
Fixed-parameter algorithms for Unsplittable
Flow Cover.

Andrés Cristi, Mathieu Mari, Andreas Wiese

1

Unsplittable Flow cover on a Path

2

Unsplittable Flow cover on a Path

2

What is known for UFP-cover

• Strongly NP-hard
Reduction to Caching in the fault model

• (polynomial time) 4-approximation algorithm
[Bar-Noy, Bar-Yehuda, Freund, Naor, Schieber, 2000]

• QPTAS: (1+ ε)-approximation in time 2Oε(poly(log n))

[Höln, Mestre, Wiese, 2014]

3

Fixed-Parameter Tractable algorithms

“a certain parameter is small”

Definition
An algorithm is an FPT-α-approximation algorithm for a
(minimisation) problem (and a specific parameter) if

• its running time is f(k)nO(1) for all inputs of size n

• it returns a solution of size ≤ α · OPT or attests that the
parameter is > k.

In this talk: |OPT| ≤ k

4

Our results for UFP-cover

1. W[1]-hard

2. exact FPT-algorithm when parameterized by k +#task
sizes *

3. exact FPT-algorithm using resource augmentation *

4. FPT-2-approximation *

5. FPT-(1+ ε)-approximation

2. −→ 3. −→ 4.

* also works with task costs (loosing a factor (1+ ε))

5

Tasks of size 1 or size 2

6

Tasks of size 1 or size 2

6

Tasks of size 1 or size 2

6

Tasks of size 1 or size 2

6

Few different task sizes

Theorem
There is an algorithm that solves UFP-cover in time kO(k′·k)nO(1)

when the number of task sizes is at most k′.

solution = ∅
For each edge e from left to right:

(k + 1)k′k guesses

For each size s:

(k + 1)k′ guesses

1. if e is uncovered, guess the number m of tasks of size s in
OPT that cover e, not yet guessed.

2. solution←m such tasks with rightmost endpoints

7

Few different task sizes

Theorem
There is an algorithm that solves UFP-cover in time kO(k′·k)nO(1)

when the number of task sizes is at most k′.

solution = ∅
For each edge e from left to right: (k + 1)k′k guesses

For each size s: (k + 1)k′ guesses

1. if e is uncovered, guess the number m of tasks of size s in
OPT that cover e, not yet guessed.

2. solution←m such tasks with rightmost endpoints

7

Few sizes→ Arbitrary sizes

Theorem (Resource augmentation)

There is an algorithm with running time f(k, δ) · nO(1) that either:

• outputs a solution of size k, that satisfies all the demand(e)
1+δ

• or, attests that there is no solution of size k for the original
demands

1. round down tasks sizes to (1+ δ)`.

at most O(log1+δ n) rounded sizes

2. guess which groups are used by OPT

(O(log1+δ n)
k

)
≤ (1δ)

O(k)(n+ kO(k))

3. apply the previous algorithm

here, we assume: max demand ≤ poly(n) but the theorem is true in general.

8

Few sizes→ Arbitrary sizes

Theorem (Resource augmentation)

There is an algorithm with running time f(k, δ) · nO(1) that either:

• outputs a solution of size k, that satisfies all the demand(e)
1+δ

• or, attests that there is no solution of size k for the original
demands

1. round down tasks sizes to (1+ δ)`.
at most O(log1+δ n) rounded sizes

2. guess which groups are used by OPT(O(log1+δ n)
k

)
≤ (1δ)

O(k)(n+ kO(k))
3. apply the previous algorithm

here, we assume: max demand ≤ poly(n) but the theorem is true in general.

8

Resource augmentation→ FPT-2-approximation

9

Resource augmentation→ FPT-2-approximation

9

Resource augmentation→ FPT-2-approximation

9

Resource augmentation→ FPT-2-approximation

9

Resource augmentation→ FPT-2-approximation

9

Resource augmentation→ FPT-2-approximation

9

FPT-2-approximation

Theorem
UFP-cover has a FPT-2-approximation

1. ALG← resource augmentation algorithm with δ = 1

2. guess ALG ∩ OPT, and recurse if ALG ∩ OPT 6= ∅
3. run the resource augmentation algorithm with: new

demands = 3
2 · demands and δ = 1

2

10

Parameterized Approximation Scheme

Theorem: PAS
There is an algorithm for UFP-cover with running time
kO(k)n(1/ε)O(1/ε) that either

• returns a solution of size ≤ (1+ ε)k

• or, attests that there is no solution of size ≤ k

11

Some flavors of the PAS

12

Some flavors of the PAS

12

Some flavors of the PAS

12

Some flavors of the PAS

12

Some flavors of the PAS

12

Some flavors of the PAS

12

Some flavors of the PAS

12

Some flavors of the PAS

12

Some flavors of the PAS

12

Summary and future questions

Our upper bound: A FPT-(1+ ε)-approximation for UFP-cover
with unit cost.

−→ a FPT-(1+ ε)-approximation with task costs ?

Our lower bound: W[1]-hardness

−→ UFP-cover is FPT if the input data ≤ poly(n) ?

13

Summary and future questions

Our upper bound: A FPT-(1+ ε)-approximation for UFP-cover
with unit cost.

−→ a FPT-(1+ ε)-approximation with task costs ?

Our lower bound: W[1]-hardness

−→ UFP-cover is FPT if the input data ≤ poly(n) ?

13

