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Follow the way of best
choices in order to reach
a good solution.

simple and natural
Low processing time
Efficient



Context : Maximum Independent Set (MIS)
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Context : Maximum Independent Set (MIS)

Greedy(G)

While G # 0
e Pick v € G with
e Remove v and its neighbours
from G.




Guarantees

(Hastad) : MIS is hard to approximate within n'—¢.

Theorem (Halldérsson and Radhakrishnan, 1994)
A+2

Greedy is a (tight)
with maximum degree at most A.

-approximation algorithm for graphs

Figure 1: Tight example with A = 4
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— Can we find any better advised greedy algorithm ?
(using tie-breaking advices)



Our result for A < 3

Theorem [Halldérsson and Radhakrishnan, 1994]
The (basic) greedy algorithm that has an approximation ratio

Theorem [Halldérsson and Yoshihara, 1995]
There exists an advised greedy algorithm, called MoreEdges
that has an approximation ratio

Our main result

There exists an advised greedy algorithm, called Greedy* that
the best possible approximation ratio and runsin
time O(n?).




Too much effort for high degree graphs




Too much effort for high degree graphs

Theorem

Any Greedy algorithm has an approximation ratio at least
Bl o/a)

ATH - 0(1/A) =~ AT” for high degree graphs



(Exercise: Greedy is optimal for graphs with maximum degree at most 2.)

5/4 is tight. [Halldorsson and Yoshihara, 1995

H,

OPT(H;) 5
Greedy(H;) 4



Part I: How to find good advices and
analyse it ?
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— We pick a degree 3 vertex at most once



Good/bad reductions

Let OPT denote a fixed maximum independent set.

= B <"

Bad: OPT =2 Good: OPT =1 “Very” good: OPT =0

(Greedy = 1) (Greedy = 1) (Greedy = 1)

For an -approximation,

+ 3 good reductions pay for 1 bad reduction.

* 1good + pay for 2 bad.



A first potential v

= B <"

Bad: OPT =2 Good: OPT =1 “Very” good: OPT = ()
(Greedy = 1) (Greedy = 1) (Greedy = 1)
V(bad) = -3 V(good) =1 V(very good) = 5
Definition: W(reduction) = 5 — 4 - |OPT N reduction|
claim: -approximation <= > ¥; > 0.
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Our potential ¢

Bad reduction Good reduction

d=1+1-2=0

a vertex in OPT makes a loan from its neighbors (¢ OPT).
avertex not in OPT pays its debt < A —d(v).

Definition: ®(reduction) := W(reduction) + loan — debt
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One example

— The potential ¢ of each reduction is 0.
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2P (reduction) := a — b - |OPT N reduction| + loan — debt

Proposition

If ®#> > 0 then Greedy is an a/b-approximation algorithm.

Claim: $°3 >0

— can be generalized to any maximum degree A
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First advice: MoreEdges is a 3/2-approximation

Claim: We have % > 0 for all reduction except

(1,(134<o< >—6—4-2+2—1——1

advice (More Edges): Always prefer a degree two vertex with
two (or one) neighbors of degree three.

Analysis: If we execute this reduction then the graph is a cycle.

A

14



Final goal: an 5/4-approximation

e in the ind. set; o: not in the ind. set; o: was here before;

(@ (t) (© m :
d=-2 d=—-1
L) JI(b) (© (d) /<>\ ) )\z) /Kh)
d=0 d=1
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An order over reductions is not enough

®(Hp) = —1, if the top vertex is picked
(D(H,'Jr-]) =0+4. CD(H,) —r —O0

advice (DeepestVertex) : Build a Breadth-first search tree, and
pick a deepest degree two vertex

(if there remain ties after MoreEdges advice)
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Ultimate Greedy*

Greedy*(G)

While G # () :
e Pick v € G with
Break (potential) ties with MoreEdges
Break ties with DeepestVertex
e Remove v and its neighbours
from G.

Theorem: %—approximation
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Proof 1/1

(informal) Definition: A graph is problematic if there exists a
“special” degree 2 vertex in OPT.

(informal) Lemma

For any sequence of reductions Ry, ..., Rk in a connected graph:
1. > P(R) > —1
2. if 3> ®(R;) = —1, then the graph is problematic.
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Part Il: Finding good advices is hard



Definition: Given a graph, a greedy set is an (maximal)
independent set that can be output by the basic greedy
algorithm.

Name: MaxGreedy
input: A graph G
output: a greedy set with maximum size

Hardness results (here P £ NP)

planar cubic graphs: NP-hard

Graphs with degree < A : No O(A'=¢)-approximation
general graphs : No O(n'—¢)-approximation

bipartite graphs : No 0(n"/2—¢)-approximation
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