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What is known for UFP-cover

• Strongly NP-hard
Reduction to Caching in the fault model

• (polynomial time) 4-approximation algorithm
[Bar-Noy, Bar-Yehuda, Freund, Naor, Schieber, 2000]

• QPTAS: (1+ ε)-approximation in time 2Oε(poly(log n))

[Höln, Mestre, Wiese, 2014]
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Fixed-Parameter Tractable algorithms

“a certain parameter is small”

Definition
An algorithm is an FPT-α-approximation algorithm for a
(minimisation) problem (and a specific parameter) if

• its running time is f(k)nO(1) for all inputs of size n

• it returns a solution of size ≤ α · OPT or attests that the
parameter is > k.

In this talk: |OPT| ≤ k
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Our results for UFP-cover

1. W[1]-hard

2. exact FPT-algorithm when parameterized by k +#task
sizes *

3. exact FPT-algorithm using resource augmentation *

4. FPT-2-approximation *

5. FPT-(1+ ε)-approximation

2. −→ 3. −→ 4.

* also works with task costs (loosing a factor (1+ ε))
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Tasks of size 1 or size 2
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Few different task sizes

Theorem
There is an algorithm that solves UFP-cover in time kO(k′·k)nO(1)

when the number of task sizes is at most k′.

solution = ∅
For each edge e from left to right:

(k + 1)k′k guesses

For each size s:

(k + 1)k′ guesses

1. if e is uncovered, guess the number m of tasks of size s in
OPT that cover e, not yet guessed.

2. solution←m such tasks with rightmost endpoints
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Few sizes→ Arbitrary sizes

Theorem (Resource augmentation)

There is an algorithm with running time f(k, δ) · nO(1) that either:

• outputs a solution of size k, that satisfies all the demand(e)
1+δ

• or, attests that there is no solution of size k for the original
demands

1. round down tasks sizes to (1+ δ)`.

at most O(log1+δ n) rounded sizes

2. guess which groups are used by OPT

(O(log1+δ n)
k

)
≤ ( 1δ )

O(k)(n+ kO(k))

3. apply the previous algorithm

here, we assume: max demand ≤ poly(n) but the theorem is true in general.
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Resource augmentation→ FPT-2-approximation
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FPT-2-approximation

Theorem
UFP-cover has a FPT-2-approximation

1. ALG← resource augmentation algorithm with δ = 1

2. guess ALG ∩ OPT, and recurse if ALG ∩ OPT 6= ∅
3. run the resource augmentation algorithm with: new

demands = 3
2 · demands and δ = 1

2
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Parameterized Approximation Scheme

Theorem: PAS
There is an algorithm for UFP-cover with running time
kO(k)n(1/ε)O(1/ε) that either

• returns a solution of size ≤ (1+ ε)k

• or, attests that there is no solution of size ≤ k
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Some flavors of the PAS
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Summary and future questions

Our upper bound: A FPT-(1+ ε)-approximation for UFP-cover
with unit cost.

−→ a FPT-(1+ ε)-approximation with task costs ?

Our lower bound: W[1]-hardness

−→ UFP-cover is FPT if the input data ≤ poly(n) ?
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