Fixed-parameter algorithms for Unsplittable
Flow Cover.
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What is known for UFP-cover

« Strongly NP-hard

Reduction to Caching in the fault model
+ (polynomial time) 4-approximation algorithm
[Bar-Noy, Bar-Yehuda, Freund, Naor, Schieber, 2000]

+ QPTAS: (1 + €)-approximation in time 20¢(Pely(icem)
[HGIn, Mestre, Wiese, 2014]



Fixed-Parameter Tractable algorithms

“a certain parameter is small”

Definition
An algorithmis an for a
(minimisation) problem (and a specific parameter) if
+ its running time is f(k)n°( for all inputs of size n
« it returns a solution of size < o - OPT or attests that the
parameter is > k.

In this talk: |OPT| < k



Our results for UFP-cover

1. W[1]-hard
2.

3' *
4. x
5. FPT-(1 + ¢)-approximation

2. — 3. — 4.

* also works with task costs
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Few different task sizes

Theorem

There is an algorithm that solves UFP-cover in time k9k’k)n0(1)
when the number of task sizes is at most k’.

solution = (
For each e from left to right:
For each s:

1. if e is uncovered, guess the number m of tasks of size s in
OPT that cover e, not yet guessed.

2. solution «+ m such tasks with



Few different task sizes

Theorem

There is an algorithm that solves UFP-cover in time k9k’k)n0(1)
when the number of task sizes is at most k’.

solution = @
For each e from left to right: (k + 1)¥'K guesses
For each s: (k + 1)K guesses

1. if e is uncovered, guess the number m of tasks of size s in
OPT that cover e, not yet guessed.

2. solution «+ m such tasks with




Few sizes — Arbitrary sizes

Theorem ( )

There is an algorithm with running time f(k, &) - n°0) that either:

demand(e)
T+6

- or, attests that there is no solution of size k for the original
demands

+ outputs a solution of size k, that satisfies all the

1. round down tasks sizes to (1+ ).
2. guess which groups are used by OPT

3. apply the previous algorithm

here, we assume: max demand < poly(n) but the theorem is true in general.



Few sizes — Arbitrary sizes

Theorem ( )

There is an algorithm with running time f(k, &) - n°0) that either:

+ outputs a solution of size k, that satisfies all the %

- or, attests that there is no solution of size k for the original
demands

1. round down tasks sizes to (1+ ).
at most O(logq 5 n) rounded sizes

2. guess which groups are used by OPT
(O(Iog;M n)) < (%)O(k)(n + kO(k))

3. apply the previous algorithm

here, we assume: max demand < poly(n) but the theorem is true in general.



Resource augmentation — FPT-2-approximation

R demands




Resource augmentation — FPT-2-approximation

demands

demands
................ T+1

step 1: compute ALG « resource augmentation with 6 = 1



Resource augmentation — FPT-2-approximation

R demands

ALG

step 2: guess ALGNOPT



Resource augmentation — FPT-2-approximation

............... demands

reduced

ALG demands

N .t G

step 2: guess ALGNOPT
-if ALGNOPT # (): recurse with the reduced demands
and k < k— |[ALGNOPT|




Resource augmentation — FPT-2-approximation

________ %(i('muml.@

demands

demands

i T+1

step 2: guess ALGNOPT
-if ALGNOPT = (: there exists a splution of size < 2k
that covers > %demands



Resource augmentation — FPT-2-approximation

________ gdf/m ands

Saccasacnaancana demands
__ §demands
- e

SOL

step 2: guess ALGNOPT
-if ALGNOPT = 0: SOL < resource augmentation algorithm with
new demands = %demands, k' =2k and § = %



FPT-2-approximation

Theorem
UFP-cover has a FPT-2-approximation

1. ALG <+ resource augmentation algorithm with § =1
2. guess ALG N OPT, and recurse if ALG N OPT # ()

3. run the resource augmentation algorithm with:
= 3. demandsand§ = }

10



Parameterized Approximation Scheme

Theorem:
There is an algorithm for UFP-cover with running time
kO n(1/9°V) that either

+ returns a solution of size < (1+ €)k

« or, attests that there is no solution of size < k

1



Some flavors of the PAS
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Some flavors of the PAS

demands

slack tasks

Step 1: compute a set of O(ek) slack tasks

12



Some flavors of the PAS

demands

slack tasks

Step 1: compute a set of O(ek) slack tasks
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Step 2: partition the path into O(k) sub-intervals
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and sparse sub-intervals

Step 3: guess the
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Step 3: guess the

arse: only few tasks of OPT start or end in [

I is sp

and

otherwise

12



<
a
()]
=
=7
[T
o
[
1Y
o
>
1}
=
()]
£
]
2]

demands

in the sparse case: DP that uses slack to “forget” some previously guessed tasks
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and sparse intervals !

Real life: both
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Summary and future questions

: A FPT-(1 + €)-approximation for UFP-cover
with unit cost.

— a FPT-(1 4 €)-approximation with task costs ?
Our lower bound: W[1]-hardness

— UFP-cover is FPT if the input data < poly(n) ?

13
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