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Maximum Independent Set (MIS) 

• Independent set is a set 𝑆 of vertices in a graph 
such that no two vertices in 𝑆 are adjacent

• MIS: Find the Maximum cardinality independent 
set.

• Classical NP-hard problem

• Trivial to get 𝑛-approximation

• NP-hard to get 𝑛1−𝜀 approximation. [Håstad, 1999]

Independent sets shown in red and blue

1



Special Case: Geometric Intersection Graphs

• Nodes correspond to geometric objects like 
polygons, spheres, … etc.

• There is edge (𝑢, 𝑣) iff objects corresponding to 
𝑢 and 𝑣 overlap

• Polynomial time solvable for intersection graphs of 
intervals on a line

• PTAS for Squares and Spheres. [Erlebach et al. , SODA ‘01]

• PTAS for Pseudo-Disks. [Chan, Har-Peled, SOCG ‘09]

1𝐷- Interval Graph

Unit Disk Graph
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Our focus: Maximum Independent Set of Rectangles (MISR)

• Input:  A set of 𝑛 axis-parallel rectangles on a plane.

• Goal:  Output a set of non-overlapping rectangles of 
maximum cardinality.
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Our focus: Maximum Independent Set of Rectangles (MISR)

• Input:  A set of 𝑛 axis-parallel rectangles on a plane.

• Goal:  Output a set of non-overlapping rectangles of 
maximum cardinality.

NP-hard. [R J Fowler et al., '81 ]
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MISR: Previous work

∗ 𝑂 log 𝑛 [Agarwal et al, CG ’98; …]

∗ 𝑂 log log 𝑛 [Chalermsook-Chuzhoy, SODA ‘09]

• QPTAS [Adamaszek-Weise, FOCS ’13; Chuzhoy-Ene, FOCS ‘16]

⇒MISR not APX hard unless 𝑁𝑃 ⊆ 𝐷𝑇𝐼𝑀𝐸 2𝑝𝑜𝑙𝑦 log 𝑛

PTAS is expected but even 𝑂(1) is not known

∗ 𝑂 log log 𝑛 for the weighted case [Chalermsook-Walczak, SODA ‘21]

• 10-approximation [JSB Mitchell, FOCS ‘21]
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MISR: Our Result
A 2+ 𝜀 -approximation Algorithm

Let us sketch a 6-approximation algorithm

5

Step 1. Show existence of a “good” structured solution:
- Set of candidate solutions: 𝐶. -- size can be exponential.
- Set of structured solution: 𝑆.  -- need to make the size to be polynomial.
- 𝑆 is a good approximation of 𝐶: For any candidate solution 𝐼 ∈ 𝐶 there is a structured solution 𝐼′ ⊆ 𝐼
and  𝐼′ ∈ 𝑆 such that 𝛼|𝐼′| ≥ 𝐼 .

Step 2. DP-based algorithm that finds the best structured solution.

General framework:



Technique/Idea

Question: How do you solve Max-Weight indep. set of intervals on a line?

3 3 3

5 5

• Divide and Conquer?
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Technique/Idea

3 3 3

5 5

• Divide and Conquer?
• Can be implemented as a dynamic program
• DP[𝑥1, 𝑥2] contains the optimal solution in the range [𝑥1, 𝑥2]

Cut, Solve recursively, Patch
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Technique/Idea

3 3 3

5 5

• Divide and Conquer?
• Can be implemented as a dynamic program
• DP[𝑥1, 𝑥2] contains the optimal solution in the range [𝑥1, 𝑥2]

Cut, Solve recursively, Patch
𝑥1 𝑥2

Question: How do you solve Max-Weight indep. set of intervals on a line?
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Technique/Idea

Idea: Generalize and apply the recursive algorithm to MISR

7



Technique/Idea

Idea: Generalize and apply the recursive algorithm to MISR

7



Technique/Idea

Idea: Generalize and apply the recursive algorithm to MISR

7



Technique/Idea

Idea: Generalize and apply the recursive algorithm to MISR

• These end-to-end cuts splitting the 
piece into two sub-pieces are called 
Guillotine cuts

• A set of objects in the plane are 
Guillotine separable if there exists a 
sequence of guillotine cuts that 
separates each object into a different 
piece

Example of non-guillotine separable 
instance?
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Technique/Idea

Idea: Generalize and apply the recursive algorithm to MISR

• Fact: Optimal Guillotine separable 
independent set can be found using a 
dynamic program.
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Technique/Idea

Idea: Generalize and apply the recursive algorithm to MISR

• Fact: Optimal Guillotine separable 
independent set can be found using a 
dynamic program.

