Approximating maximum integral multiflows on bounded genus graphs

ICALP 2021

Chien-Chung Huang, Mathieu Mari*, Claire Mathieu, Jens Vygen

*University of Warsaw

Problem 3

The Edge Disjoint Paths Problem

Input: A supply graph G, and a family H of demand pairs of vertices $(s_1, t_1), \ldots, (s_k, t_k)$.

Output: A family of edge-disjoint paths in G.

Goal: Maximize the number of pairs (s_i, t_i) connected by a path.

Problem 3

The Edge Disjoint Paths Problem

Input: A supply graph G, and a family H of demand pairs of vertices $(s_1, t_1), \ldots, (s_k, t_k)$.

Output: A family of edge-disjoint paths in G.

Goal: Maximize the number of pairs (s_i, t_i) connected by a path.

Problem 3

The Edge Disjoint Paths Problem

Input: A supply graph G, and a family H of demand pairs of vertices $(s_1, t_1), \ldots, (s_k, t_k)$.

Output: A family of edge-disjoint paths in G.

Goal: Maximize the number of pairs (s_i, t_i) connected by a path.

Previous work.

Hardness.

Even when G is planar sub-cubic

No $2^{o(\sqrt{\log n})}$ -approx (assuming NP \neq DTIME $(n^{O(\log n)})$)

[Chutzoy, Kim, Nimavat, 2017]

[Chekuri, Khanna, Shepherd, 2006]

Best algorithms.

 $O(\sqrt{n})$ -approx

Even when the supply graph is planar.

integrality gap = $\Theta(\sqrt{n})$

[Garg, Vazirani, Yannakakis, 1996]

* \boldsymbol{n} is the number of vertices.

Previous work.

Hardness.

Even when G is planar sub-cubic

No $2^{o(\sqrt{\log n})}$ -approx (assuming NP \neq DTIME $(n^{O(\log n)})$)

[Chutzoy, Kim, Nimavat, 2017]

Best algorithms.

$O(\sqrt{n})$ -approx

algorithms. [Chekuri, Khanna, Shepherd, 2006] Even when the supply graph is planar. integrality gap = $\Theta(\sqrt{n})$

[Garg, Vazirani, Yannakakis, 1996]

* \boldsymbol{n} is the number of vertices.

G + H

• When the **supply graph** + **demand** edges is planar.

Theorem. [Seymour, 1981] When G + H is planar and Eulerian, the cut condition is sufficient.

Hardness. [Middenford, Pfeiffer, 1993] The Edge-Disjoint Paths problems is NP-hard even when G + H is planar.

Previous work.

Hardness.

Even when G is planar sub-cubic

No $2^{o(\sqrt{\log n})}$ -approx (assuming NP \neq DTIME $(n^{O(\log n)})$)

[Chutzoy, Kim, Nimavat, 2017]

[Chekuri, Khanna, Shepherd, 2006]

Best algorithms. $O(\sqrt{n})$ -approx

Even when the supply graph is planar.

integrality gap = $\Theta(\sqrt{n})$

[Garg, Vazirani, Yannakakis, 1996]

* \boldsymbol{n} is the number of vertices.

G + H

• When the **supply graph** + **demand** edges is planar.

Theorem. [Seymour, 1981] When G + H is planar and Eulerian, the cut condition is sufficient.

Hardness. [Middenford, Pfeiffer, 1993] The Edge-Disjoint Paths problems is NP-hard even when G + H is planar.

Theorem. When G + H is planar, there is a O(1)-approximation algorithm for the Maximum integral Multiflow problem .

[Huang, M., Mathieu, Schewior, Vygen 2020]

Surfaces.

Definition: a *surface* is a space that is locally homeomorphic to a disk.

connected sum of two surfaces

Theorem: Surfaces can be classified (up to homeomorphism) into two groups:

- \bullet orientable: sphere, torus and connected sum of $g\geq 2$ tori
- non-orientable: projective plane and and connected sum of $g \ge 2$ projective planes.

connected sum of two surfaces

def: the *genus* of an orientable surface

Theorem: Surfaces can be classified (up to homeomorphism) into two groups:

- orientable: sphere, torus and connected sum of $g \ge 2$ tori
- non-orientable: projective plane and and connected sum of $g \ge 2$ projective planes.

connected sum of two surfaces

def: the *genus* of an orientable surface

Theorem: Surfaces can be classified (up to homeomorphism) into two groups:

- orientable: sphere, torus and connected sum of $g \ge 2$ tori
- non-orientable: projective plane and and connected sum of $g \ge 2$ projective planes.

def: A graph has genus g if it can be embedded on an orientable surface of genus g.

 \longrightarrow planar graphs = genus-0 graphs

Our contribution.

Theorem.

There is a $O(g^2 \log g)$ -approximation algorithm for Edge-disjoint Paths when G + H is a genus-g graph.

• the ratio between the *optimal fractional solution* and the solution is at most $O(g^2 \log g)$.

the algorithm generalizes to arbitrary capacities (maximum integral multiflows)

Our contribution.

