a loop.) See Figure 5.4 (a).

(a)

v0 v1 v2 v3 v4

e′0 C ′ e
′
1 e′2 e′3 e′4

e′k+1e0

ek+1C
(b)

C1

C2

C

(c)
C1 C2 C

(d)
C1 C2 C

Figure 5.4: For each crossing of C with a new cycle C ′ ∈ {C ′1, C ′2} at a path R there is a crossing
of C with one of the old cycles C1 and C2 at a subpath of R. This crossing is marked with yellow
shade in the three examples.

Now e′0 belongs to C1 or C2, say C1. If R contains neither a nor b, then e′0, . . . , e′k+1
all belong to C1, and C1 crosses C at R. If R contains either a or b, say at vi, then
e′0, . . . , e

′
i belong to C1 and e′i+1, . . . , e

′
k+1 belong to C2. Moreover C1 and C2 cross at a

path containing vi, so either C1 crosses C at a subpath of R (Figure 5.4(b)) or C2 crosses
C at a subpath of R (Figure 5.4(c)). Finally, if R contains a and b, say at vi and vj for
0 ≤ i < j ≤ k, then e′0, . . . , e′i and e′j+1, . . . , e

′
k+1 belong to C1 and e′i+1, . . . , e

′
j belong to

C2 (Figure 5.4(d)). Again, C1 or C2 crosses C at a subpath of R.

5.5 Separating cycles: routing an integral multiflow (Step
3)

Let f result from Lemma 5.7, and let Csep denote the set of separating cycles in the support
of f . We now consider the case when the separating cycles contribute at least half to the
total flow value, i.e., |f(Csep)| ≥ 1

2 |f |. For simplicity we write f = f(Csep).
This branch of our algorithm consists of two steps:

1. Given f , construct a half-integral multiflow fhalf of value at least |f |/2;

2. Given fhalf, construct an integral multiflow of value at least |fhalf|/Θ(√g).

5.5.1 Obtaining a half-integral multiflow

To obtain a half-integral multiflow, we follow the technique used by [61] for the case where
G+H is planar. By the Jordan curve theorem, any cycle in a planar graph is separating.
As for the plane, the following property is easy to check for higher genus surfaces.

Proposition 5.8. If C and C ′ are two cycles cycles embedded on a surface, and C ′ is a
separating cycle, then C and C ′ must cross an even number of times.

Proof. C ′ is separating the surface into two sides. While walking along C from a vertex v,
we go from one side to the other each time we cross C ′. When we return at v, we are on
the same side where we started so the number of crossing is even.

110 CHAPTER 5. APPROXIMATING INTEGRAL MULTIFLOWS ON SURFACES

Since any two cycles in the support of f cross at most once, Csep must be a non-crossing
family by Proposition 5.8. In particular, we can show that Csep have a laminar structure.

We say that a family of subsets of the dual vertex set V ∗ is laminar if any two members
either are disjoint or one contains the other. Let us take any face of G+H that we call ∞.
For any cycle C ∈ Csep we define in(C) and out(C) to be the two connected components of
(G+H)∗ \ C∗, such that ∞ ∈ out(C). We claim that the family L := {in(C) : C ∈ Csep}
is laminar.

Indeed, take any two cycles C and C ′ in Csep. Since they do not cross, either (i)
(C ′ \ C)∗ ⊆ in(C) or, (ii) (C ′ \ C)∗ ⊆ out(C). In case (i) we must have in(C ′) ⊆ in(C). In
case (ii), we have either (ii.a) in(C) ⊆ in(C ′) or (ii.b) in(C) ∩ in(C ′) = ∅, hence laminarity.

Using the terminology in [61], we say that a multiflow f is laminar if {C∗ : C ∈ C, fC >
0} = {δ(U) : U ∈ L} where L is a laminar family (of subsets of V ∗). Thus, f = f(Csep) is
laminar and we can apply the following result to get fhalf.

Theorem 5.9. ([61]) If f is a laminar multiflow, then there exists a laminar half-integral
multiflow f ′ such that C(f ′) ⊆ C(f) of value |f ′| ≥ 1

2 |f |. Such a multiflow can be computed
in polynomial time.

5.5.2 Obtaining an integral multiflow

In this section we show the following result, which is an extension of a result from [84, 61],
who proved it for planar graphs.

Lemma 5.10. Let (G,H, u) be an instance of the maximum multiflow problem such
that G+H has genus g, and let fhalf be a laminar half-integral multiflow whose support
C(fhalf) contains only separating cycles. Then there exists an integral multiflow f ′ of value
|f ′| ≥ 2|fhalf|/χg (such that C(f ′) ⊆ C(fhalf)). Such a multiflow can be found in polynomial
time.

Our proof follows the same outline as the proof of Theorem 1 of Fiorini et al.[51]. Let
Chalf := C(fhalf) be the set of D-cycles C such that fhalfC > 0. We first reduce the problem
to the case where all cycles in Chalf have flow value 1

2 and every edge has capacity 1. To do
that, we reduce the flow fhalfC by bfhalfC c for each cycle C ∈ Chalf, and reduce edge capacities
accordingly. Since fhalf is small, we can then further reduce demands and capacities to
u′(e) = min{u(e), |C(fhalf)|} for each e ∈ E ∪ D, so that

∑
e∈D∪̇E u(e) is polynomially

bounded. We can then replace each edge e by u(e) parallel edges of unit capacity. Given a
cycle C such that fhalfC = 1

2 , we replace each edge e ∈ C by one of its parallel edges. This
can be done while ensuring that the resulting flow is still feasible and laminar. To facilitate
the proof, we still denote this graph by G+H and keep all other notations.

Recall that cycles in Chalf ⊆ Csep are separating and do not cross each other, so that the
family {in(C), C ∈ Chalf} is laminar. We partially order Chalf with the following relation:
C ≺ C ′ if in(C) ⊂ in(C ′). We have the following property:

Lemma 5.11. If C1, C2, C
′ ∈ Chalf are such that C1 ≺ C ′ and C2 ⊀ C ′, then C1 and C2

are edge-disjoint.

Proof. Assume, for a contradiction, that C1 and C2 share an edge e. Let e∗ = {u∗in, u∗out}
denote its dual edge, such that u∗in ∈ in(C1) and u∗out ∈ out(C1).

Since C2 ⊀ C ′, by laminarity either C ′ ≺ C2 or in(C ′) ∩ in(C2) = ∅.

5.5. SEPARATING CYCLES: ROUTING AN INTEGRAL MULTIFLOW 111

In the first case we have C1 ≺ C ′ ≺ C2 and then:

u∗in ∈ in(C1) ⊆ in(C ′) ⊆ in(C2) and u∗out ∈ out(C2) ⊆ out(C ′),

so e ∈ C ′.
In the second case we have C1 ≺ C ′ and in(C ′) ∩ in(C2) = ∅ and then:

u∗in ∈ in(C1) ⊆ in(C ′) ⊆ out(C2) and u∗out ∈ in(C2) ⊆ out(C ′),

so e ∈ C ′. See Figure 5.5.
Thus in both cases e belongs to C ′ as well as to C1 and C2. Since these three D-cycles

are in the support of a half-integral multiflow, this implies that the flow along this edge is
at least 3

2 , contradicting feasibility.

Figure 5.5: Proof of Lemma 5.11.

Our goal is to get a large subset C′ ⊆ Chalf such that any two cycles in C′ are edge-
disjoint. This is equivalent to finding a large independent set in a properly defined graph
Int(Chalf) with vertex set Chalf and such that two cycles are adjacent if they share at least
one edge.

Lemma 5.12. Given a graph embedded in Sg, let Chalf be a family of pairwise non-crossing
separating cycles that satisfies the condition of Lemma 5.11. Let Int(Chalf) be the graph
with vertex set Chalf and such that two cycles are adjacent if they share at least one edge.
Then Int(Chalf) is a genus-g graph.

Using Theorem 1.1, this lemma ensures that one can compute in polynomial time a
subset C′ ⊆ Chalf of at least |Chalf|/χg pairwise edge-disjoint D-cycles. From this set, we
define an integral multiflow by setting f ′C = 1 for C ∈ C′ and f ′C = 0 for C ∈ C \ C′. It is
easy to check that f ′ is a multiflow that satisfies the properties of Lemma 5.10.

Proof. (Lemma 5.12) We prove the statement by induction on g+ |Chalf|. When g+ |Chalf| ≤
2, it is trivial. Otherwise let G be a connected genus-g graph, embedded on Sg, and Chalf
the family of cycles as described above.

Suppose first that {in(C) | C ∈ Chalf} are pairwise disjoint. Then, contract in G∗ each
set in(C) into a single node. Two cycles C and C ′ share an edge if and only if in this
contracted graph, the nodes corresponding to in(C) and in(C ′) are adjacent. This means

112 CHAPTER 5. APPROXIMATING INTEGRAL MULTIFLOWS ON SURFACES

that Int(Chalf) is a minor of G∗, and in particular has genus less than or equal to the genus
of G∗.

The case where there is one cycle C̄ such that C ≺ C̄ for all C ∈ Chalf \ C̄ and
{in(C) | C ∈ Chalf \ C̄} are pairwise disjoint works similarly; here we contract out(C̄).