• 𝐷𝑃 𝑥1, 𝑥2, 𝑦1, 𝑦2 contains the optimal 
guillotine separable independent set in the 
window 𝑥1, 𝑥2 × [𝑦1, 𝑦2]

• Larger table entry filled by guessing best 
first guillotine cut and concatenating 
optimal solutions of two pieces

𝑥1 𝑥2

𝑦1

𝑦2
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Technique/Idea

Idea: Generalize and apply the recursive algorithm to MISR

• Question: How good is the Optimal Guillotine separable independent set with respect 
to the Optimal independent set?

Optimal, not guillotine separable Optimal guillotine separable

• Conjecture[Pach-Tardos] : Any axis parallel independent set of rectangles has 
a guillotine separable subset of relative size Ω(1)
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Technique/Idea

Idea: Generalize and apply the recursive algorithm to MISR

• Question: How good is the Optimal Guillotine separable independent set with respect 
to the Optimal independent set?

Optimal, not guillotine separable Optimal guillotine separable

• Conjecture[Madhusudhan] : Any axis parallel independent set of rectangles has 

a guillotine separable subset of relative size 
1

2
even in the weighted case  
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Technique/Idea

Idea: Generalize and apply the recursive algorithm to MISR

• Question: What other structured solutions that generalize guillotine separability can 
be found optimally in polynomial time ? 

Pieces and cuts can be more general  

• A cut is called a 𝑝, 𝑐 -cut if it cuts a piece into at most 𝑝
pieces and each piece has at most 𝑐 complexity (edges) 

(2,4) (2,6) (5,4) (5,12)

• Fact: Optimal (𝑝, 𝑐)-separable independent set can be found in 𝑛𝑂(𝑝𝑐) time using DP

• Independent set is (𝑝, 𝑐)-separable if a sequence of 𝑝, 𝑐 -cuts 
separate all rectangles without cutting any
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Technique/Idea

Idea: Generalize and apply the recursive algorithm to MISR

• Fact: Optimal (𝑝, 𝑐)-separable independent set can be found in 𝑛𝑂(𝑝𝑐) time using DP

• Theorem: For any indep. set ℛ, there exists a (3,26)- separable subset ℛ ⊆ ℛ such that 

ℛ ≥
1

6
ℛ

• Full Theorem: For any indep. set ℛ, there exists a (2, 𝑂(
1

𝜀
)) - separable subset ℛ ⊆ ℛ

such that ℛ ≥
1

2+𝜀
ℛ

• Existence shown by providing the cuts algorithmically

• Question: What other structured solutions that generalize guillotine separability can 
be found optimally in polynomial time ? 

⇒ 6-approximation

⇒ (2 + ε)-approximation

• Builds on Mitchell’s results with additional new ideas
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Proof?

• Assume Maximality for ℛ
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• Assume Maximality for ℛ
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Proof?

• Fences and Cutting
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Proof?

• Fences and Cutting
• Intuitively, better cuts are not near the boundary 
• We made no progress 
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Proof?

• Fences and Cutting

• Cannot make a straight vertical or horizontal 
cut without cutting any of the rectangles

• Use bends!
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Proof?

• Fences and Cutting

• Cannot make a straight vertical or horizontal 
cut without cutting any of the rectangles

• Use bends!

• Intuitively, better cuts are not near the boundary 
• Block/Protect all boundary rectangles in every piece using fences

• Rules of cutting:

1. Vertical segments of cuts 
don’t pass through fences

2. Horizontal segments of 
cuts don’t intersect any 
rectangles

3. Partition rule

How do we make sure that the piece complexity 

doesn't go up in this process? 
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Proof?