Theorem.

There is a $O(g^2 \log g)$ -approximation algorithm for Edge-disjoint Paths when G + H is a genus-g graph.

• the ratio between the *optimal fractional solution* and the solution is at most $O(g^2 \log g)$.

the algorithm generalizes to arbitrary capacities (maximum integral multiflows)

Corollary. (Approximate Max-Cut-Min-Flow theorem)

When G + H has bounded genus, the cardinality of a minimum **multicut** is at most a constant times the maximum value of an integer **multiflow**.

- this ratio can be as large as $\Theta(|H|)$ even when G is planar.

Preliminaries

Let G = (V, E) and H = (V, D) such that G + H has genus at most g.

→ w.l.o.g we assume that G+H is a connected graph.

Let C denote the set of D-cycles in G + H that contain exactly one edge in D.

def: Given a feasible solution f to (1), we define its support as $C(f) := \{C \in C, f_C > 0\}$.

The algorithm.

Step 1. solve the linear program to obain an optimal fractional solution.

Step 2. Uncross the solution to obain another fractional solution \overline{f} such that any two cycles in the support of \overline{f} cross at most once.

Step 3. If at most half of the value is contributed by separating cycles, construct an integral solution of size at least $\overline{f}/O(\sqrt{g})$.

(similar to the planar case)

Step 3'. If at most half of the value is contributed by non-separating cycles, construct an integral solution of size at least $\overline{f}/O(g^2 \log g)$.

separating cycles

non-separating cycles

Step 1: compute a maximum fractional solution f^*

\approx

Goal: another fractional solution \overline{f} such that any two D-cycles in the support of \overline{f} cross at most once.

Goal: another fractional solution \overline{f} such that any two D-cycles in the support of \overline{f} cross at most once.

Goal: another fractional solution \overline{f} such that any two D-cycles in the support of \overline{f} cross at most once.

difficulties:

• *D*-cycles have weights

Goal: another fractional solution \overline{f} such that any two D-cycles in the support of \overline{f} cross at most once.

difficulties:

- *D*-cycles have weights
- uncrossing must must preserve one demand edge per cycles

Goal: another fractional solution \overline{f} such that any two D-cycles in the support of \overline{f} cross at most once.

difficulties:

- *D*-cycles have weights
- uncrossing must must preserve one demand edge per cycles
- the overall numer of crossings might not decrease

- We remove all non-separating cycles from the support of f. claim: On a surface, two separating cycles cross each other an even number of times.

 \rightarrow We remove all non-separating cycles from the support of \overline{f} .

claim: On a surface, two separating cycles cross each other an even number of times.

- cycles in the support of \overline{f} do not cross
- → they form a "laminar" structure

 \rightarrow We remove all non-separating cycles from the support of \overline{f} .

claim: On a surface, two separating cycles cross each other an even number of times.

- cycles in the support of \overline{f} do not cross
- → they form a "laminar" structure

theorem: Given a "laminar" multifow \overline{f} , we can compute in polynomial time an *half-integral* multiflow f^{half} with $\mathcal{C}(f^{half}) \subseteq \mathcal{C}(\overline{f})$ and $|f^{half}| \geq |\overline{f}|/2$. [Garg, Kumar, Sebo, 2020]

alternative combinatorial proof: [Huang, M. Mathieu, Schewior, Vygen, 2020]

 \rightarrow We remove all non-separating cycles from the support of \overline{f} .

claim: On a surface, two separating cycles cross each other an even number of times.

- cycles in the support of \overline{f} do not cross
- → they form a "laminar" structure

theorem: Given a "laminar" multifow \overline{f} , we can compute in polynomial time an *half-integral* multiflow f^{half} with $\mathcal{C}(f^{half}) \subseteq \mathcal{C}(\overline{f})$ and $|f^{half}| \geq |\overline{f}|/2$. [Garg, Kumar, Sebo, 2020]

alternative combinatorial proof: [Huang, M. Mathieu, Schewior, Vygen, 2020]

 \rightarrow We remove all non-separating cycles from the support of \overline{f} .

claim: On a surface, two separating cycles cross each other an even number of times.

- cycles in the support of \overline{f} do not cross
- → they form a "laminar" structure

theorem: Given a "laminar" multifow \overline{f} , we can compute in polynomial time an *half-integral* multiflow f^{half} with $\mathcal{C}(f^{half}) \subseteq \mathcal{C}(\overline{f})$ and $|f^{half}| \ge |\overline{f}|/2$. [Garg, Kumar, Sebo, 2020]

alternative combinatorial proof: [Huang, M. Mathieu, Schewior, Vygen, 2020]

 \rightarrow cycles in $C(f^{half})$ may not be edge-disjoint

• Construct the intersection graph I with vertex set $C(f^{half})$ such that C and C' are adjacent if there contain common edges.

 \rightarrow cycles in $\mathcal{C}(f^{half})$ may not be edge-disjoint

• Construct the intersection graph I with vertex set $C(f^{half})$ such that C and C' are adjacent if there contain common edges.