Otherwise there exists a triple C1, C2, C ∈ Chalf such that C1 ≺ C and C2 ⊀ C. The
separating cycle C divides Sg into two sides. Each side can be closed — by identifying the
boundary of a disk with the boundary form by C — so that they are homeomorphic to
Sgin and Sgout , respectively. The connected sum of these two surfaces is homeomorphic
to Sg, and in particular we have gin + gout = g. This equality can easily be checked with
Euler’s formula.

Let Gin (resp. Gout) be the subgraph of G induced by the vertices embedded on the
side corresponding to Sgin (resp. Sgout), such that both contain C. The embedding of
G in Sg induces an embedding of Gin in Sgin and an embedding of Gout in Sgout . Thus,
genus(Gin) + genus(Gout) ≤ g.

Now we define Chalf�C := {C ′ ∈ Chalf|C ′ ≺ C} ∪ {C} and Chalf⊀C := {C ′ ∈ Chalf|C ′ ⊀
C} ∪ {C}. The choice of C implies that these two families are proper subsets of Chalf.
Since the cycles in Chalf do not cross, we have {C ∈ Chalf : C ⊆ Gin} = Chalf�C and
{C ∈ Chalf : C ⊆ Gout} = Chalf⊀C .

By the induction hypothesis, Int(Chalf�C) and Int(Chalf⊀C) can be embedded on Sgin and
Sgout , respectively. By Lemma 5.11, the graph Int(Chalf) arises from Int(Chalf�C) and Int(Chalf⊀C)
by identifying the two vertices that correspond to C.

Finally we prove that Int(Chalf) can be embedded on a surface genus gin + gout ≤ g. To
see that, remove small disks Din and Dout in Sgin and Sgout , respectively, around the point
that corresponds to vertex C and that intersects only edges incident to C, and glue them
together by identifying boundaries of Din and Dout. The surface obtained is homeomorphic
to Sgin+gout It is easy to see that C, and the edges incident to C, can be re-embedded in
this surface without intersecting any other edges. This terminates the proof of Lemma
5.12.

5.6 Non-separating cycles: routing an integral multiflow
(Step 4)

If the separating cycles contribute less than half to the total value of the multiflow f
obtained by Lemma 5.7, we consider the non-separating cycles in the support of f . Let
us call this set Cnon-sep ⊆ C(f). We first compute a large subset of pairwise non-crossing
curves.

Lemma 5.13. There exists a subset S ⊆ Cnon-sep of pairwise non-crossing cycles such
that the value of the multiflow f(S) is at least |f |/O(g2). Such a set can be computed
in polynomial time.

Let f := f(S) be the multiflow f restricted to cycles in the set S given by Lemma 5.13.
In particular, for a suitable choice of β > 0, we have |f | ≥ 12g − 12. Finally, we compute
from f an integral multiflow f ′ with support in S while losing only a constant fraction of
the value.

5.6. NON-SEPARATING CYCLES: ROUTING AN INTEGRAL MULTIFLOW 113

Theorem 5.14. Let (G,H, u) be an instance of the maximum multiflow problem such
that G+H has genus g, and let f be a multiflow such that

(1) f has value |f | ≥ 12g − 12,

(2) the support of f contains only non-separating cycles,

(3) and any two cycles in the support of f do not cross.

Then, there exists an integral multiflow f ′ of value |f ′| ≥ |f |/4. Such a multiflow can
be computed in polynomial time.

Theorem 5.14 holds more generally when the support only contains non-trivial cycles.
To compute such an integral multiflow, we first partition S := {H1, . . . ,Hs} into free
homotopy classes, and define a new capacity function for each class in such a way that
the union of multiflows for these new capacities is feasible for the original capacities. The
algorithmic core of Theorem 5.14 is to construct an integral multiflow for each homotopy
class, according to the new capacity function. This is achieved by ordering homotopic
cycles in a specific order and then to apply a simple greedy algorithm.

Lemma 5.15. Let (G,H, u) be an instance of the maximum multiflow problem such that
G+H is embedded in an orientable surface, and let f be a multiflow such that the support
of f contains only non-separating and pairwise freely homotopic and non-crossing cycles.
Then, there exists an integral multiflow f ′ of value |f ′| ≥ |f |

2 . Such a multiflow can be
computed in polynomial time.

These three results are proved in the following sections.

5.6.1 Finding a set of non-crossing cycles

In this section we prove Lemma 5.13. Our goal is to compute a family of pairwise non-
crossing cycles in Cnon-sep that has a large flow value. To do so we reduce our problem to
determining the chromatic number of a specific intersection graph.

Let Γ be a set of non-separating curves on Sg such that any pair of cycles cross at
most once. Then we define G(Γ) to be the graph with vertex set Γ where two cycles
are adjacent if they cross. Let χ(G(Γ)) denote the coloring number of G(Γ). Then, for
Γ = Cnon-sep, there is a color class, i.e., a set S of pairwise non-crossing cycles such that
|f(S)| ≥ |f |/χ(G(Cnon-sep)). We show that χ(G(Γ)) = O(g2) and that such a coloring can
be computed in polynomial time via the classic greedy algorithm.

We first prove that without loss of generality, we can assume that any two cycles in Γ
are not freely homotopic.

Lemma 5.16. If two cycles cross exactly once, then they are not freely homotopic.

This fact needs the assumption that the surface is orientable. On a projective plane for
instance, two freely homotopic cycles may cross exactly once.

Proof. Let us take two topological cycles γ and γ′ such that γ and γ′ that only cross at a
single point v of the surface. We show that γ ∪ γ′ do not disconnect the orientable surface.
By Fact 5.4 this implies that γ and γ′ are not freely homotopic.

114 CHAPTER 5. APPROXIMATING INTEGRAL MULTIFLOWS ON SURFACES

To see that γ∪γ′ do not disconnect the surface, pick
four points w1, w2, w3, w4 in a small neighborhood of
v, each one of them being on a different of the four
sections of this neighborhood delimited by γ ∪ γ′. If
(wi)1≤i≤4 are in clockwise order around v, then wi
and wi+1 are still connected for i = 1, . . . , 4 (where
w5 := w1), because we can walk all along γ (or γ′).
Notice that here we use the property that the surface is
orientable (otherwise, wi might be connected to wi+2
instead of wi+1). By transitivity, we conclude that
γ ∪ γ′ do not disconnect the surface.

Moreover, by Fact 5.4, if C and C ′ are freely homotopic they form a cut, and thus for
any cycle C ′′ the total number of crossing cr(C ′′, C) + cr(C ′′, C ′) must be an even number.
Since cycles in Cnon-sep cross at most once, when C and C ′ in Cnon-sep are freely homotopic,
then for any cycle C ′′ ∈ Cnon-sep, (C ′′, C) is an edge of G(Cnon-sep) if and only if (C ′′, C ′) is
also an edge. Thus, the coloring number of G(Cnon-sep) is the same as the coloring number
of the graph obtained from G(Cnon-sep) after contracting each free homotopy class into a
single node.

We now use the following result initially contained in the proof of ([128], Theorem 4),
and later generalized by [64].

Theorem 5.17 ([128, 64]). There is a universal constant β′ > 0 such that the following
is true. Let Γ be a family of simple curves on Sg such that any two of them are not
freely homotopic and cross at most once. Then, we have the following upper bound on the
maximum degree of the intersection graph of Γ.

∆(G(Γ)) ≤ β′ · g2

Using this structural result, we can give a polynomial time algorithm that compute
S ⊆ Cnon-sep such that |f(S)| ≥ |f |/O(g2). We can now define the constant β used in step
1 of the overall algorithm as β := 48β′.

To determine free homotopy classes, take pairs of cycles in the support of Cnon-sep and
check whether they are freely homotopic, for example as in [104, 48]. Keep only one curve
per class and compute the intersection graph as defined above and apply the classic greedy
algorithm for coloring. Return the set of cycles S that corresponds to the color class that
maximizes |f(S)|.

5.6.2 Proof of Theorem 5.14

Let S be the set of non-separating and pairwise non-crossing cycles in the support of f
obtained in the previous section, and call f := f(S) the restriction of f to these cycles. Its
value is |f | ≥ |f |/O(g2) = Ω(g). We partition S = H1 ∪ · · · ∪Hs into free homotopy classes.
With the following well-known bound, we deduce that the number of classes is s ≤ 3g − 3.

Lemma 5.18. Let S be a family of disjoint simple curves on Sg, such that any two of
them are not freely homotopic. If g ≥ 2, then |S| ≤ 3g − 3.

5.6. NON-SEPARATING CYCLES: ROUTING AN INTEGRAL MULTIFLOW 115

When Sg is the torus, it is easy to see that S has exactly one free homotopy class.

Proof. Without loss of generality, we can assume that S is a maximal set with this property.
We show that its size is exactly 3g − 3. By maximality, cutting along cycles in S separates
Sg into p pairs of pants, i.e., p spheres with exactly three boundaries each, where each
boundary corresponds to a cycle in S. In particular, each cycle is incident to exactly two
pair of pants. Thus, |S| = 3

2p. The Euler Characteristic of a pair of pants is −1 and since
Sg is obtained by identifying boundaries of p pairs of pants, we get 2− 2g = (−1) · p. We
proved the upper bound as expected.

Now, we define a new capacity function ui : E ∪D → Z≥0 for each free homotopy class
Hi. To do this, we first need to identify the extreme cycles of each class.

