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Previous work.

Hardness. No 2o(
√

logn)-approx

Even when G is
planar
sub-cubic

integrality gap = Θ(
√
n)

* n is the number of vertices.
[Chutzoy, Kim, Nimavat, 2017]

O(
√
n)-approx

[Chekuri, Khanna, Shepherd, 2006]

[Garg, Vazirani, Yannakakis, 1996]
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Theorem. When G + H is planar, there is a O(1)-approximation
algorithm for the Maximum integral Multiflow problem .

[Garg, Kumar, Sebo, 2020][Huang, M., Mathieu, Schewior, Vygen 2020]



Surfaces.

Definition: a surface is a space that is locally homeomorphic to a disk.

the sphere

the torus
the Klein bottle
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connected sum of two surfaces

Theorem: Surfaces can be classified (up to homeomorphism) into two groups:
• orientable: sphere, torus and connected sum of g ≥ 2 tori
• non-orientable: projective plane and and connected sum of g ≥ 2 projective

planes.

def: the genus of an
orientable surface

def: A graph has genus g if it can be embedded on an orientable surface of
genus g.

−→ planar graphs = genus-0 graphs



Theorem.
There is a O(g2 log g)-approximation algorithm for Edge-disjoint Paths when
G + H is a genus-g graph.

Our contribution.
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Theorem.
There is a O(g2 log g)-approximation algorithm for Edge-disjoint Paths when
G + H is a genus-g graph.

Our contribution.

the algorithm generalizes to arbitrary capacities (maximum integral multiflows)

Corollary.

When G + H has bounded genus, the cardinality of a minimum multicut is at
most a constant times the maximum value of an integer multiflow.

(Approximate Max-Cut-Min-Flow theorem)

- this ratio can be as large as Θ(|H|) even when G is planar.

the ratio between the optimal fractional solution and the solution is at most O(g2 log g).



Preliminaries

w.l.o.g we assume that G+H is a connected graph.

Let C denote the set of D-cycles in G + H that contain exactly one edge in D.

Let G = (V,E) and H = (V,D) such that G + H has genus at most g.

max
∑

C∈C fC∑
C∈C,e∈C fC ≤ 1 for all e ∈ D ∪ E

fC ∈ {0, 1} for all C ∈ C

EDP ILP

max
∑

C∈C fC∑
C∈C,e∈C fC ≤ 1 for all e ∈ D ∪ E

fC ≥ 0 for all C ∈ C

LP-relaxation

(1)

def: Given a feasible solution f to (1), we define its support as C(f) := {C ∈ C, fC > 0}.



The algorithm.

Step 1. solve the linear program to obain an optimal fractional solution.

Step 2. Uncross the solution to obain another fractional solution f̄ such that
any two cycles in the support of f̄ cross at most once.

Step 3. If at most half of the value
is contributed by separating cycles,
construct an integral solution of size
at least f̄/O(

√
g).

Step 3’. If at most half of the value
is contributed by non-separating
cycles, construct an integral solution
of size at least f̄/O(g2 log g).

(similar to the planar case)

separating cycles non-separating cycles



Step 1: compute a maximum fractional solution f∗

max
∑

C∈C fC∑
C∈C,e∈C fC ≤ 1 for all e ∈ D ∪ E

fC ≥ 0 for all C ∈ C

LP-relaxation

max
∑

d∈D xd
d∑

d∈D
∑

e=uv∈E∪D xd
e ≤ 1 for all u ∈ V

xd
e ≥ 0 for all (e, d) ∈ (E ∪D,D)

≈

(1)



Step 2: making the flow f∗ minimally crossing.

∈ D

Goal: another fractional solution f̄ such that any two D-cycles in the support of f̄ cross at
most once.

4 crossings ∈ D

C C ′
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Step 2: making the flow f∗ minimally crossing.

∈ D

f∗C = 0.3
f∗C′ = 0.5

Goal: another fractional solution f̄ such that any two D-cycles in the support of f̄ cross at
most once.

4 crossings ∈ D

difficulties:

D-cycles have weights

uncrossing must must preserve one demand edge per cycles

the overall numer of crossings might not decrease

C C ′
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Step 3: most of the flow is on separating cycles.
Step 3(b): obtaining an integral solution f

cycles in C(fhalf ) may not be edge-disjoint

Construct the intersection graph I with vertex set C(fhalf ) such that C and C ′

are adjacent if there contain common edges.

Lemma: The intersection graph I has genus at most g.

Theorem [Heawood, 1890]: A genus-g graph has a vertex of degree at most

b 7+
√
1+48g
2 c.

Using the classic greedy coloring algorithm we can compute an
independent set of size at least |C(fhalf )|/O(

√
g)

Conclusion: We obtained a integral solution of at least |f∗|/O(
√
g)

edge-disjoint paths, where |f∗| is the value of the optimal fraction solution.
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G + H is a genus-g graph.
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1) The integrality gap of the Edge-disjoint path LP is n

2) G+H has genus at least n [Auslander, Brown, Youngs, 1963]

3) G+H can be embedded in the projective plane

Open question: A
good approximation
ratio when G + H can
be embedded in the
real projective plane ?
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