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Research & 
IT Infrastructure

 IT

 Cluster with 2500 cores

 Archiving of Scientific Data

 90 TB parallel I/O system

 All other IT services

 Research

 Method development

 SW development

 Emerging Parallel 
Architectures



Please ask Questions!



Why is this important?

 Datasets are growing
 Need to use supercomputers
 Transformation into a computational 

science
 Software/methods are widely used 

when they are fast
 Software/algorithm engineering is 

required



However

 Smarter algorithms are always 
better than brute-force HPC 
approaches



Toward a Computational 
Science 

 Example 1Kite Project www.1kite.org to sequence 1000 insect 
transcriptomes

 Challenges 
 Data transfer
 Data storage 
 Code correctness
 Supercomputer resources
 CO2 footprints

 Software Properties
 Checkpointing 
 Scalability → Exascale/ExaFlop systems
 Reduce memory footprints: 1500 taxa & 20,000,000 sites → 1TB
 Low-level optimizations: 256-bit AVX and FMA intrinsics
 Load Balance Issues

http://www.1kite.org/
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Who knows what this is?

http://www.1kite.org/


Vector Instructions

 e.g. RAxML SSE3/AVX versions
 A clock tick: execute one instruction
 2.2 GHz 2.2 * 10^9 instructions per second
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Vector Instructions

 e.g. RAxML SSE3/AVX versions
 A clock tick: execute one instruction
 2.2 GHz 2.2 * 10^9 instructions per second
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... and this operation 
simultaneously within one 
cycle: only two clock 
cycles (ticks) required



The algorithmic problem



The number of trees



The number of trees



The number of trees



The number of trees 
explodes!

BANG !



# trees with 2000 tips



Outline
 Computing the Likelihood
 Optimizing & Parallelizing Likelihood 

Computations
 Saving Memory in Likelihood Computations
 HPC population genetics
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P(t) = e^Qt
Important for load 

balance!
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Branch Length Optimization

starting branch



Branch Length Optimization

starting branch

Essentially we place 
the virtual root into 

this branch here
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Branch Length Optimization

starting branch
iterate until 
convergence
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Memory Consumption:
(n-2) * m * 4 * 1 * 8 bytes

DNA
rate

heterogeneity
double

precision
arithmetics



Memory Requirements

 For lazy people: mem. calculator at 
www.exelixis-lab.org/software.html
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What happens when we 
compute this inner vector?
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P(T)
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Position c
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Post-order Traversal

virtual root

:-)
:-)

:-)

tree score: sum over per-site log likelihoods
Σ log(li)



Post-order Traversal

virtual root

:-)
:-)

:-)

Σ log(li) We need to communicate 
the traversal order to all 
parallel processes:
Shared-Memory: 
master thread computes 
and stores it: workers 
read it 
Distributed-Memory: 
master process computes 
and broadcasts it as 
message to workers!



Post-order Traversal

virtual root

Σ log(li)

1 2
3 4

6
7

8

{(6 ← 1,2),
 (8 ← 3,4),
 (7 ← 5,8),
 (L ← 6,7)}

5

Traversal Descriptor:



Post-order Traversal

virtual root

:-)
:-)

:-)

Σ log(li)

Processes need to 
exchange log likelihoods 
with each other to 
compute this sum!



Basic Operations
Maximum Likelihood

 Compute Conditional Likelihood Array at an inner node
 Compute Likelihood at Virtual Root
 Optimize a Branch Length for a given Branch
 Optimize all Branch Lengths
 Optimize other Model Parameters



Basic Operations
Maximum Likelihood

 Compute Conditional Likelihood Array at an inner node
 Compute Likelihood at Virtual Root
 Optimize a Branch Length for a given Branch
 Optimize all Branch Lengths
 Optimize other Model Parameters

Bayesian programs 
only require two 

operations



Outline
 Computing the Likelihood
 Optimizing & Parallelizing Likelihood 

Computations
 Saving Memory in Likelihood Computations
 HPC population genetics



Optimization

 Use vector intrinsics SSE3/AVX
 Special implementations for:

 I will spare you the details
 But, avoid redundant computations

TIP TIPTIP INNER INNERINNER



Loop Level Parallelism
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Loop Level Parallelism

P

Q
R

P[i] = f(Q[i], R[i])

virtual root

This operation uses ≥ 95% 
of total execution time !
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Loop Level Parallelism

P

Q
R

virtual root



Parallel Post-order Traversal

virtual root

Only need to synchronize at the root
→ MPI_Reduce() to calculate: Σ log(li)



Parallel Post-order Traversal

Σ log(li) Σ log(li)
+

Overall Score



Classic Fork-Join with 
Busy-Wait

Trigger

Barrier

Barrier

0 1 2 3

Compute all vectors in 
Traversal descriptor

Barrier

Trigger

Trigger

Compute all vectors in 
Traversal descriptor

Compute all vectors in 
Traversal descriptor

Broadcast Traversal

Busy
wait

Reduce Σ log(li)
Broadcast Traversal

Reduce Σ log(li)
Broadcast new α params.