Lemma 5.19. Each free homotopy class Hi in S has two extreme cycles C+
i and C−i such

that any cycle C ∈ S \ Hi that shares an edge with a cycle in Hi also shares an edge with
C+
i or C−i . The set of extreme cycles can be computed in polynomial time.

Eventually, when a class is reduced to a unique cycle C, we have C+
i = C−i = C.

We know that any two disjoint free homotopic cycles delimit an annulus on the surface.
Intuitively, for each class, the extreme cycles correspond to the pair of cycles that delimits
the maximal annulus among all pairs in this class.

Proof. We can assume that g ≥ 2, otherwise S has at most one free homotopy class and the
statement if trivially true. Let Hi a free homotopy class in S of size at least two. Cutting
along cycles in Hi separates the surface into several components that are homeorphic to
annuli or disks except one component K that has genus at least one. Its boundary is
contained in the union of two cycles, that we call C+

i and C−i . All other cycles in S are
contained in K. Thus, if a cycle shares an edge e with a cycle in Hi, this edge must be on
K’s boundary, and in particular e ∈ C+

i ∪ C
−
i .

For each free homotopy class Hi ⊆ S, we can now define a new capacity function
ui. Let Ei :=

⋃
C∈Hi C be the set of edges used by at least one cycle in Hi. We set

ui(e) = bf(Hi)(e)c if e ∈ C+
i ∪ C

−
i ; ui(e) = u(e) if e ∈ Ei \ (C+

i ∪ C
−
i) and ui(e) = 0

otherwise.
By reducing the flow fC by at most one for C ∈ {C+

i , C
−
i }, we can see that there exists

a multiflow of value at least |f(Hi)| − 2 for capacities ui. By Lemma 5.15, we can compute
in polynomial time, for each class Hi an integral multiflow f ′i , feasible for capacities ui with
value at least |f(Hi)|−2

2 . We finally return the union f ′ :=
∑
f ′i of these integral multiflows.

It is clear that f ′ is also integral. We now check that it is feasible for the original capacity
function u.

Take any edge e that belongs to an extreme cycle. By Lemma 5.19, we know that this
edge is only shared by extreme cycles, and thus

f ′(e) =
∑
i

f ′i(e) ≤
∑
i

bf(Hi)(e)c ≤
∑
i

f(Hi)(e) = f(e) ≤ u(e)

Now if e is not an edge of an extreme cycle, then e may be contained by D-cycles from at
most one free homotopy class, say Hj . Then, f ′(e) = f ′j(e) ≤ u(e). Thus, f ′ is an integral

116 CHAPTER 5. APPROXIMATING INTEGRAL MULTIFLOWS ON SURFACES

multiflow. We conclude by lower bounding its value. Using Lemma 5.18, and hypothesis
(1) of Theorem 5.14 we obtain

|f ′| =
s∑
i=1
|f ′i | ≥

s∑
i=1

|f(Hi)| − 2
2 = |f |2 − s ≥

|f |
2 − (3g − 3) ≥ |f |/4

which concludes the proof of Theorem 5.14.

5.6.3 Greedy selection of freely homotopic cycles

Let H be a free homotopy class of non-separating cycles and pairwise non-crossing and let
f be a multiflow whose support is H. We will run the following simple greedy algorithm
(Algorithm 13) on H to get an integral multiflow.

Input: a sequence C1, . . . , Ch of D-cycles.
Output: an integral multiflow f ′.
f ′ ← the all-zero multiflow;
for i = 1 to h do

Set f ′Ci to be the greatest integer such that f ′ remains feasible.

Algorithm 13: Greedy selection algorithm.

The value of the integral multiflow returned by this algorithm depends on the order of
the D-cycles in the input. If it is ordered according to the following definition, then we
show that we lose only a constant fraction of the flow value.

Definition 5.20. A family of cycles {C1, C2, . . . , Ck} is cyclically ordered, or has a cyclic
order if, whenever two cycles Ca and Cb share an edge, where a < b, then this edge is:

1. shared by all cycles Ca, Ca+1, . . . , Cb−1, Cb,

2. or shared by all cycles Cb, Cb+1, . . . , Ck, C1, · · · , Ca−1, Ca.

The following lemma establishes the approximation ratio of Algorithm 13 on cyclically
ordered inputs.

Lemma 5.21. Let f be a multiflow and H = {C1, C2, . . . , Ch} a cyclically ordered family
of C(f). Then Algorithm 13 returns in polynomial time an integral multiflow of value at
least |f({C1, . . . , Ch})|/2.

To conclude, we prove that H can be cyclically ordered in polynomial time.

Lemma 5.22. A family of non-separating, pairwise non-crossing and freely homotopic
cycles of a graph embedded on an orientable surface can be cyclically ordered. Such a cyclic
order can be found in polynomial time.

This result holds more generally for a family of non-trivial3, pairwise non-crossing and
freely homotopic cycles. For simplicity, we only consider the special case of non-separating
cycles.

3all cycles that are not freely homotopic to a point on the surface.

5.6. NON-SEPARATING CYCLES: ROUTING AN INTEGRAL MULTIFLOW 117

5.6.3.1 Finding a cyclic order

In this section we prove Lemma 5.22. Let H be a set of non-separating, pairwise freely
homotopic and non-crossing cycles. One key ingredient in the proof is that cycles in H
are pairwise non-crossing. Recall that this fact uses the assumption that the surface is
orientable. In a non-orientable surface, two freely homotopic cycles may cross exactly once.

We first order the cycles in H and then prove that this is a cyclic order. We assume
that |H| ≥ 3, otherwise any order on H is a cyclic order.

In topology it is usually more convenient to work with disjoint cycles. If two (graph)
cycles do not cross, but may share common edges, it is possible to continuously deform by
free homotopy one of them, into an arbitrarily small open neighborhood so that the two
resulting (topological) cycles are now disjoint.

We describe here a new graph Q to translate this idea in the context of graph cycles.
Initially, Q = G+H.

Step 1: If an edge is shared by s cycles, replace it s parallel edges. Each of these edges
corresponds to a different cycle so that the resulting set of cycles is still pairwise
non-crossing. Now the cycles are pairwise edge-disjoint but may still share some
vertices.

Step 2: Let v be a vertex shared by two cycles C and C ′. Edges incident to v are embedded
around v in the cyclic order e1, a1, . . . , ai, e2, b1, . . . , bj where C∩δ(v) = {e1, e2}. Since
C and C ′ do not cross, we have C ′ ∩ δ(v) ⊆ {a1, . . . , ai} or C ′ ∩ δ(v) ⊆ {b1, . . . , bj}.
Then replace v by two adjacent vertices v′, v′′ and distribute the incident edges so
that δ(v′) = (e1, a1, . . . , ai, e2, {v′, v′′}) and δ(v′′) = ({v′, v′′}, b1, . . . , bj). Repeat step
2 until all cycles are vertex-disjoint.

If it easy to see that this graph is connected and can be embedded on the same surface
Sg. Figure 5.6 illustrates the construction of Q. For simplicity, let us also call H the family
of cycles in Q.

Let K denote the set of connected components of Q∗ \ (
⋃
C∈HC). We say that a cycle

C ∈ H is incident to a connected component K ∈ K if there is an edge in C∗ with one
endpoint in K. Consider the bipartite graph B that has a vertex for each cycle in H and a
vertex for each element of K, and whose edges represent the incidence relation. Next we
show that the graph B is a cycle, and we order the D-cycles in H according to the cyclic
order induced by B.

Claim 5.23. B is a cycle.

The connectivity of B follows by construction from the connectivity of G+H. Then it
is enough to prove that B is 2-regular.

There is a bijection between K and the components of Sg \ (
⋃
C∈HC). Since the cycles

in H are disjoint, each cycle C has one component on its left, and one on its right, when
we walk along the cycle. Notice that in general these two sides can eventually correspond
to the same component. Since cycles in H are non-separating, each component is incident
to at least two cycles. Assume that a cycle C is incident to only one component of K. This
cycle is also incident to only one component of Sg \ (C ∪ C ′) where C ′ is any other cycle.
By Fact 5.4, Sg \ (C ∪ C ′) has two connected components, which means each cycle in B
must have degree two.

118 CHAPTER 5. APPROXIMATING INTEGRAL MULTIFLOWS ON SURFACES

Figure 5.6: Construction of Q.

Now, assume that an element of K is incident to three cycles C,C ′, C ′′ or more. Then
one component of Q∗ \ (C ∪C ′∪C ′′) is also incident to C,C ′ and C ′′, and Q∗ \ (C ∪C ′∪C ′)
has two or three components in total. If it has three components, then one of the other
two components would be incident to exactly one cycle, which contradicts what precedes.
If Q∗ \ (C ∪ C ′ ∪ C ′′) has exactly two connected components, then Q∗ \ (C ∪ C ′) must be
connected, which would contradict Fact 5.4. Thus, each component is incident to exactly
two cycles. We have proved that B is a cycle.

It remains to show that the order induced by B satisfies the property of Definition
5.20. If an edge e = {u, v} of G+H is shared by some cycles C ′1, . . . , C ′`, then the vertex
v can be mapped to a path P = (v1, . . . , v`) in Q, so that C ′i ∩ P = {vi}, 1 ≤ i ≤ `. See
Figure 5.6. It follows that for all 1 ≤ i ≤ k − 1, C ′i and C ′i+1 are both incident to the same
connected component of Q∗ \ (

⋃
C∈HC) that contains the edge {vi, vi+1}∗. In particular,

C ′i and C ′i+1 are consecutive in the order induced by B.

