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Definition: Connected Unit-disk k-coverage
In: A (connected) set of unit-area-disks in the

Euclidean plane and an integer k
Out: A connected subset S of size k

Goal: Maximize the area covered by S

k = 4
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generalisations

budgeted connected dominating set: 113(1− 1/e)-approximation
[Khuller, Purohit, Sarpatwar, 2014], very recently improved to 17(1− 1/e) ?
[Lamprou, Sigalas, Zissimopoulos, 2019]

connected k-coverage: Ω(1/√k)-approximation when objective
function is monotone submodular. [Kuo, Lin, Tsai, 2015]

Related results

k-coverage: optimal greedy 1− 1/e approximation for monotone
submodular function.
(f submodular: f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B), ∀A ⊆ B ⊆ X, ∀x ∈ X)

unit-disk k-coverage: PTAS. [Chaplik, De, Ravsky, Spoerhase, 2018]
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Our results

Algorithms:

(New) 1/2-approximation
(New) PTAS with resource augmentation

Lower bounds:

(New) NP-hardness
(New) APX-hardness with unit-area-triangles
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Approximation algorithm



A bad Algorithm: The 1-by-1 Greedy algorithm
• S = {an arbitrary disk}
• While |S| < k, add one disk in S that maximizes the marginal
area covered while maintaining S connected.

OPT= k and 1-by-1 Greedy ≤ 9 −→ gap = Ω(k)
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The 2-by-2 Greedy algorithm
• S = {an arbitrary disk}
• While |S| < k − 1, add two disks in S that maximize the
marginal area covered while maintaining S connected.
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The 2-by-2 Greedy algorithm
• S = {an arbitrary disk}
• While |S| < k − 1, add two disks in S that maximize the
marginal area covered while maintaining S connected.

Theorem (NEW): The 2-by-2 Greedy algorithm gives a
12 -approximation of connected unit-disk k-coverage
problem, and it is tight.
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Proof sketch

First phase
S is not a dominating set

area(S) ≥ |S|/2

Second phase
connectivity is guaranteed

use monotone submodularity.
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Theorem: The 2-by-2 Greedy algorithm gives a 12 -approximation
of connected unit-disk k-coverage problem, and it is tight.
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Going above 1/2 ?



a t-by-t Greedy algorithm, with t ≥ 3 ? No.
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Theorem (NEW): PTAS with resource augmentation
We can find in time nO(1/ε)

• a set S of k input disks, such that area(S) ≥ (1− ε)OPT(k)

• a set Sadd of at most εk additional disks such that S ∪ Sadd
is connected.

Algorithm: Shifted quadtree (Arora), m-guillotine subdivision (Mitchell)
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Proof with Arora’s framework

OPT −→ ∃ portal-respecting near-optimal solution ??Can wemake short detours ? Yes if we allow few additional disks
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PTAS under resource augmentation
We can find in time nO(1/ε) a k-set S ⊆ D and a set Sadd of at
most εk additional disks such that
1. S ∪ Sadd is connected,
2. area(S) ≥ (1− ε)OPT

corollary
∃ PTAS when

distance in intersection
graph

=
O(Euclidean distance)
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Our results:

• 1/2-approximation
• PTAS with resource augmentation
• NP-hardness
• APX-hardness with unit-area-triangles.

⇓

∃ PTAS for connected unit-disk k-coverage?
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