Reduce Σ log(li)



Synchronizations in RAxML 
with Pthreads

 RAxML Pthreads for a run time of about 
10 seconds on 16 Cores/16 Threads

 404 taxa 7429 sites: 194,000 Barriers
 1481 taxa 1241 sites: 739,000 Barriers
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α:=0.2

For good parallel 
performance: the 
broadcast must be fast!



Parallel Performance 
Problems

 They all start with partitioned datasets!
 How do we distribute partitions to 

processors?
 How do we calculate parameter changes?
 How much time does our Broadcast take?
 Goal: Keep all processors busy all the 

time → reduce amount of communication 
and synchronization!
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distribution is not that 
trivial!
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Data Distribution II
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depends on number of 
states in data/dimension 
of Q
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How do we distribute 
partitions to processors?
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Load Balance I

P0 P1

Find the partition-to- 
processor assignment 
such that the maximum 
number of sites per 
processor is minimized → 
this is NP-hard



Load Balance I

 The multiprocessor job scheduling problem in 
phylogenetics

 Problem when #partitions >> #cores
 Tested per-site data distribution versus Longest 

Processing Time (LPT) heuristics
 25 taxa, 220,000 sites, 100 genes

 GAMMA model

naïve: 613 secs

LPT: 550 secs
 CAT model

naïve: 298 secs

LPT: 127 secs

 Larger protein dataset under GAMMA: 10-fold 
performance improvement!

J. Zhang, A. Stamatakis: "The Multi-Processor Scheduling Problem in Phylogenetics", 
11th IEEE HICOMB workshop (in conjunction with IPDPS 2012). 



Partitioned Branch Lengths 
& other parameters



Load-Balance II

Zoom



Synchronization Points

 Assume 10 branches 
 Each branch requires 10 Newton-Raphson 

Iterations
 Each NR Iteration requires a syncronization via a 

reduction operation
 One branch/partition at a time: 100 sync. points, 

less work (only one partition) per sync. point
 All branches concurrently: 10 sync. points, more 

work per sync. point
 Branches will need distinct number of operations
 Add convergence state → bit vector
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11

In this example: 4 instead of 7 sync points!



Synchronization Points

Org1 AC GT
Org2 AC TT

00

01
00

11

Implications for Bayesian programs: Propose
e.g., new α parameters or new branch lengths
simultaneously for all partitions!



Load Balance II

A. Stamatakis, M. Ott: "Load Balance in the Phylogenetic Likelihood Kernel". 
Proceedings of ICPP 2009, Vienna, Austria, September 2009.



Classic Fork-Join with 
Busy-Wait

Trigger

Barrier

Barrier

0 1 2 3

Compute all vectors in 
Traversal descriptor

Barrier

Trigger

Trigger

Compute all vectors in 
Traversal descriptor

Compute all vectors in 
Traversal descriptor

Broadcast Traversal

Reduce Σ log(li)
Broadcast Traversal

Reduce Σ log(li)
Broadcast new α params.

Reduce Σ log(li)

A D

C B

A

C

A B

C D

A B

C D

A B

C D

α:=0.2

For good parallel 
performance: the 
broadcast must be fast!
Remember: 10 secs 16 
cores approx 500,000 
times.
What happens if we have 
1000 partitions and 
propose 1000 new alpha 
parameters?



Alternative MPI 
parallelization

? ?
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Alternative MPI 
parallelization

? ?
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E
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e

I think this is the way we 
will have to do it in the 
future.



Outline
 Computing the Likelihood
 Optimizing & Parallelizing Likelihood 

Computations
 Saving Memory in Likelihood Computations
 HPC population genetics



Gappy Phylogenomic Alignments

Red Gene      Yellow Gene 

Sequence 1

Sequence 5

Missing Data Data



A Multi-Gene Model



Initial mesh-based 
Approach

 Good performance
 Only works for per-partition branch length estimates
 Very high code complexity 

→ only proof-of-concept implementation

→ production abandoned because too complex
 Does not work for dense datasets!
 How long will datasets stay gappy?

A. Stamatakis, N. Alachiotis: "Time and memory efficient likelihood-based tree searches 
on gappy phylogenomic alignments", Proceedings of ISMB 2010, Boston, 
Massachusetts, July 2010. In Bioinformatics, 26(12):i132-i139.



