

Fixed-parameter algorithms for Unsplittable Flow Cover.

Andrés Cristi, Mathieu Mari, Andreas Wiese

Unsplittable Flow cover on a Path

2

Unsplittable Flow cover on a Path

2

• Strongly NP-hard

Reduction to Caching in the fault model

- (polynomial time) 4-approximation algorithm [Bar-Noy, Bar-Yehuda, Freund, Naor, Schieber, 2000]
- QPTAS: (1 + ε)-approximation in time 2^{0_ε (poly(log n))}
 [Höln, Mestre, Wiese, 2014]

"a certain parameter is small"

Definition

An algorithm is an **FPT-** α **-approximation algorithm** for a (minimisation) problem (and a specific parameter) if

- its running time is $f(k)n^{O(1)}$ for all inputs of size n
- it returns a solution of size $\leq \alpha \cdot OPT$ or attests that the parameter is > k.

In this talk: $|OPT| \le k$

Our results for UFP-cover

- 1. W[1]-hard
- exact FPT-algorithm when parameterized by k + #task sizes *
- 3. exact FPT-algorithm using resource augmentation *
- 4. FPT-2-approximation *
- 5. FPT- $(1 + \epsilon)$ -approximation

 $2. \longrightarrow 3. \longrightarrow 4.$

* also works with task costs (loosing a factor $(1 + \epsilon)$)

Theorem

There is an algorithm that solves UFP-cover in time $k^{O(k'\cdot k)}n^{O(1)}$ when the number of task sizes is at most k'.

solution = \emptyset

For each edge e from left to right:

For each size s:

- if e is uncovered, guess the number m of tasks of size s in OPT that cover e, not yet guessed.
- 2. solution $\leftarrow m$ such tasks with **rightmost endpoints**

Theorem

There is an algorithm that solves UFP-cover in time $k^{O(k'\cdot k)}n^{O(1)}$ when the number of task sizes is at most k'.

solution = \emptyset

- For each **edge** *e* from left to right: $(k + 1)^{k'k}$ guesses For each **size** *s*: $(k + 1)^{k'}$ guesses
 - if e is uncovered, guess the number m of tasks of size s in OPT that cover e, not yet guessed.
 - 2. solution $\leftarrow m$ such tasks with **rightmost endpoints**

Theorem (Resource augmentation)

There is an algorithm with running time $f(k, \delta) \cdot n^{O(1)}$ that either:

- outputs a solution of size k, that satisfies all the $\frac{\text{demand}(e)}{1+\delta}$
- or, attests that there is no solution of size k for the original demands
- 1. round down tasks sizes to $(1 + \delta)^{\ell}$.
- 2. guess which groups are used by OPT

3. apply the previous algorithm

here, we assume: max demand $\leq poly(n)$ but the theorem is true in general.

Theorem (Resource augmentation)

There is an algorithm with running time $f(k, \delta) \cdot n^{O(1)}$ that either:

- outputs a solution of size k, that satisfies all the $\frac{\text{demand}(e)}{1+\delta}$
- or, attests that there is no solution of size k for the original demands
- 1. round down tasks sizes to $(1 + \delta)^{\ell}$. at most $O(\log_{1+\delta} n)$ rounded sizes
- 2. guess which groups are used by OPT $\binom{O(\log_{1+\delta} n)}{k} \leq (\frac{1}{\delta})^{O(k)} (n + k^{O(k)})$
- 3. apply the previous algorithm

here, we assume: max demand $\leq poly(n)$ but the theorem is true in general.

9

9

Theorem

UFP-cover has a FPT-2-approximation

- 1. ALG \leftarrow resource augmentation algorithm with $\delta = 1$
- 2. guess $ALG \cap OPT$, and recurse if $ALG \cap OPT \neq \emptyset$
- 3. run the resource augmentation algorithm with: **new** demands = $\frac{3}{2}$ demands and $\delta = \frac{1}{2}$

Theorem: PAS

There is an algorithm for UFP-cover with running time $k^{O(k)}n^{(1/\epsilon)^{O(1/\epsilon)}}$ that either

- returns a solution of size $\leq (1 + \epsilon)k$
- or, attests that there is no solution of size $\leq k$

Step 2: partition the path into O(k) sub-intervals

Step 3: guess the dense and sparse sub-intervals

Step 3: guess the dense and sparse sub-intervals

I is sparse: only few tasks of OPT start or end in I and dense otherwise

in the sparse case: \mathbf{DP} that uses slack to "forget" some previously guessed tasks

in the dense case: resource augmentation algorithm, with $\delta = \frac{1}{4k}$

Real life: both dense and sparse intervals ! (read the paper)

Our upper bound: A FPT- $(1 + \epsilon)$ -approximation for UFP-cover with unit cost.

 \rightarrow a FPT-(1 + ϵ)-approximation with task costs ?

Our lower bound: W[1]-hardness

 \longrightarrow UFP-cover is FPT if the *input data* \leq poly(*n*)?

Our upper bound: A FPT- $(1 + \epsilon)$ -approximation for UFP-cover with unit cost.

 \rightarrow a FPT-(1 + ϵ)-approximation with task costs ?

Our lower bound: W[1]-hardness

 \longrightarrow UFP-cover is FPT if the *input data* \leq poly(*n*)?

