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Neutral model at a given microsatellite locus, in a
closed panmictic population at equilibrium

Sample of 8 genes

Mutations according to
the Simple stepwise
Mutation Model (SMM)
• date of the mutations ∼

Poisson process with
intensity θ/2 over the
branches
• MRCA = 100
• independent mutations:
±1 with pr. 1/2
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Neutral model at a given microsatellite locus, in a
closed panmictic population at equilibrium

Observations: leafs of the tree
θ̂ = ?

Kingman’s genealogy
When time axis is
normalized,
T(k) ∼ Exp(k(k− 1)/2)

Mutations according to
the Simple stepwise
Mutation Model (SMM)
• date of the mutations ∼

Poisson process with
intensity θ/2 over the
branches
• MRCA = 100
• independent mutations:
±1 with pr. 1/2
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Much more interesting models. . .

I several independent loci
Independent gene genealogies and mutations

I different populations
linked by an evolutionary scenario made of divergences,
admixtures, migrations between populations, etc.

I larger sample size
usually between 50 and 100 genes

A typical evolutionary scenario:

MRCA

POP 0 POP 1 POP 2

τ1

τ2
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When the likelihood is not completely known

I Hidden Markov and other dynamic models: latent process
which is not observed

↪→ Classical answer: Markov chain Monte Carlo,. . .

I Population genetics: the whole gene genealogy is unobserved
Likelihood is an integral over

I all possible gene genealogies
I all possible mutations along the genealogies

↪→ Classical answer: Approximate Bayesian computation (ABC)
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ABC in a nutshell

Posterior distribution is the conditional distribution of
π(φ)`(x|φ) (∗)

knowing that x = xobs

Methodology
Draw a (large) set of particles (φi, xi) from (∗) and use a
nonparametric estimate of the conditional density

π(φ|xobs) ∝ π(φ)`(xobs|φ)

Seminal papers
I Tavaré, Balding, Griffith and Donnelly (1997, Genetics)
I Pritchard, Seielstad, Perez-Lezuan, Feldman (1999, Molecular

Biology and Evolution)
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Shortcomings.
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straightforward
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Curse of dimensionality

Assume that
I the simulated summary statistics η(x1), . . . ,η(xN)
I the observed summary statistics η(xobs)

are iid, with uniform law on [0, 1]d

Let d∞(d,N) = E

[
min
i=1,...,N

∥∥η(xobs) − η(xi)
∥∥∞]

N = 100 N = 1, 000 N = 10, 000 N = 100, 000
δ∞(1,N) 0.0025 0.00025 0.000025 0.0000025
δ∞(2,N) > 0.033 > 0.01 > 0.0033 > 0.001
δ∞(10,N) > 0.28 > 0.22 > 0.18 > 0.14
δ∞(200,N) > 0.48 > 0.48 > 0.47 > 0.46
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Empirical likelihood (EL)

Owen (1988, Biometrika), Owen (2001, Chapman & Hall)

Assume that the dataset x is composed of n independent replicates
x = (x1, . . . , xn) of some X ∼ F

Generalized moment condition model
The law F of X satisfy

EF
[
h(X,φ)

]
= 0,

where h is a known function, and φ an unknown parameter

Empirical likelihood

Lel(φ|x) = max
p

n∏
i=1

pi

for all p such that 0 6 pi 6 1,
∑
pi = 1,

∑
i pih(xi,φ) = 0.
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Raw ABCelsampler
We act as if EL was an exact likelihood

for i = 1→ N do

generate φi from the prior distribution π(·)
set the weight ωi = Lel(φi|xobs)

end for

return (φi,ωi), i = 1, . . . ,N

I The output is sample of parameters of size N with associated
weights

I Performance of the output evaluated through effective sample size

ESS = 1
/ N∑
i=1

ωi/
N∑
j=1

ωj


2

I Other classical sampling algorithms might be adapted to use EL.
We resorted the adaptive multiple importance sampling (AMIS) of
Cornuet et al. (Scandinavian J. of Statis.) to speed up
computations
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Moment condition in population genetics?
EL does not require a fully defined and often complex (hence
debatable) parametric model.

Main difficulty
Derive a constraint

EF
[
h(X,φ)

]
= 0,

on the parameters of interest φ when X is the allelic states of our
sample of individuals at a given locus

E.g., in phylogeography, φ is composed of
I dates of splits of populations,
I ratio of population sizes,
I mutation rates, etc.

None of them are moments of the distribution of the allelic states of the
sample

↪→ h = pairwise composite scores whose zero is the pairwise
maximum likelihood estimator
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Pairwise composite likelihood?