5.6.3.2 Analysis of the Greedy selection Algorithm for cyclically ordered in-
puts

Let f be a multiflow and H = {C1, C2, . . . , Ch} a cyclically ordered family of C(f). It is
clear that Algorithm 13 runs in polynomial time and returns a integral multiflow. Let f ′
be this multiflow. We show that its value is at least |f(H)|/2.

Let us define Ha,b = {Ca, Ca+1, . . . , Cb−1} and Hb,a = {Cb, Cb+1, . . . , Ch, C1, . . . , Ca−1}
for all 1 ≤ a < b ≤ h. We call M the greatest index 1 ≤ i ≤ h such that f ′Ci ≥ 1. We first
show by induction that for all 1 ≤ i < M : |f ′(H1,i+1)| ≥ |f(H1,i+1)|.

For i = 1, we have |f ′(H1,i+1)| = |f ′(H1,2)| = f ′C1
= min{u(e)|e ∈ C1} ≥ fC1 ≥

|f(H1,2)|.
Assume now that at some iteration i ≤M of the algorithm we set f ′Ci = x. By the choice

of x, we know that there is an edge e ∈ Ci such that u(e) = f ′(H1,i+1)(e). By Lemma 5.22,
this edge is such that {C ∈ H|e ∈ C} = Ha,b for some distinct indexes 1 ≤ a, b ≤ h, and
obviously Ci ∈ Ha,b. In particular, |f ′(Ha,b ∩ H1,i+1)| = f ′(H1,i+1)(e) = u(e). Moreover,
by feasibility of f , we have |f(Ha,b)| = f(Ha,b)(e) ≤ f(e) ≤ u(e). Altogether this gives

|f ′(Ha,b ∩H1,i+1)| ≥ |f(Ha,b)| (5.6)

5.7. ANALYSIS OF THE OVERALL ALGORITHM (PROOF OF THEOREM 5.1) 119

If a < b, then we have a ≤ i < b and Ha,b ∩H1,i+1 = Ha,i+1. Therefore, |f ′(Ha,i+1)| ≥
|f(Ha,b)| ≥ |f(Ha,i+1)|. By the induction hypothesis, we have |f ′(H1,a)| ≥ |f(H1,a)| and
then

|f ′(H1,i+1)| = |f ′(H1,a)|+ |f ′(Ha,i+1)| ≥ |f(H1,a)|+ |f(Ha,i+1)| = |f(H1,i+1)|

Otherwise a > b. This means that i ∈ {a, a+ 1, . . . , h, 1, . . . , b− 1} and in particular,
e ∈ Cj for all indexes j in {i, . . . , h}, which implies that no further D-cycles can be added
in the support of f ′, i.e., i = M . In particular we have established the induction. Moreover
the support of f ′ is H1,M+1 so that we can re-writeEquation 5.6 as |f ′| ≥ |f ′(Ha,b)| ≥
|f(Ha,b)| ≥ |f(HM,1)|. Finally,

|f(H)| = |f(H1,M)|+ |f(HM,1)| ≤ |f(H1,M)|+ |f ′| = 2|f ′|,

which finishes the proof of Lemma 5.21.

Remark. The analysis of Algorithm 13 for cyclically ordered inputs is tight. To see this,
imagine that |H| = 2k − 1, and there are two edges e1, e2, both of capacity k, that are
shared by the first k cycles and the last D-cycles, respectively. Moreover assume that C1
contains both edges. Then Algorithm 13 may only set f ′C1

= k while f could be such that
fC = 1 for all C ∈ H for a total value 2k − 1.

5.7 Analysis of the overall algorithm (Proof of Theorem 5.1)

By construction, the output of the algorithm is a feasible solution. We now analyze the
value of the output. Since (5.1) is a relaxation of the maximum integral multiflow problem,
|f∗| ≥ OPT. When |f∗| < βg3, then we compute an maximum integral multiflow.

Otherwise, by Lemma 5.7, |f | ≥ (1− ε)|f∗|. For ε = 1
2 we have |f | ≥ 1

2 |f
∗|.

Consider the multiflow restricted to separating cycles, f sep. If |f sep| ≥ 1
2 |f |, then by

Theorem 5.9, Lemma 5.10, and Theorem 1.1 we obtain an integral multiflow of value at
least |f sep|/Θ(√g). Otherwise, by Theorem 5.14 we obtain an integral multiflow of value
|f |/O(g2).

Finally, we analyze the running time. As observed in Section 5.3, an optimum fractional
multiflow f∗ can be found in polynomial time.

If |f∗| < β · g3, then we compute an optimal solution in time h(g)|D|O(g3) where h is a
computable function inherited from [132, 85]. Indeed, for all integer 1 ≤ k < β · g3, and
for all k-multiset D′ ⊆ D, we use the algorithm in [85] to check in time h′(k) · n2 whether
there exists a multiflow with demand D′.

Otherwise, (discretizing and) uncrossing is done in time polynomial in |E||D| by Lemma
5.7. Finally, the operations of Theorem 5.9, Theorem 1.1, Lemma 5.10, Lemma 5.21 and
Lemma 5.22 can all be done in polynomial time, hence polynomial running time overall.

5.8 Max-Multiflow Min-Multicut gap

In this section, we prove that the multiflow-multicut gap is bounded by a constant when
G+H has bounded genus.

120 CHAPTER 5. APPROXIMATING INTEGRAL MULTIFLOWS ON SURFACES

5.8.1 Proof of Theorem 5.2

To obtain an solution an integral multiflow whose value is at most a factor O(g2 log g)
smaller than the value of any fractional multiflow, we apply the following changes to the
algorithm:

1. If in step 1, we go directly to step 2 without computing the maximum integral
multiflow.

2. Steps 2 and 3 are unchanged.

3. we consider the non-separating cycles in the support of f . We first partition them
into free homotopy classes. The next theorem gives an upper bound on the number
of such classes.

Theorem 5.24. ([64]) Let Sg be an orientable surface of genus g. Then there are at most
O(g2 log g) topological cycles such that any two of them are in different free homotopy
classes and cross each other at most once.

Corollary 5.25. The D-cycles in the support of f can be partitioned into O(g2 log g) free
homotopy classes in polynomial time.

Proof. Take pairs of cycles in the support of f and check whether they are freely homotopic,
for example as in [104, 48].

4. We pick a free homotopy class H with flow value |f(H)| ≥ |f∗|/O(g2 log g). We
cyclically order this class (Lemma 5.22) and run the Greedy selection algorithm,
with the original capacities, to obtain an integral multiflow with value at least
|f(H)|/2 = |f∗|/O(g2 log g).

Following the analysis in Section 5.7, the running time of this algorithm is nO(1). In
particular, it is independent from the genus g of the input graph. Thus, we proved Theorem
5.2, and in particular we established that the integrality gap of the maximum multiflow
LP is O(g2 log g) when G+H has genus g.

5.8.2 Proof of Corollary 5.3

In this section, we observe how Corollary 5.3 follows from Theorem 5.1 and the following
result.

Theorem 5.26. [141] Let (G,H, u) be a multiflow instance and γ > 1 such that the
supply graph G does not have a Kγ,γ minor. Then the minimum capacity of a multicut is
O(γ3) times the maximum value of a (fractional) multiflow.

The following is well known.

Claim 5.27. If a graph G has genus at most g, where g ≥ 1, then it has no Kγ,γ minor
for any γ > 2(√g + 1).

Proof. Suppose that such a minor Kγ,γ exists in G. As the three operations for obtaining
a minor (deleting edges/vertices and contracting edges) does not increase the genus, Kγ,γ

has genus at most g. Furthermore, K has 2γ vertices, γ2 edges, and at most γ2

2 faces (since
there is no odd cycle in a bipartite graph). By Euler’s formula, 2 − 2g ≤ 2γ − γ2 + γ2

2 ,
which implies γ ≤ 2(√g + 1).

5.9. CONCLUSION 121

Figure 5.7: An example where the classic linear program for EdgeDisjointPaths has an integrality
gap equal to k/2. The optimal fractional multiflow consists of routing a flow of value 1/2 through
each edge, while it is easy to see any integral solution can satisfy at most one demand edge. In terms
of number of vertices n of the graph, the integrality gap is Θ(

√
n). This graph has genus Θ(k), thus

the integrality gap when G+H has genus g is Ω(g). This example was originally described in [63].
.

By Claim 5.27 and Theorem 5.26, the ratio between the minimum capacity of a
multicut and the maximum value of a (fractional) multiflow is O(g1.5). This, combined
with Theorem 5.1, proves Corollary 5.3.

5.9 Conclusion

In this chapter, we have presented an O(g2)-approximation algorithm for the Maximum
Integral Multiflow problem when the input graph G+H, demand and supply edges together
can be embedded in an orientable surface of genus g.

Improving the approximation ratio. Can we improve the approximation ratio ? First
we can see in Figure 5.7 that if one uses only the optimal fractional multiflow as an upper
bound on OPT, then the approximation ratio of such an algorithm when G+H has genus
g is at least Ω(g).