• Fences and Cutting
• Intuitively, better cuts are not near the boundary 
• Block/Protect all boundary rectangles in every piece using fences

• Rules of cutting:

1. Vertical segments of cuts 
don’t pass through fences

2. Horizontal segments of 
cuts don’t intersect any 
rectangles

3. Partition rule

• Invariant: Assume the pieces are 
horizontally convex
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Proof?

• Fences and Cutting
• Intuitively, better cuts are not near the boundary 
• Block/Protect all boundary rectangles in every piece using fences

• Rules of cutting:

1. Vertical segments of cuts 
don’t pass through fences

2. Horizontal segments of 
cuts don’t intersect any 
rectangles

3. Partition rule

• Invariant: Assume the pieces are 
horizontally convex

• Invariant  is maintained and 
piece complexity does not 
increase
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Proof?

• Charging Scheme 
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Proof?

• Charging Scheme 

?

?

Observation:
Every cut creates some new
boundary rectangles

We can charge the rectangles 
that are cut (killed) to these 
new boundary rectangles 

A boundary rectangle can be 
charged at most four times

Not every rectangle can be 
charged to some rectangle
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More details



Recursive partitioning

Assumption: All rectangles in OPT are maximal.

R is nested on its right

R R R

not nested!

R is nested on its bottom

R R R

not nested!
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Recursive partitioning

Assumption: All rectangles in OPT are maximal.

R is nested on its right

R R R

not nested!

R is nested on its bottom

R R R

not nested!

Claim: R cannot be nested on both directions.
Rproof:

WLOG, we assume that at most |OPT |/2 are
nested on their right



If R is intersected, who do we charge ?

answer: R charges a rectangle R′ that it sees (on its right).

R
R′

h′ does not intersect any rectangle in OPT.

p is not the top-right corner of R.

h does not containt the bottom edge of any other rectangles.

example.

R sees R′
2 and R′

1

R does not see R′′

R′
2 does not see sees R′′

h′
p



If R is intersected, who do we charge ?

answer: R charges a rectangle R′ that it sees (on its right).

R
R′

h′ does not intersect any rectangle in OPT.

p is not the top-right corner of R.

h does not containt the bottom edge of any other rectangles.

example.

a rectangle R′ is seen by at most one rectangle

a rectangle can be charged by at most once

R sees R′
2 and R′

1

R does not see R′′

R′
2 does not see sees R′′

h′
p



not possible

not possible

W

W

R R R

R

R

R′
R′

R′

R′

R′

y′t

yt

yb

y′b

y′t

yt

yb

y′b

yb

y′b

xr = x′l xr = x′l

R′′

yb

y′b

yb

y′b

R′′
R sees R′ R is nested

h′

h′

R sees R′

proof: we look on the right from our top-right corner: R
R′

Let R ∈ OPT . Either:
- R sees someone,

- or, R is nested on its right.
(or R has its right edge contained in the bounding-box S)

Lemma.
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P

example of the charging process.

R1

R2

R3

R4

R5

R′
1

R′
2

R′
3

R′
3 is charged by R3 and

by R4 ? problem... ?

No! R4 is nested on its
right, so when we kill him,
we don’t need to pay for it

(not again)



How to protect rectangles that charged ?

answer: using line fences

= horizontal line segment in P with one
endpoint on the boundary that does not
intersect rectangles from OPT that lie inside P .

line fences in P

P

emerging from the left

emerging from the right

(but might contain edges of rectangles and might intersect
rectangles previously intersected)
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How to protect rectangles that charged ?

answer: using line fences

= horizontal line segment in P with one
endpoint on the boundary that does not
intersect rectangles from OPT that lie inside P .

line fences in P

P

emerging from the left

emerging from the right

(but might contain edges of rectangles and might intersect
rectangles previously intersected)

A rectangle R in P is protected if its bottom
or top edge is contained in a line fence.

def: protected

R′
1

R′
2

R′
1 and R′

2 are protected by
fences from the left

R is protected by a fence from
the right

R



Line-partitioning Lemma

Given a horizontally convex polygon with at
26 sides, there exists a cut C, s.t.