Initial mesh-based 
Approach

 Good performance
 Only works for per-partition branch length estimates
 Very high code complexity 

→ only proof-of-concept implementation

→ production abandoned because too complex
 Does not work for dense datasets!
 How long will datasets stay gappy?

A. Stamatakis, N. Alachiotis: "Time and memory efficient likelihood-based tree searches 
on gappy phylogenomic alignments", Proceedings of ISMB 2010, Boston, 
Massachusetts, July 2010. In Bioinformatics, 26(12):i132-i139.

Closely-related theoretical work on 
gappy datasets: 
M. Sanderson, M. McMahon, M. Steel: 
“Terraces in Phylogenetic Tree 
Space”, Science 2011.
The RAxML prrof-of-concept 
implementation now prints out the 
number of terrace moves 
encountered during a search.



Easier Memory-saving 
Techniques

 Resurrection of subtree equality vectors for 
gappy alignments

 Out-of-core execution/external memory algos

 Trading memory for computations

F. Izquierdo-Carrasco, A. Stamatakis: "Computing the Phylogenetic Likelihood Function Out-
of-Core", accepted for publication at IEEE HICOMB 2011 workshop (held in conjunction with 
IPDPS 2011), Anchorage, USA, May 2011.

A. Stamatakis, T. Ludwig, H. Meier, M.J. Wolf: “AxML: A Fast Program for Sequential and 
Parallel Phylogenetic Tree Calculations Based on the Maximum Likelihood Method”. In 
Proceedings of 1st IEEE Computer Society Bioinformatics Conference (CSB2002), 21–28, 
Palo Alto, California, August 2002. 

F. Izquierdo-Carrasco, J. Gagneur, A. Stamatakis: "Trading Memory for Running Time in 
Phylogenetic Likelihood Computations", Bioinformatics 2012 conference, Vilamoura, Portugal, 
February 2012.



Easier Memory-saving 
Techniques

 Resurrection of subtree equality vectors for 
gappy alignments

 Out-of-core execution/external memory algos

 Trading memory for computations

F. Izquierdo-Carrasco, A. Stamatakis: "Computing the Phylogenetic Likelihood Function Out-
of-Core", accepted for publication at IEEE HICOMB 2011 workshop (held in conjunction with 
IPDPS 2011), Anchorage, USA, May 2011.

A. Stamatakis, T. Ludwig, H. Meier, M.J. Wolf: “AxML: A Fast Program for Sequential and 
Parallel Phylogenetic Tree Calculations Based on the Maximum Likelihood Method”. In 
Proceedings of 1st IEEE Computer Society Bioinformatics Conference (CSB2002), 21–28, 
Palo Alto, California, August 2002. 

F. Izquierdo-Carrasco, J. Gagneur, A. Stamatakis: "Trading Memory for Running Time in 
Phylogenetic Likelihood Computations", Bioinformatics 2012 conference, Vilamoura, Portugal, 
February 2012.

These techniques can be 
used in all likelihood-
based programs!



Subtree Equality Vectors
An old idea revisited

 Acceleration of Likelihood-function by detecting (and avoiding 
recomputation) of identical patterns in subtrees

 Detecting identical patterns may induce high bookkeeping 
overhead

 Conditional in innermost likelihood kernel loop may perturb pre-
fetching and branch prediction 

 Ancient papers

Stamatakis et al. “Accelerating Parallel Maximum Likelihood-
based Phylogenetic Tree Calculations using Subtree Equality 
Vectors”, Supercomputing 2002.

Stamatakis et al. “AxML: A Fast Program for Sequential and 
Parallel Phylogenetic Tree Calculations based on the 
Maximum Likelihood Method”, CSB2002.

Some old paper by Fredrik from the 90ies?
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Subtree Equality Vectors 
Implementation Option 2



Initial Results
Dataset Gappyness ≈ 80%



Memory Allocation SEVs

re-root



Memory Allocation SEVs

re-root

Need to free() and 
malloc() the vectors

again



Frequent free() and malloc() 
in Pthreads version

 Can lead to performance 
degradation → global lock

 Solution: use multi-core allocators
 AMD Magny 48-core server 256GB
 33,000 species, 8000 sites
 Standard malloc(): 33,400 secs
 Facebook jemalloc(): 18,200 secs



Subtree Equality Vectors 
Summary

 Memory savings depend on
 Proportion of missing data in input 

 Speedups depend on 
 Flops saved versus bookkeeping 

overhead
 Implementation of malloc() and free() on 

multicores when memory saving is used 
in the Pthreads version 
≈ 50% faster with dedicated allocators



Search Strategies
ML Analyses

good

bad

Search Space
Search 
Strategy



Tree Search
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Tree Search



Tree Search

Only three vectors are 
affected by the change!