The bottleneck in the approximation ratio of our algorithm lies in Theorem 5.17, where
we lose a factor O(g2) in the approximation ratio. Notice that in the case where at least
half of the multiflow value goes through separating cycles, then we only lose a factor O(√g)
in the approximation. Thus, any improvement for the following topological question would
immediately implies the same improvement in the approximation ratio of the Maximum
Integral Multiflow when G+H has genus g.

Open Question. Let Γ be a set of simple curves on an orientable surface of genus g, such
that any pair of curves in Γ are non freely homotopic and cross at most once. Let G(Γ) be
the graph with vertex set Γ and where two curves are adjacent if they cross. What is the
best upper bound on the chromatic number of G(Γ) ?

Such a family of curves is called a 1-system in the literature. There has been a long
line of work in trying to capture the cardinality of 1-systems, a question initially raised by

122 CHAPTER 5. APPROXIMATING INTEGRAL MULTIFLOWS ON SURFACES

Farb and Leininger. Juvan, Malnic and Mohar proved that such a set is finite [88], then
an exponential upper bound on the genus was given [113]. Later, Przytycki solved the
question for arcs, proving in the meantime a cubic upper bound for curves. Recently, the
bound was improved to |Γ| ≤ O(g2 log g). On the other hand, constructions of 1-system
with cardinality Θ(g2) are known [113].

One tool used to prove these bounds was to bound the maximum degree ∆(G(Γ)) =
O(g2). In particular, this implies a quadratic upper bound on the chromatic number of
G(Γ), which is the best know upper bound as far as we know. It was also proved that the
maximum clique in G(Γ) has size at most 2g + 1 [113], implying the same lower bound on
the coloring number.

Running time. The most costly step in the running time is Step 1 where we compute an
optimal solution when the optimal fraction multiflow is at most O(g3). Using algorithms
in [132] or [85], we obtain an overall running time of h(g)nO(g3) where h is a computable
function inherited from [132, 85]. In the case where the supply graph is planar, very
recently it was shown that one can decide in time 2O(k2)nO(1) whether an instance with k
demand edges is positive or not [107].

If the genus of the surface is no longer bounded by a constant, then our algorithm might
not run in polynomial time. For such settings, one could use the algorithm of Theorem 5.2
with a slightly worse approximation guarantee of O(g2 log g) but with the running time
nO(1) where the exponent is now independent from the genus. For more details see [83].

Non-orientable surfaces. We discuss here the Maximum Integral Multiflow problem
when G+H is embedded on non-orientable surfaces.

A graph has a non-orientable genus g̃ if it can be embedded on a connected sum of
g̃ projective planes. It is well-known that a genus-g-graph has non-orientable genus at
most 2g + 1 (see e.g. Prop. 4.4.1 in [119]). However, there are no upper bounds on the
(orientable) genus as a function of the non-orientable genus. For our problem, the graph on
Figure 5.7 has non-orientable genus one because it can be embedded on a projective plane
but has (orientable) genus Ω(k). In particular, while using the optimal fractional multiflow
as an upper bound on OPT we cannot hope for a constant approximation algorithm for
the Maximum Integral Multiflow problem when the non-orientable genus of G + H is
bounded. As far as we know, the best approximation ratio for the Maximum Integral
Multiflow problem when G+H has bounded non-orientable genus is O(

√
|V (G)|) as for

the general case. We leave open the question of improving the approximation ratio in that
special case.

Bibliography

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows, Prentice-Hall, 1993.

[2] P. Alimonti and V. Kann, Some APX-completeness results for cubic graphs, Theor.
Comput. Sci., 237 (2000), pp. 123–134.

[3] M. Andrews, J. Chuzhoy, S. Khanna, and L. Zhang, Hardness of the undirected edge-
disjoint paths problem with congestion, in Proceedings of the 46th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), 2015, pp. 226–244.

[4] S. Arora, Polynomial time approximation schemes for euclidean traveling salesman and
other geometric problems, J. ACM, 45 (1998), pp. 753–782.

[5] S. Arora, M. Grigni, D. R. Karger, P. N. Klein, and A. Woloszyn, A polynomial-
time approximation scheme for weighted planar graph TSP, in Proceedings of the Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, 25-27 January 1998, San Francisco,
California, USA, H. J. Karloff, ed., ACM/SIAM, 1998, pp. 33–41.

[6] Y. Aumann and Y. Rabani, Improved bounds for all optical routing, in Proceedings of the
6th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 1995, pp. 567–576.

[7] P. Austrin, S. Khot, and M. Safra, Inapproximability of vertex cover and independent
set in bounded degree graphs, Theory of Computing, 7 (2011), pp. 27–43.

[8] B. S. Baker, Approximation algorithms for NP-complete problems on planar graphs, J. ACM,
41 (1994), pp. 153–180.

[9] N. Bansal, Approximating independent sets in sparse graphs, in Proceedings of the Twenty-
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA,
USA, January 4-6, 2015, 2015, pp. 1–8.

[10] N. Bansal, A. Gupta, and G. Guruganesh, On the lovász theta function for independent
sets in sparse graphs, in Proceedings of the Forty-seventh Annual ACM Symposium on Theory
of Computing, STOC ’15, New York, NY, USA, 2015, ACM, pp. 193–200.

[11] M. Bateni, M. T. Hajiaghayi, and D. Marx, Approximation schemes for steiner forest
on planar graphs and graphs of bounded treewidth, J. ACM, 58 (2011), pp. 21:1–21:37.

[12] C. Bentz, Résolution exacte et approchée de problèmes de multiflot entier et de multicoupe :
algorithmes et complexité, Ph.D. thesis, Conservatoire National des Arts et Métiers, 2006.

[13] C. Berge, Graphs and hypergraphs, North-Holland, Ansterdam, 1973.

[14] P. Berman and T. Fujito, On approximation properties of the independent set problem
for low degree graphs, Theory of Computing Systems, 32 (1999), pp. 115–132.

[15] P. Berman and M. Fürer, Approximating maximum independent set in bounded degree
graphs, in Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’94, Philadelphia, PA, USA, 1994, Society for Industrial and Applied Mathematics,
pp. 365–371.

123

124 BIBLIOGRAPHY

[16] H. L. Bodlaender, D. M. Thilikos, and K. Yamazaki, It is hard to know when greedy
is good for finding independent sets, Information Processing Letters, 61 (1997), pp. 101–106.

[17] R. Boppana and M. M. Halldórsson, Approximating maximum independent sets by
excluding subgraphs, BIT Numerical Mathematics, 32 (1992), pp. 180–196.

[18] A. Borodin, M. N. Nielsen, and C. Rackoff, (incremental) priority algorithms, in
Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’02, USA, 2002, Society for Industrial and Applied Mathematics, p. 752–761.

[19] G. Borradaile, P. N. Klein, and C. Mathieu, An O(n log n) approximation scheme
for steiner tree in planar graphs, ACM Trans. Algorithms, 5 (2009), pp. 31:1–31:31.

[20] N. Buchbinder, M. Feldman, J. Naor, and R. Schwartz, A tight linear time (1/2)-
approximation for unconstrained submodular maximization, in 53rd Annual IEEE Symposium
on Foundations of Computer Science, FOCS2012, New Brunswick, NJ, USA, October 20-23,
2012, IEEE Computer Society, 2012, pp. 649–658.

[21] G. Călinescu, C. Chekuri, M. Pál, and J. Vondrák, Maximizing a monotone sub-
modular function subject to a matroid constraint, SIAM Journal on Computing, 40 (2011),
pp. 1740–1766.

[22] Y. Caro, A. Sebő, and M. Tarsi, Recognizing greedy structures, Journal of Algorithms,
20 (1996), pp. 137 – 156.

[23] E. W. Chambers, S. P. Fekete, H.-F. Hoffmann, D. Marinakis, J. S. Mitchell,
V. Srinivasan, U. Stege, and S. Whitesides, Connecting a set of circles with minimum
sum of radii, Computational Geometry, 68 (1991), pp. 62–76. special issue in memory of
Ferran Hurtado.

[24] S. O. Chan, Approximation resistance from pairwise-independent subgroups, J. ACM, 63
(2016), pp. 27:1–27:32.

[25] S. Chaplick, M. De, A. Ravsky, and J. Spoerhase, Approximation schemes for
geometric coverage problems, in ESA, vol. 112 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2018, pp. 17:1–17:15.

[26] S. Chawla, R. Krauthgamer, R. Kumar, Y. Rabani, and D. Sivakumar, On the
hardness of approximating multicut and sparsest-cut, Computational Complexity, 15 (2006),
pp. 94–114.

[27] C. Chekuri, S. Khanna, and F. B. Shepherd, An O(
√
n) approximation and integrality

gap for disjoint paths and unsplittable flow, Theory of Computing, 2 (2006), pp. 137–146.

[28] C. Chekuri, F. B. Shepherd, and C. Weibel, Flow-cut gaps for integer and fractional
multiflows, Journal of Combinatorial Theory, Series B, 103 (2013), pp. 248 – 273.

[29] J. Cheriyan, H. Karloff, R. Khandekar, and J. Könemann, On the integrality ratio
for tree augmentation, Operations Research Letters, 36 (2008), pp. 399–401.

[30] M. Chlebík and J. Chlebíková, Inapproximability results for bounded variants of opti-
mization problems, in Fundamentals of Computation Theory, 14th International Symposium,
FCT 2003, Malmö, Sweden, August 12-15, 2003, Proceedings, A. Lingas and B. J. Nilsson,
eds., vol. 2751 of Lecture Notes in Computer Science, Springer, 2003, pp. 27–38.

