Ultimate greedy approximation of independent sets in subcubic graphs

Piotr Krysta¹, Mathieu Mari², Nan Zhi³

¹University of Liverpool ²École Normale Supérieure, Université PSL, Paris ³University of Liverpool Follow the way of best **local** choices in order to reach a good **global** solution.

- simple and natural
- Low processing time
- Efficient

While $G \neq \emptyset$:

- <u>Pick</u> $v \in G$ with **minimum degree**.
- Remove *v* and its neighbours from *G*.

Guarantees

(Hastad) : MIS is hard to approximate within $n^{1-\epsilon}$.

Theorem (Halldórsson and Radhakrishnan, 1994)

Greedy is a (tight) $\frac{\Delta + 2}{3}$ -approximation algorithm for graphs with maximum degree at most Δ .

Figure 1: Tight example with $\Delta = 4$

Guarantees

(Hastad) : MIS is hard to approximate within $n^{1-\epsilon}$.

Theorem (Halldórsson and Radhakrishnan, 1994)

Greedy is a (tight) $\frac{\Delta + 2}{3}$ -approximation algorithm for graphs with maximum degree at most Δ .

Figure 1: Tight example with $\Delta = 4$

 \longrightarrow Can we find any better **advised greedy algorithm** ? (using tie-breaking advices)

Our result for $\Delta \leq 3$

Theorem [Halldórsson and Radhakrishnan, 1994] The (basic) greedy algorithm that has an approximation ratio 5/3 = 1.6666...

Theorem [Halldórsson and Yoshihara, 1995]

There exists an **advised** greedy algorithm, called **MoreEdges** that has an approximation ratio 3/2 = 1.5.

Our main result

There exists an **advised** greedy algorithm, called **Greedy*** that the **best possible** approximation ratio 5/4 = 1.25 and runs in time $O(n^2)$.

Too much effort for high degree graphs

Too much effort for high degree graphs

Theorem

Any Greedy algorithm has an approximation ratio at least $\frac{\Delta+1}{3} - \textit{O}(1/\Delta)$

 $\frac{\Delta+1}{3} - O(1/\Delta) \approx \frac{\Delta+2}{3}$ for high degree graphs

(Exercise: Greedy is optimal for graphs with maximum degree at most 2.) 5/4 is tight. [Halldórsson and Yoshihara, 1995]

Part I: How to find good advices and analyse it ?

Reductions

8

Reductions

 \longrightarrow We pick a degree **3** vertex at most once

Good/bad reductions

Let **OPT** denote a fixed maximum independent set.

For an 5/4-approximation,

- 3 good reductions pay for 1 bad reduction.
- 1 good + 1 very good pay for 2 bad.

A first potential Ψ

Definition: Ψ (reduction) = 5 - 4 · |**OPT** \cap reduction|

claim: 5/4-approximation $\iff \sum \Psi_i \ge 0$.

Our potential Φ

a vertex in *OPT* makes a loan from its neighbors (\notin *OPT*). **a vertex not in** *OPT* pays its debt $\leq \Delta - d(v)$.

Definition: Φ (reduction) := Ψ (reduction) + *loan* - *debt*

 \longrightarrow The potential Φ of each reduction is **0**.

 $\Phi^{a,b}(\text{reduction}) := a - b \cdot |OPT \cap \text{reduction}| + loan - debt$

Proposition

If $\Phi^{a,b} \ge 0$ then **Greedy** is an a/b-approximation algorithm.

Claim: $\Phi^{5,3} \ge 0$

 \longrightarrow can be generalized to any maximum degree Δ

First advice: MoreEdges is a 3/2-approximation

Claim: We have $\Phi^{6,4} \ge 0$ for all reduction except

$$\Phi_I^{6,4}$$
 (.....) = 6 - 4 · 2 + 2 - 1 = -1

advice (More Edges): Always prefer a degree two vertex with two (or one) neighbors of degree three.

Analysis: If we execute this reduction then the graph is a cycle.

Final goal: an 5/4-approximation

•: in the ind. set; o: not in the ind. set; •: was here before;

An order over reductions is not enough

 $\Phi(H_0) = -1$, if the top vertex is picked $\Phi(H_{i+1}) = 0 + 4 \cdot \Phi(H_i) \longrightarrow -\infty$

advice (DeepestVertex) : Build a Breadth-first search tree, and pick a deepest degree two vertex

(if there remain ties after MoreEdges advice)

Theorem: $\frac{5}{4}$ -approximation

Proof 1/1

(informal) Definition: A graph is <u>problematic</u> if there exists a "special" degree **2** vertex in OPT.

(informal) Lemma

For any sequence of reductions R_1, \ldots, R_k in a connected graph:

- 1. $\sum \Phi(R_i) \ge -1$
- 2. if $\sum \Phi(R_i) = -1$, then the graph is problematic.

Part II: Finding good advices is hard

Definition: Given a graph, a <u>greedy set</u> is an (maximal) independent set that can be output by the basic greedy algorithm.

Name: MaxGreedy

input: A graph G

output: a greedy set with maximum size

Hardness results (here $P \neq NP$) planar cubic graphs: NP-hard Graphs with degree $\leq \Delta$: No $O(\Delta^{1-\epsilon})$ -approximation general graphs : No $O(n^{1-\epsilon})$ -approximation

bipartite graphs : No $O(n^{1/2-\epsilon})$ -approximation

Definition: Given a graph, a <u>greedy set</u> is an (maximal) independent set that can be output by the basic greedy algorithm.

Name: MaxGreedy

input: A graph G

output: a greedy set with maximum size

Hardness results (here $P \neq NP$) planar cubic graphs: NP-hard Graphs with degree $\leq \Delta$: No $O(\Delta^{1-\epsilon})$ -approximation general graphs: No $O(n^{1-\epsilon})$ -approximation bipartite graphs: No $O(n^{1/2-\epsilon})$ -approximation

Thanks! And happy new year!