(1) C has at most 8 line segments,

(2) C divides P into at most 3
horizontally convex prolygons, with at
most 26 sides each,

(3) There is only one single vertical line
segment ` that can intersect rectangles
in P ,

(4) ` does not intersect any protected
rectangles.

horizontally convex horizontally convex
not

proof:



How to improve the approximation ratio to (2 + ε) ?
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How to improve the approximation ratio to (2 + ε) ?

we need to charge more rectangles
O(1/ε)

but we need to protect them, so we need longer fences!

τ -fences with τ bends

τ = O(1/ε)





A rectangle intersected charges either
(and not nested)

one nested rectangle

1/ε non-nested rectangles
(and not τ -protected)

charging process:



A rectangle intersected charges either
(and not nested)

one nested rectangle

1/ε non-nested rectangles
(and not τ -protected)

charging process:

And all that
charged
rectangles will
be protected
by
(1/ε)-fences.



A rectangle intersected charges either
(and not nested)

one nested rectangle

1/ε non-nested rectangles
(and not τ -protected)

charging process:

Analysis of the Approximation ratio.

0 11/2

A B C D E
OPT

A+B ≤ 1/2

C ≤ B
D ≤ ε

B + E ≥ 1/2− ε



similar as the 4-approximation



similar as the 4-approximation
works more generally for only x-monotone fences

x-monotone
and
y-monotone

only
x-monotone

neither



proof: you can read the paper :)



Open questions and future directions
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Open problem.
A (< 2)-approximation for the maximum
independent set problem on vertical and
horizontal line segments ?



Beat 2 + ε ?

Beat 2 + ε ?

Open problem.
A (< 2)-approximation for the maximum
independent set problem on vertical and
horizontal line segments ?

Pach-Tardos conjecture: a O(1)-approx with guillotine cuts ?



Generalisations and variants.

A O(1)-approx for L-shapes ?

A O(1)-approx for 3-dimentional rectangles ?

A O(1)-approx for hollow rectangles ?

more general than the weighted case

open

open

open

General polygons.

solved: a O(d)-appx for convex polygons with at most d directions.

best apx polynomial time : O(nε)

Arbitrary line segments ?

open

best: O(nε)



The weighted case

Our techniques don’t extend to the weighted case.

Best approximation: O(log log n) [Chalermsook, Walczak, SODA’21]

Showed: χ is O(ω logω), where χ is the chromatic number and ω the
clique number; using LP rounding.

conjecture: χ is O(ω).

The conjecture, if true, will give O(1)-approximation for MWIS

open: a O(1)-appx when weight = area ?

open open



The conjecture, if true, implies a integrality gap of at most 2 for the
clique-constrained LP.

max
∑
R wRxR :

∑
R∈Q xR ≤ 1 for every clique Q, 0 ≤ xR ≤ 1.

Minimum Hitting Set

prop : MHS ≥ MIS

Open: MHS ≤ 2 MIS ? (best: MHS = O( MIS log log MIS) )

Open: A O(1)-appx for MHS ? (Best: O(log log(OPT )))

Open: the integrality gap of this LP is O(1) ?

Open: An ε-net of size O(1/ε)-appx for MHS ? (Best: O( 1ε log log(
1
ε )))



The conjecture, if true, implies a integrality gap of at most 2 for the
clique-constrained LP.

max
∑
R wRxR :

∑
R∈Q xR ≤ 1 for every clique Q, 0 ≤ xR ≤ 1.

Minimum Hitting Set

prop : MHS ≥ MIS

Open: MHS ≤ 2 MIS ? (best: MHS = O( MIS log log MIS) )

Open: A O(1)-appx for MHS ? (Best: O(log log(OPT )))

Open: the integrality gap of this LP is O(1) ?

Open: An ε-net of size O(1/ε)-appx for MHS ? (Best: O( 1ε log log(
1
ε )))

Merci !