[31] M. Chlebík and J. Chlebíková, On approximability of the independent set problem for
low degree graphs, in Structural Information and Communication Complexity, R. Královic
and O. Sýkora, eds., Berlin, Heidelberg, 2004, Springer Berlin Heidelberg, pp. 47–56.

[32] J. Chuzhoy, Routing in undirected graphs with constant congestion, in Proceedings of the 44th
Annual ACM Symposium on Theory of Computing Conference (STOC), 2012, pp. 855–874.

BIBLIOGRAPHY 125

[33] J. Chuzhoy and D. H. K. Kim, On approximating node-disjoint paths in grids, in Proceed-
ings of the Workshop on Approximation, Randomization, and Combinatorial Optimization
(APPROX), N. Garg, K. Jansen, A. Rao, and J. D. P. Rolim, eds., vol. 40 of LIPIcs, 2015,
pp. 187–211.

[34] J. Chuzhoy, D. H. K. Kim, and S. Li, Improved approximation for node-disjoint paths in
planar graphs, in Proceedings of the 48th Annual ACM Symposium on Theory of Computing
Conference (STOC), D. Wichs and Y. Mansour, eds., 2016, pp. 556–569.

[35] J. Chuzhoy, D. H. K. Kim, and R. Nimavat, New hardness results for routing on
disjoint paths, in Proceedings of the 49th Annual ACM Symposium on Theory of Computing
Conference (STOC), H. Hatami, P. McKenzie, and V. King, eds., 2017, pp. 86–99.

[36] , Almost polynomial hardness of node-disjoint paths in grids, in Proceedings of the 50th
Annual ACM Symposium on Theory of Computing Conference (STOC), 2018, pp. 1220–1233.

[37] V. Chvátal, A greedy heuristic for the set-covering problem, Math. Oper. Res., 4 (1979),
pp. 233–235.

[38] V. Cohen-Addad, E. Colin de Verdière, and A. de Mesmay, A near-linear approxima-
tion scheme for multicuts of embedded graphs with a fixed number of terminals, in Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2018,
pp. 1439–1458.

[39] E. Colin de Verdière, Topological algorithms for graphs on surfaces, in Handbook of
Discrete and Computational Geometry, J. Goodman and J. O’Rourke, eds., CRC Press, 2017.
Chapter 23.

[40] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
3rd Edition, MIT Press, 2009.

[41] D. Cornaz, Max-multiflow/min-multicut for G+H series-parallel, Discrete Mathematics, 311
(2011), pp. 1957–1967.

[42] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yan-
nakakis, The complexity of multiterminal cuts, SIAM Journal on Computing, 23 (1994),
p. 864–894.

[43] A. Darmann and J. Döcker, Monotone 3-SAT-4 is NP-complete, CoRR, abs/1603.07881
(2016).

[44] M. Demange and V. Paschos, Improved approximations for maximum independent set via
approximation chains, Applied Mathematics Letters, 10 (1997), pp. 105 – 110.

[45] J. Edmonds and E. L. Johnson, Matching, Euler tours and the Chinese postman, Mathe-
matical Programming, 5 (1973), pp. 88–124.

[46] D. B. A. Epstein, Curves on 2-manifolds and isotopies, Acta Math., 115 (1966), pp. 83–107.

[47] P. Erdős, On the graph theorem of Turán, Mat. Lapok, 21 (1970), pp. 249–251.

[48] J. Erickson and K. Whittlesey, Transforming curves on surfaces redux, in Proceedings of
the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM,
2013, pp. 1646–1655.

[49] U. Feige, A threshold of ln n for approximating set cover, J. ACM, 45 (1998), pp. 634–652.

[50] , Approximating maximum clique by removing subgraphs, SIAM J. Discrete Math., 18
(2004), pp. 219–225.

[51] S. Fiorini, N. Hardy, B. Reed, and A. Vetta, Approximate min–max relations for odd
cycles in planar graphs, Mathematical Programming, 110 (2007), pp. 71—-91.

126 BIBLIOGRAPHY

[52] L. Ford and D. Fulkerson, Flows in Networks, Princeton University Press, 1962.

[53] S. Fortune, J. Hopcroft, and J. Wyllie, The directed subgraph homeomorphism problem,
Theoretical Computer Science, 10 (1980), pp. 111–121.

[54] A. Frank, Packing paths, circuits and cuts – a survey, in Paths, Flows, and VLSI-Layout,
B. Korte, L. Lovász, H. J. Prömel, and A. Schrijver, eds., Springer, 1990, pp. 47–100.

[55] , A survey on T -joins, T -cuts, and conservative weightings, in Combinatorics, Paul
Erdős is Eighty, D. Miklós, V. T. Sós, and T. Szőnyi, eds., vol. 2, Springer, 1996, pp. 213–252.

[56] A. M. Frieze and S. Suen, On the independence number of random cubic graphs, Random
Struct. Algorithms, 5 (1994), pp. 649–664.

[57] S. Funke, A. Kesselman, F. Kuhn, Z. Lotker, and M. Segal, Improved approximation
algorithms for connected sensor cover, Wireless Networks, 13 (2007), pp. 153–164.

[58] M. M. Garey. and D. S. Johnson, The rectilinear steiner tree problem is NP-complete,
SIAM Journal on Applied Mathematics, 32 (1977), pp. 826–834.

[59] M. R. Garey, D. S. Johnson, and L. Stockmeyer, Some simplified np-complete problems,
in Proceedings of the Sixth Annual ACM Symposium on Theory of Computing, STOC ’74,
New York, NY, USA, 1974, ACM, pp. 47–63.

[60] M. R. Garey, D. S. Johnson, and L. Stockmeyer, Some simplified NP-complete graph
problems, Theoretical Computer Science, 1 (1976), pp. 237–267.

[61] N. Garg, N. Kumar, and A. Sebő, Integer plane multiflow maximisation: Flow-cut gap
and one-quarter-approximation, 2020. arXiv:2002.10927.

[62] N. Garg, V. Vazirani, and M. Yannakakis, Approximate max-flow min-(multi)cut
theorems and their applications, SIAM Journal on Computing, 25 (1996), pp. 235–251.

[63] , Primal-dual approximation algorithms for integral flow and multicut in trees, Algorith-
mica, 18 (1997), pp. 3–20.

[64] J. E. Greene, On curves intersecting at most once, 2018. arXiv:1807.05658.

[65] M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid method and its consequences
in combinatorial optimization, Combinatorica, 1 (1981), pp. 169–197.

[66] M. Guan, Graphic programming using odd and even points, Chinese Journal of Mathematics,
1 (1962), pp. 273–277.

[67] H. Gupta, Z. Zhou, S. R. Das, and Q. Gu, Connected sensor cover: Self-organization
of sensor networks for efficient query execution, IEEE/ACM Transactions on Networks, 14
(2006), pp. 55–67.

[68] A. Hajnal and E. Szemerédi, Proof of a conjecture of P. Erdős, in Combinatorial Theory
and its Applications, P. Erdős, A. Rényi, and V. Sós, eds., North-Holland, Amsterdam, 1970,
pp. 601–623.

[69] M. M. Halldórsson, Private communication. Erratum:
https://www.ru.is/∼mmh/papers/hy95-errata.html, March, 2019.

[70] M. M. Halldórsson and J. Radhakrishnan, Greed is good: approximating independent
sets in sparse and bounded-degree graphs, in Proceedings of the Twenty-Sixth Annual ACM
Symposium on Theory of Computing, STOC 1994, Montréal, Québec, Canada, 23-25 May
1994, 1994, pp. 439–448.

[71] , Improved approximations of independent sets in bounded-degree graphs, in Algorithm
Theory - SWAT ’94, 4th Scandinavian Workshop on Algorithm Theory, Aarhus, Denmark,
July 6-8, 1994, Proceedings, 1994, pp. 195–206.

BIBLIOGRAPHY 127

[72] , Improved approximations of independent sets in bounded-degree graphs via subgraph
removal., Nord. J. Comput., 1 (1994), pp. 475–492.

[73] M. M. Halldórsson and J. Radhakrishnan, Greed is good: Approximating independent
sets in sparse and bounded-degree graphs, Algorithmica, 18 (1997), pp. 145–163.

[74] M. M. Halldórsson and K. Yoshihara, Greedy approximations of independent sets
in low degree graphs, in Algorithms and Computations, J. Staples, P. Eades, N. Katoh,
and A. Moffat, eds., Berlin, Heidelberg, 1995, Springer Berlin Heidelberg. Full version in:
http://www.ru.is/∼mmh/raunvis/Papers/yoshi.pdf, pp. 152–161.

[75] E. Halperin, Improved approximation algorithms for the vertex cover problem in graphs and
hypergraphs, SIAM J. Comput., 31 (2002), pp. 1608–1623.

[76] S. Har-Peled, Being fat and friendly is not enough, CoRR, abs/0908.2369 (2009).

[77] P. J. Heawood, Map colour theorem, Quart. J. Math., (1890), pp. 332–338.

[78] D. S. Hochbaum, Efficient bounds for the stable set, vertex cover and set packing problems,
Discrete Applied Mathematics, 6 (1983), pp. 243 – 254.

[79] D. S. Hochbaum and A. Pathria, Node-optimal connected k-subgraphs, 1994.