The intra-locus pairwise likelihood

`2(xk|φ) =
∏
i<j

`2(x
i
k, xjk|φ)

with x1k, . . . , xnk : allelic states of the gene sample at the k-th locus

The pairwise score function

∇φ log `2(xk|φ) =
∑
i<j

∇φ log `2(xik, xjk|φ)

� Composite likelihoods are often much more narrow than the
distribution of the model

Safe with EL because we only use position of its mode
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Pairwise likelihood: a simple case

Assumptions

I sample ⊂ closed, panmictic
population at equilibrium

I marker: microsatellite
I mutation rate: θ/2

if xik et xjk are two genes of the
sample,

`2(x
i
k, xjk|θ) depends only on

δ = xik − x
j
k

`2(δ|θ) =
1√
1+ 2θ

ρ (θ)|δ|

with
ρ(θ) =

θ

1+ θ+
√
1+ 2θ

Pairwise score function
∂θ log `2(δ|θ) =

−
1

1+ 2θ
+

|δ|

θ
√
1+ 2θ
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Pairwise likelihood: 2 diverging populations

MRCA

POP a POP b

τ

Assumptions
I τ: divergence date of pop.
a and b

I θ/2: mutation rate
Let xik and xjk be two genes
coming resp. from pop. a and b
Set δ = xik − x

j
k.

Then `2(δ|θ, τ) =
e−τθ√
1+ 2θ

+∞∑
k=−∞ ρ(θ)

|k|Iδ−k(τθ).

where
In(z) nth-order modified Bessel
function of the first kind
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MRCA

POP a POP b

τ

Assumptions
I τ: divergence date of pop.
a and b

I θ/2: mutation rate
Let xik and xjk be two genes
coming resp. from pop. a and b
Set δ = xik − x

j
k.

A 2-dim score function
∂τ log `2(δ|θ, τ) =

−θ+
θ

2

`2(δ− 1|θ, τ) + `2(δ+ 1|θ, τ)
`2(δ|θ, τ)

∂θ log `2(δ|θ, τ) =

−τ−
1

1+ 2θ
+

τ

2

`2(δ− 1|θ, τ) + `2(δ+ 1|θ, τ)
`2(δ|θ, τ)

+

q(δ|θ, τ)
`2(δ|θ, τ)

where
q(δ|θ, τ) :=

e−τθ√
1+ 2θ

ρ ′(θ)

ρ(θ)

∞∑
k=−∞ |k|ρ(θ)|k|Iδ−k(τθ)
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Recap

Three kinds of likelihood:

I True likelihood: given by the model (evolutionary scenario &
Kingman’s coalecent)
↪→ cannot compute

I Pairwise composite likelihood: act as if each pair of genes was
independent of the other ones
↪→ its maximum provides as “good” approximation of the MLE

I Empirical likelihood: a way to profile the likelihood from the
data, using generalized moment conditions
↪→ generalized moment condition in population genetics =
pairwise composite scores (whose zero is the pairwise composite
maximum likelihood)
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A first experiment
Evolutionary scenario:

MRCA

POP 0 POP 1

τ

Dataset:
I 50 genes per populations,
I 100 microsat. loci

Assumptions:
I Ne identical over all

populations
I φ = (log10 θ, log10 τ)
I uniform prior over
(−1., 1.5)× (−1., 1.)

Comparison of the original
ABC with ABCel

ESS=7034
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vertical line = “true” parameter
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ABC vs. ABCel on 100 replicates of the 1st experiment

Accuracy:
log10 θ log10 τ

ABC ABCel ABC ABCel
(1) 0.097 0.094 0.315 0.117
(2) 0.68 0.81 1.0 0.80

(1) Root Mean Square Error of the posterior mean
(2) Coverage of the credibility interval of probability 0.8

Computation time: on a recent 6-core computer (C++/OpenMP)
I ABC ≈ 4 hours
I ABCel≈ 2 minutes

Pierre Pudlo (INRA & U. Montpellier 2) ABCel GenPop MCEB June 2012 21 / 25



Second experiment
Evolutionary scenario:

MRCA

POP 0 POP 1 POP 2

τ1

τ2

Dataset:
I 50 genes per populations,
I 100 microsat. loci

Assumptions:
I Ne identical over all

populations
I φ =
(log10 θ, log10 τ1, log10 τ2)

I non-informative prior

Comparison of the original ABC
with ABCel
histogram = ABCel
curve = original ABC
vertical line = “true” parameter
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ABC vs. ABCel on 100 replicates of the 2nd
experiment

Accuracy:
log10 θ log10 τ1 log10 τ2

ABC ABCel ABC ABCel ABC ABCel
(1) 0.0059 0.0794 0.472 0.483 29.3 4.76
(3) 0.79 0.76 0.88 0.76 0.89 0.79

(1) Root Mean Square Error of the posterior mean
(2) Coverage of the credibility interval of probability 0.8

Computation time: on a recent 6-core computer (C++/OpenMP)
I ABC ≈ 6 hours
I ABCel≈ 8 minutes
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Why?

On large datasets, ABCel gives more accurate results than ABC

ABC simplifies the dataset through summary statistics
Due to the large dimension of x, the original ABC algorithm estimates

π
(
θ
∣∣∣η(xobs)

)
,

where η(xobs) is some (non-linear) projection of the observed dataset
on a space with smaller dimension
↪→ Some information is lost

ABCel simplifies the model through a generalized moment condition
model.
↪→ Provides more accurate approximation if the constraint is well
choosen.
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