Tree Search

Most operations are local 
to the tree!



Traversal Lengths
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Out-of-core

 Likelihood computations exhibit high 
data locality 
→ mostly short local traversals 
→ expect low miss rate



Out of core
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Miss Rate



Performance



Summary: Out-of-core

 Performance substantially better 
than for paging

 … but still disappointing, not 
practical

 Works for dense datasets!
 Future Work: test with solid state 

disks



Recomputing Vectors 
instead of storing them

 Out of core: high data locality of vectors
 Proof: we only need log(#taxa) + 2 

vectors in memory to compute the 
likelihood on any unrooted binary tree

 Performance does not depend on 
gappyness!

 Can be combined with the orthogonal 
SEV approach 
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Virtual Root
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Tree Shapes

Virtual Root



Tree Shapes

Virtual Root Max number of 
required vectors: 4
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Virtual Root



Tree Shapes

Virtual Root



Tree Shapes

Virtual Root



Tree Shapes

Virtual Root



Tree Shapes

Virtual Root Max number of 
required vectors: 2



Results



Results
Production-Level 
Implementation 
in RAxML-Light!



Results

No performance penalties
for methods that re-traverse

the entire tree, e.g., divergence 
time tools such as DDPDIV



Outline
 Computing the Likelihood
 Optimizing & Parallelizing Likelihood 

Computations
 Saving Memory in Likelihood Computations
 HPC population genetics



HPC Pop. Gen.

 Omega statistics code
 Dynamic programming algorithm
 Up to two orders of magnitude:

  faster than existing codes
 less memory

 Multi-grain parallelization

 Forward in time simulator
 Algorithmic engineering
 New data structures
 Vector instructions
 1-2 orders of magnitude faster than SFS
 Work in progress: Parallelization



OmegaPlus: Selective Sweep Detection 
using the ω Statistic

compute the ω statistic at this position

OmegaPlus computes the ω statistic at N equidistant 
positions in the alignment.



OmegaPlus

For each position, a maximum user-defined region that the sweep 
may have affected is analyzed.

region



window i

For each position, OmegaPlus computes ω for all possible window sizes 
within the user-defined region. 
Each window i+1 contains one SNP more than the previous window i. 

OmegaPlus



window i+1

OmegaPlus



window i+2

OmegaPlus



The ω statistic uses linkage-disequilibrium (LD) information to detect
non-random associations of alleles at different alignment positions.

The LD at each site can be represented as a binary vector to calculate 
the squared correlation coefficient r

ij
2 between two sites i and j. 

#1-1 pairs 

#1s at site i #1s at site j 

OmegaPlus



L Region R Region 

Number of SNPs in L Number of SNPs in R

OmegaPlus



Selective sweep theory predicts LD increase at both sides 
of a selective sweep …

OmegaPlus



… but not across the selected site.

OmegaPlus



Fast computation of sums for a 
region using dynamic 
programming.
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Forward-in-Time Simulation 
(FiTS)

 Most accurate method for simulating 
pop. Gen. datasets
 Works for small population sizes 
 Straight-forward method to simulate 
evolution of multiple non-neutral mutations
 Combines various evolutionary forces 
under complex demographic scenarios 
 Problem: orders of magnitude slower 
than backward simulation



Toward Whole-Genome 
FiTS

 Simulate non-neutral 
mutations forward in 
time 

 Keep track of ancestry
 Progressively create 

ancestral graph
 Add neutral mutations 

in the end “backward-
like”

rec1

indi1 indi3indi2

mut1 mut2

rec2 mut3



Towards Whole-Genome 
FiTS

 Advantage: yields complete history for all 
simulated sequences in the population

 Uses:
 high-quality random number generators
 efficient data structures
 SIMD/SSE3 instructions

 At present: 1-2 orders of magnitude faster than 
SFS code

 Planned: 
 parallelization on shared-memory machines
 trait-based fitness function



Some other projects

 Protein model assignment in partitioned datasets with joint branch 
length estimates

 Is this NP-hard?
 Can we design good heuristics?

 RAxML goes Bayesian
 Phylogenetic short read identification and alignment in metagenomics
 Discrete algorithms on tree sets → building consensus trees and 

identifying rogue taxa 
 Species delimitation in metagenomic samples

 Novel protein substitution models



Tonight



Thank you for your 
Attention !

Psiloritis peak, Crete, Greece, April 28, 2012
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