[80] J. Håstad, Clique is hard to approximate within n1−ε, Acta Math., 182 (1999), pp. 105–142.

[81] W.-L. Hsu and G. L. Nemhauser, Easy and hard bottleneck location problems, Discrete
Applied Mathematics, 1 (1979), pp. 209 – 215.

[82] C. Huang, M. Mari, C. Mathieu, J. S. B. Mitchell, and N. H. Mustafa, Maximizing
covered area in the euclidean plane with connectivity constraint, in Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM
2019, September 20-22, 2019, Massachusetts Institute of Technology, Cambridge, MA, USA,
D. Achlioptas and L. A. Végh, eds., vol. 145 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019, pp. 32:1–32:21.

[83] C. Huang, M. Mari, C. Mathieu, and J. Vygen, Approximating maximum integral
multiflows on bounded genus graphs, CoRR, abs/2005.00575 (2020).

[84] C.-C. Huang, M. Mari, C. Mathieu, K. Schewior, and J. Vygen, An approximation
algorithm for fully planar edge-disjoint paths, 2020. arXiv:2001.01715.

[85] K. ichi Kawarabayashi, Y. Kobayashi, and B. Reed, The disjoint paths problem in
quadratic time, Journal of Combinatorial Theory, Series B, 102 (2012), pp. 424 – 435.

[86] K. Jain, A factor 2 approximation algorithm for the generalized Steiner network problem,
Combinatorica, 21 (2001), pp. 39–60.

[87] D. S. Johnson, Worst case behavior of graph coloring algorithms, in Proceedings of the
5th Southeastern Conference on Combinatorics, Graph Theory and Computing, Congressus
Numerantium X, 1974, pp. 513—-527.

[88] M. Juvan, A. Malnic, and B. Mohar, Systems of curves on surfaces, J. Comb. Theory,
Ser. B, 68 (1996), pp. 7–22.

[89] K. Kar and S. Banerjee, Node placement for connected coverage in sensor networks, 2003.

[90] R. M. Karp, On the computational complexity of combinatorial problems, Networks, 5 (1975),
pp. 45–68.

[91] K. Kawarabayashi and Y. Kobayashi, An O(logn)-approximation algorithm for the
edge-disjoint paths problem in Eulerian planar graphs, ACM Transactions on Algorithms, 9
(2013), pp. 16:1–16:13.

128 BIBLIOGRAPHY

[92] S. Khanna, R. Motwani, M. Sudan, and U. Vazirani, On syntactic versus computational
views of approximability, SIAM Journal on Computing, 28 (1998), pp. 164–191.

[93] S. Khot and O. Regev, Vertex cover might be hard to approximate to within 2-ε, Journal
of Computer and System Sciences, 74 (2008), pp. 335 – 349. Computational Complexity 2003.

[94] S. Khuller, M. Purohit, and K. K. Sarpatwar, Analyzing the optimal neighborhood:
Algorithms for budgeted and partial connected dominating set problems, in Proceedings of the
Twenty-fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’14, Philadelphia,
PA, USA, 2014, Society for Industrial and Applied Mathematics, pp. 1702–1713.

[95] P. N. Klein, C. Mathieu, and H. Zhou, Correlation clustering and two-edge-connected
augmentation for planar graphs, in Proceedings of the 32nd International Symposium on
Theoretical Aspects of Computer Science (STACS), 2014, pp. 554–567.

[96] J. Kleinberg, Approximation algorithms for disjoint paths problems, Ph.D. thesis, MIT,
1996.

[97] J. M. Kleinberg, An approximation algorithm for the disjoint paths problem in even-degree
planar graphs, in 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2005), 23-25 October 2005, Pittsburgh, PA, USA, Proceedings, IEEE Computer Society, 2005,
pp. 627–636.

[98] E. Korach and M. Penn, Tight integral duality gap in the Chinese postman problem,
Mathematical Programming, 55 (1992), pp. 183–191.

[99] E. Koutsoupias and C. H. Papadimitriou, On the greedy algorithm for satisfiability,
Information Processing Letters, 43 (1992), pp. 53 – 55.

[100] D. Král’ and H.-J. Voss, Edge-disjoint odd cycles in planar graphs, Journal of Combinato-
rial Theory, Series B, 90 (2004), pp. 107–120.

[101] P. Krysta, M. Mari, and N. Zhi, Ultimate greedy approximation of independent sets in
subcubic graphs, in Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, S. Chawla, ed., SIAM, 2020,
pp. 1436–1455.

[102] A. Kulik, H. Shachnai, and T. Tamir, Maximizing submodular set functions subject to
multiple linear constraints, in SODA, SIAM, 2009, pp. 545–554.

[103] T.-W. Kuo, K. C.-J. Lin, and M.-J. Tsai, Maximizing submodular set function with
connectivity constraint: Theory and application to networks, IEEE/ACM Transactions on
Networks, 23 (2015), pp. 533–546.

[104] F. Lazarus and J. Rivaud, On the homotopy test on surfaces, in proceedings of the 53rd
Annual IEEE Symposium on Foundations of Computer Science, (FOCS), IEEE Computer
Society, 2012, pp. 440–449.

[105] J. Lee, M. Sviridenko, and J. Vondrák, Submodular maximization over multiple matroids
via generalized exchange properties, Math. Oper. Res., 35 (2010), pp. 795–806.

[106] R. J. Lipton and R. E. Tarjan, Applications of a planar separator theorem, SIAM J.
Comput., 9 (1980), pp. 615–627.

[107] D. Lokshtanov, P. Misra, M. Pilipczuk, S. Saurabh, and M. Zehavi, An exponential
time parameterized algorithm for planar disjoint paths, in Proccedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June
22-26, 2020, K. Makarychev, Y. Makarychev, M. Tulsiani, G. Kamath, and J. Chuzhoy, eds.,
ACM, 2020, pp. 1307–1316.

[108] L. Lovász, 2-matchings and 2-covers of hypergraphs, Acta Mathematica Academiae Scien-
tiarum Hungaricae, 26 (1975), pp. 433–444.

BIBLIOGRAPHY 129

[109] L. Lovász, Three short proofs in graph theory, Journal of Combinatorial Theory, Series B,
19 (1975), pp. 269 – 271.

[110] L. Lovász, On two minmax theorems in graph, Journal of Combinatorial Theory B, 21
(1976), pp. 96–103.

[111] L. Lovász, On the ratio of optimal integral and fractional covers, Discrete Mathematics, 13
(1975), pp. 383 – 390.

[112] C. Lund and M. Yannakakis, On the hardness of approximating minimization problems, J.
ACM, 41 (1994), p. 960–981.

[113] J. Malestein, I. Rivin, and L. Theran, Topological designs, Geometriae Dedicata, 168
(2010).

[114] M. V. Marathe, H. Breu, H. B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz,
Simple heuristics for unit disk graphs, Networks, 25 (1995), pp. 59–68.

[115] T. Matsui, Approximation algorithms for maximum independent set problems and fractional
coloring problems on unit disk graphs, in Discrete and Computational Geometry, J. Akiyama,
M. Kano, and M. Urabe, eds., Berlin, Heidelberg, 2000, Springer Berlin Heidelberg, pp. 194–
200.

[116] C. McDiarmid, Colouring random graphs, Annals of Operations Research, 1 (1984), pp. 183–
200.

[117] M. Middendorf and F. Pfeiffer, On the complexity of the disjoint paths problem,
Combinatorica, 13 (1993), pp. 97–107.

[118] J. S. B. Mitchell, Guillotine subdivisions approximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geometric TSP, k-MST, and related problems,
SIAM Journal on Computing, 28 (1999), pp. 1298–1309.

[119] B. Mohar and C. Thomassen, Graphs on Surfaces, Johns Hopkins series in the mathe-
matical sciences, Johns Hopkins University Press, 2001.

[120] N. H. Mustafa and S. Ray, Improved results on geometric hitting set problems, Discrete &
Computational Geometry, 44 (2010), pp. 883–895.

[121] G. Narasimhan and M. Smid, Geometric Spanner Networks, Cambridge University Press,
New York, NY, USA, 2007.

[122] G. Naves and A. Sebő, Multiflow feasibility: an annotated tableau, in Research Trends
in Combinatorial Optimization, W. Cook, L. Lovász, and J. Vygen, eds., Springer, 2009,
pp. 261–283.

[123] G. L. Nemhauser and L. E. Trotter, Vertex packings: Structural properties and algo-
rithms, Mathematical Programming, 8 (1975), pp. 232–248.

[124] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, An analysis of approximations for
maximizing submodular set functions—I, Mathematical programming, 14 (1978), pp. 265–294.

[125] C. H. Papadimitriou, The euclidean travelling salesman problem is NP-complete, Theoretical
Computer Science, 4 (1977), pp. 237 – 244.

[126] M. D. Plummer, Some covering concepts in graphs, Journal of Combinatorial Theory, 8(1)
(1970), pp. 91–98.

[127] , Well-covered graphs: a survey, Quaestiones Mathematicae, 16(3) (1993), pp. 253–287.

[128] P. Przytycki, Arcs intersecting at most once, Geometric and Functional Analysis, 25 (2015),
p. 658–670.

130 BIBLIOGRAPHY

[129] Y. Rabani and G. Scalosub, Bicriteria approximation tradeoff for the node-cost budget
problem, ACM Transactions on Algorithms, 5 (2009), pp. 19:1–19:14.