Lemma: The intersection graph I has genus at most g.

 \rightarrow cycles in $C(f^{half})$ may not be edge-disjoint

Construct the intersection graph I with vertex set C(f^{half}) such that C and C' are adjacent if there contain common edges.

Lemma: The intersection graph I has genus at most g.

```
Theorem [Heawood, 1890]: A genus-g graph has a vertex of degree at most \lfloor \frac{7+\sqrt{1+48g}}{2} \rfloor.
```

• Using the classic greedy coloring algorithm we can compute an independent set of size at least $|C(f^{half})|/O(\sqrt{g})$

 \rightarrow cycles in $\mathcal{C}(f^{half})$ may not be edge-disjoint

Construct the intersection graph I with vertex set C(f^{half}) such that C and C' are adjacent if there contain common edges.

Lemma: The intersection graph I has genus at most g.

Theorem [Heawood, 1890]: A genus-g graph has a vertex of degree at most $\lfloor \frac{7+\sqrt{1+48g}}{2} \rfloor$.

• Using the classic greedy coloring algorithm we can compute an independent set of size at least $|\mathcal{C}(f^{half})|/O(\sqrt{g})$

Conclusion: We obtained a integral solution of at least $|f^*|/O(\sqrt{g})$ edge-disjoint paths, where $|f^*|$ is the value of the optimal fraction solution.

Step 3': most of the flow \overline{f} is on non-separating cycles.

ex: C and C' are (freely) homotopic.

ex: C and C' are (freely) homotopic.

Theorem: [Greene, 2019] On an orientable surface of genus g, there are at most $O(g^2 \log g)$ topogogical cycles, such that any two of them are in different free homotopy classes and cross each other at most once.

ex: C and C' are (freely) homotopic.

Theorem: [Greene, 2019] On an orientable surface of genus g, there are at most $O(g^2 \log g)$ topogogical cycles, such that any two of them are in different free homotopy classes and cross each other at most once.

• Pick the homotopy class *H* with maximum flow.

ex: C and C' are (freely) homotopic.

Theorem: [Greene, 2019] On an orientable surface of genus g, there are at most $O(g^2 \log g)$ topogogical cycles, such that any two of them are in different free homotopy classes and cross each other at most once.

- Pick the homotopy class *H* with maximum flow.
- homotopic cycles in H do not cross and are "nicely" ordered
 Greedy

ex: C and C' are (freely) homotopic.

Theorem: [Greene, 2019] On an orientable surface of genus g, there are at most $O(g^2 \log g)$ topogogical cycles, such that any two of them are in different free homotopy classes and cross each other at most once.

- Pick the homotopy class *H* with maximum flow.
- homotopic cycles in H do not cross and are "nicely" ordered
 Greedy

conclusion: we obtained an integral solution with size at least $f^*/O(g^2\log g)$

ex: C and C' are (freely) homotopic.

Theorem: [Greene, 2019] On an orientable surface of genus g, there are at most $O(g^2 \log g)$ topogogical cycles, such that any two of them are in different free homotopy classes and cross each other at most once.

- Pick the homotopy class *H* with maximum flow.
- homotopic cycles in H do not cross and are "nicely" ordered
 Greedy

Theorem.

There is a $O(g^2 \log g)$ -approximation algorithm for Edge-disjoint Paths when G + H is a genus-g graph.

1) The integrality gap of the Edge-disjoint path LP is n

1) The integrality gap of the Edge-disjoint path LP is n

- 1) The integrality gap of the Edge-disjoint path LP is n
- 2) G+H has genus at least n [Auslander, Brown, Youngs, 1963]

- 1) The integrality gap of the Edge-disjoint path LP is n
- 2) G+H has genus at least n [Auslander, Brown, Youngs, 1963]
- 3) G+H can be embedded in the projective plane

- 1) The integrality gap of the Edge-disjoint path LP is n
- 2) G+H has genus at least n [Auslander, Brown, Youngs, 1963]
- 3) G+H can be embedded in the projective plane

Open question: A good approximation ratio when G + H can be embedded in the real projective plane ? Can we improve the approximation ratio when G+H has genus g ?

Open Question. Let Γ be a set of simple curves on an orientable surface of genus g, such that any pair of curves in Γ are non freely homotopic and cross at most once. Let $G(\Gamma)$ be the graph with vertex set Γ and where two curves are adjacent if they cross. What is the best upper bound on the chromatic number c of $G(\Gamma)$?

an c-approximation for Edge-disjoint Path.

best bounds: $2g+1 \leq c \leq O(g^2)$ [Przytycki, 2015]

Open Question. Let Γ be a set of simple curves on an orientable surface of genus g, such that any pair of curves in Γ are non freely homotopic and cross at most once. Let $G(\Gamma)$ be the graph with vertex set Γ and where two curves are adjacent if they cross. What is the best upper bound on the chromatic number c of $G(\Gamma)$?

an c-approximation for Edge-disjoint Path.

best bounds: $2g+1 \leq c \leq O(g^2)$ [Przytycki, 2015]