[130] P. Raghavan, Probabilistic construction of deterministic algorithms: Approximating packing
integer programs, Journal of Computer and System Sciences, 37 (1988), pp. 130 – 143.

[131] N. Robertson, D. Sanders, P. Seymour, and R. Thomas, The four-colour theorem,
Journal of Combinatorial Theory, Series B, 70 (1997), pp. 2–44.

[132] N. Robertson and P. Seymour, Graph minors. XIII. The disjoint paths problem, Journal
of Combinatorial Theory, Series B, 63 (1995), pp. 65–110.

[133] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer, 2003.

[134] A. Sebő, Potentials in undirected graphs and planar multiflows, SIAM Journal of Computing,
26 (1997), pp. 582–603.

[135] A. Sebö, Integer plane multiflows with a fixed number of demands, J. Comb. Theory, Ser. B,
59 (1993), pp. 163–171.

[136] L. Seguin-Charbonneau and F. B. Shepherd, Maximum edge-disjoint paths in planar
graphs with congestion 2, in Proceedings of the 52nd Annual IEEE Symposium on Foundations
of Computer Science (FOCS), R. Ostrovsky, ed., 2011, pp. 200–209.

[137] P. D. Seymour, On odd cuts and plane multicommodity flows, Proceedings of the London
Mathematical Society, s3-42 (1981), pp. 178–192.

[138] J. B. Shearer, A note on the independence number of triangle-free graphs, Discrete Mathe-
matics, 46 (1983), pp. 83 – 87.

[139] H. U. Simon, On approximate solutions for combinatorial optimization problems, SIAM J.
Discrete Math., 3 (1990), pp. 294–310.

[140] P. Slavík, A tight analysis of the greedy algorithm for set cover, in Proceedings of the
Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, New York,
NY, USA, 1996, Association for Computing Machinery, p. 435–441.

[141] É. Tardos and V. V. Vazirani, Improved bounds for the max-flow min-multicut ratio for
planar and Kr,r-free graphs, Information Processing Letters, 47 (1993), pp. 77–80.

[142] P. Turán, An extremal problem in graph theory, Mat. Fiz. Lapok, 48 (1941), pp. 436–452.

[143] F. Vandin, E. Upfal, and B. J. Raphael, Algorithms for detecting significantly mutated
pathways in cancer, Journal of Computational Biology, 18 (2011), pp. 507–522.

[144] V. V. Vazirani, Approximation Algorithms, Springer, 2001.

[145] V. V. Vazirani, Euclidean TSP, Springer Berlin Heidelberg, Berlin, Heidelberg, 2003,
pp. 84–89.

[146] V. Wei, A lower bound on the stability number of a simple graph, Bell Laboratories Technical
Memorandum, 81-11217-9 (Murray Hill, NJ, 1981).

[147] L. A. Wolsey, Maximising real-valued submodular functions: primal and dual heuristics for
location problems, Mathematics of Operations Research, 7 (1982), pp. 410–425.

[148] D. Zuckerman, Linear degree extractors and the inapproximability of max clique and
chromatic number, in Proceedings of the Thirty-eighth Annual ACM Symposium on Theory
of Computing, STOC ’06, New York, NY, USA, 2006, ACM, pp. 681–690.

BIBLIOGRAPHY 131

L’approche gloutonne est naturelle pour concevoir un algorithme. Elle permet la conception d’algorithmes rapides,
faciles à implémenter, qui produisent en moyenne des solutions de qualité, pour de nombreux problèmes d’optimisation.
Pour ces raisons, c’est une heuristique importante en pratique. Dans cette thèse, nous présentons des algorithmes
gloutons pour trois problèmes d’optimisation NP-difficiles. Nous discutons les relations entre ces algorithmes, leurs
techniques de preuve et la structure des problèmes étudiés.

Dans la permière partie de cette thèse, on se concentre sur le problème de la couverture maximale avec une contrainte
de connexité, contrainte que l’on rencontre lors de la conception de réseaux sans fil. Nous montrons que le problème est
NP-difficile, même quand la couverture et la connexité proviennent d’un ensemble de disques unité dans le plan. Pour ce
cas particulier, nous montrons que choisir de manière gloutonne deux disques qui maximisent le gain marginal tout en
maintenant la solution connexe réalise une 2-approximation. Nous améliorons ce ratio d’approximation en donnant un
schéma d’approximation en temps polynomial avec une légère augmentation de ressource, basé sur la technique d’Arora
pour le voyageur de commerce euclidien.

Dans la deuxième partie de cette thèse, on se concentre sur le problème du stable maximum. Une approche naturelle
est de successivement choisir un sommet de degré minimum, le placer dans la solution en construction, puis le retirer
avec ses voisins du graphe. Nous présentons une nouvelle technique pour analyser la performance de cette approche
gloutonne dans différentes classes de graphes et abordons la question suivante : s’il y a plusieurs sommets de degré
minimum, lequel l’algorithme devrait-il choisir pour maximiser la taille de la solution finale ? Avec cet outil, nous
concevons une règle pour briser les cas d’égalité, qui conduit à la meilleure approximation possible dans les graphes
sous-cubiques et pour ce type d’algorithmes gloutons. Nous complémentons ces résultats par des résultats négatifs qui
suggèrent que la conception de bonnes règles brisant les cas d’égalité est une tâche difficile.

La troisième et dernière partie de la thèse est consacrée au problème du multiflot entier maximum. Ce problème
est difficile et a été très étudié. Par exemple, une approximation de facteur constant est probablement impossible même
quand le graphe d’offre est planaire et cubique. Dans le cas particulier où le graphe d’offre et les arêtes de demande
forment ensemble un graphe de genre borné, nous présentons un algorithme avec un facteur d’approximation constant.
L’algorithme consiste en une succession de procédures gloutonnes qui exploitent les propriétés topologiques des graphes
et des lacets sur des surfaces.

Résumé

The greedy approach is natural for the design of algorithms. It is fast, easy to implement, has a good performance
on average, and is applicable to many optimization problems in various settings. For those reasons, it is an important
heuristic in practice. In this thesis, we present greedy algorithms for three different NP-hard optimization problems.
We discuss the relation between those algorithms, their proof techniques and the structure of the problems under study.

In the first part of this thesis, we focus on the Maximum Coverage problem with a connectivity constraint, which
comes up for the design of wireless networks. We show that the problem is NP-hard, even when the coverage and the
connectivity are induced by a set of unit disks in the plane. For that special case, we show that greedily picking two
disks so as to maximize the marginal area covered while correctness achieves a 2-approximation. We further improve the
approximation ratio by providing a PTAS for this problem with a small resource augmentation, using Arora’s shifted
grid dissection technique.

In the second part of this thesis, we focus on the Maximum Independent Set problem. A natural approach is
to repeatedly pick a vertex of minimum degree, and remove it and its neighbours from the graph. We present a
new technique to analyze the performance of this greedy approach in various classes of graphs and address the following
question: if there are several minimun-degree vertices, what vertex should the greedy algorithm pick in order to maximise
the size of the final solution ? With this tool, we design an ”ultimate tie-breaking” rule that leads to the best possible
approximation ratio for sub-cubic graphs and for this type of greedy algorithms. We complement this by lower bound
results that show that designing good tie-breaking rules is a difficult task.

The third and last part of the thesis is devoted to the Maximum Integral Multiflows problem. The problem is
difficult and well-studied. For instance, a constant factor approximation is unlikely to exist even when the supply graph
is planar and cubic. In the special case where the supply graph together with the demand edges form a bounded
genus graph, we present a constant factor approximation algorithm. The algorithm consists of a succession of greedy
procedures that exploit topological properties of graphs and curves on surfaces.

Abstract

mots clés

keywords

optimisation combinatoire, algorithmes, approximation, glouton

combinatorial optimization, algorithms, approximation, greedy

	General Introduction
	Greedy algorithms
	Contributions of this thesis
	Preliminaries

	Maximum Disk Coverage with Connectivity Constraints
	Introduction
	The Two-by-two greedy algorithm (Proof of Theorem 2.3)
	PTAS with resource augmentation (Proof of Theorem 2.4)
	Proof of the Structural Lemma
	PTAS for well-distributed inputs
	Hardness results

	Greedy approaches for Maximum independent Set
	Introduction
	Analyzing Greedy: our payment scheme
	Application to bounded degree graphs
	The ultimate greedy algorithm for subcubic graphs
	Analysis of the ultimate approximation ratio
	Proof of the inductive low-debt Lemma
	Limits of the greedy approach.
	Conclusion

	Approximating Integral Multiflows on the Plane
	Introduction
	Roadmap
	Rounding the Non-negative Cycle LP
	Packing Cuts (Proof of Theorem 4.8)
	Max-Multiflow Min-Multicut gap (Proof of Theorem 4.4)
	NP-completeness of NonNegativeCycles
	Conclusion

	Approximating Integral Multiflows on Orientable Surfaces
	Introduction
	Overview
	Finding a large fractional multiflow (Step 1)
	Making a fractional multiflow minimally crossing (Step 2)
	Separating cycles: routing an integral multiflow (Step 3)
	Non-separating cycles: routing an integral multiflow (Step 4)
	Analysis of the overall algorithm (Proof of Theorem 5.1)
	Max-Multiflow Min-Multicut gap
	Conclusion

