

High Performance Phylogenetics &
Population Genetics

 Alexandros Stamatakis

Scientific Computing Group
Heidelberg Institute for Theoretical Studies

Alexandros.Stamatakis@h-its.org
www.exelixis-lab.org

Research &
IT Infrastructure

 IT

 Cluster with 2500 cores

 Archiving of Scientific Data

 90 TB parallel I/O system

 All other IT services

 Research

 Method development

 SW development

 Emerging Parallel
Architectures

Please ask Questions!

Why is this important?

 Datasets are growing
 Need to use supercomputers
 Transformation into a computational

science
 Software/methods are widely used

when they are fast
 Software/algorithm engineering is

required

However

 Smarter algorithms are always
better than brute-force HPC
approaches

Toward a Computational
Science

 Example 1Kite Project www.1kite.org to sequence 1000 insect
transcriptomes

 Challenges
 Data transfer
 Data storage
 Code correctness
 Supercomputer resources
 CO2 footprints

 Software Properties
 Checkpointing
 Scalability → Exascale/ExaFlop systems
 Reduce memory footprints: 1500 taxa & 20,000,000 sites → 1TB
 Low-level optimizations: 256-bit AVX and FMA intrinsics
 Load Balance Issues

http://www.1kite.org/

Toward a Computational
Science

 Example 1Kite Project www.1kite.org to sequence 1000 insect
transcriptomes

 Challenges
 Data transfer
 Data storage
 Code correctness
 Supercomputer resources
 CO2 footprints

 Software Properties
 Checkpointing
 Scalability → Exascale/ExaFlop systems
 Reduce memory footprints: 1500 taxa & 20,000,000 sites → 1TB
 Low-level optimizations: 256-bit AVX and FMA intrinsics
 Load Balance Issues

Who knows what this is?

http://www.1kite.org/

Vector Instructions

 e.g. RAxML SSE3/AVX versions
 A clock tick: execute one instruction
 2.2 GHz 2.2 * 10^9 instructions per second

0 1 2 3

0 1 2 3

0 2 4 6

+

=

a

b

c

Do this operation
simultaneously within one
cycle

Vector Instructions

 e.g. RAxML SSE3/AVX versions
 A clock tick: execute one instruction
 2.2 GHz 2.2 * 10^9 instructions per second

0 1 2 3

0 1 2 3

0 2 4 6

+

=

a

b

c

... and this operation
simultaneously within one
cycle: only two clock
cycles (ticks) required

The algorithmic problem

The number of trees

The number of trees

The number of trees

The number of trees
explodes!

BANG !

trees with 2000 tips

Outline
 Computing the Likelihood
 Optimizing & Parallelizing Likelihood

Computations
 Saving Memory in Likelihood Computations
 HPC population genetics

Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

AA
CC
GG
TT

A C G TA C G T

SubstitutionSubstitution
modelmodelQ

Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

AA
CC
GG
TT

A C G TA C G T

SubstitutionSubstitution
modelmodel

P(t) = e^Qt
Important for load

balance!

Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m
Prior probabilities,Prior probabilities,

Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

AA
CC
GG
TT

A C G TA C G T

SubstitutionSubstitution
modelmodel

Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m
Prior probabilities,Prior probabilities,

Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3
b1b1

b2b2

b5b5

b3b3

b4b4

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

AA
CC
GG
TT

A C G TA C G T

SubstitutionSubstitution
modelmodel

Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m
Prior probabilities,Prior probabilities,

Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3
b1b1

b2b2

b5b5

b3b3

b4b4

virtual root: vrvirtual root: vr

AA
CC
GG
TT

A C G TA C G T

SubstitutionSubstitution
modelmodel

Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m
Prior probabilities,Prior probabilities,

Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3
b1b1

b2b2

b5b5

b3b3

b4b4

P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T) P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T)

mm

vrvr

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

AA
CC
GG
TT

A C G TA C G T

SubstitutionSubstitution
modelmodel

Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m
Prior probabilities,Prior probabilities,

Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3
b1b1

b2b2

b5b5

b3b3

b4b4

P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T) P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T)

mm

vrvr

Floating-point &
memory intensive

AA
CC
GG
TT

A C G TA C G T

SubstitutionSubstitution
modelmodel

Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m
Prior probabilities,Prior probabilities,

Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3

optimize branch lengthsoptimize branch lengths

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

AA
CC
GG
TT

A C G TA C G T

SubstitutionSubstitution
modelmodel

Branch Length Optimization

starting branch

Branch Length Optimization

starting branch

Essentially we place
the virtual root into

this branch here

Branch Length Optimization

starting branch

Branch Length Optimization

starting branch

Branch Length Optimization

starting branch

Branch Length Optimization

starting branch

Branch Length Optimization

starting branch

Branch Length Optimization

starting branch

Branch Length Optimization

starting branch
iterate until
convergence

Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m
Prior probabilities,Prior probabilities,

Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3

optimize model parametersoptimize model parameters

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

AA
CC
GG
TT

A C G TA C G T

SubstitutionSubstitution
modelmodel

Memory Requirements

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m
Prior probabilities,Prior probabilities,

Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3
b1b1

b2b2

b5b5

b3b3

b4b4

P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T) P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T)

mm

vrvr

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

AA
CC
GG
TT

A C G TA C G T

SubstitutionSubstitution
modelmodel

Memory Consumption:
(n-2) * m * 4 * 1 * 8 bytes

DNA
rate

heterogeneity
double

precision
arithmetics

Memory Requirements

 For lazy people: mem. calculator at
www.exelixis-lab.org/software.html

Post-order Traversal

virtual root

Post-order Traversal

virtual root

Post-order Traversal

virtual root

Post-order Traversal

virtual root

:-)

What happens when we
compute this inner vector?

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

b_jb_i

P(b_i) P(b_j)

AA
CC
GG
TT

A C G TA C G T
AA
CC
GG
TT

A C G TA C G T

L^(k)

L^(i) L^(j)

Position c

Post-order Traversal

virtual root

:-)

Post-order Traversal

virtual root

:-)

Post-order Traversal

virtual root

:-)

Post-order Traversal

virtual root

:-)
:-)

Post-order Traversal

virtual root

:-)
:-)

Post-order Traversal

virtual root

:-)
:-)

Post-order Traversal

virtual root

:-)
:-)

:-)

Post-order Traversal

virtual root

:-)
:-)

:-)

tree score: sum over per-site log likelihoods
Σ log(li)

Post-order Traversal

virtual root

:-)
:-)

:-)

Σ log(li) We need to communicate
the traversal order to all
parallel processes:
Shared-Memory:
master thread computes
and stores it: workers
read it
Distributed-Memory:
master process computes
and broadcasts it as
message to workers!

Post-order Traversal

virtual root

Σ log(li)

1 2
3 4

6
7

8

{(6 ← 1,2),
 (8 ← 3,4),
 (7 ← 5,8),
 (L ← 6,7)}

5

Traversal Descriptor:

Post-order Traversal

virtual root

:-)
:-)

:-)

Σ log(li)

Processes need to
exchange log likelihoods
with each other to
compute this sum!

Basic Operations
Maximum Likelihood

 Compute Conditional Likelihood Array at an inner node
 Compute Likelihood at Virtual Root
 Optimize a Branch Length for a given Branch
 Optimize all Branch Lengths
 Optimize other Model Parameters

Basic Operations
Maximum Likelihood

 Compute Conditional Likelihood Array at an inner node
 Compute Likelihood at Virtual Root
 Optimize a Branch Length for a given Branch
 Optimize all Branch Lengths
 Optimize other Model Parameters

Bayesian programs
only require two

operations

Outline
 Computing the Likelihood
 Optimizing & Parallelizing Likelihood

Computations
 Saving Memory in Likelihood Computations
 HPC population genetics

Optimization

 Use vector intrinsics SSE3/AVX
 Special implementations for:

 I will spare you the details
 But, avoid redundant computations

TIP TIPTIP INNER INNERINNER

Loop Level Parallelism

P

Q
R

P[i] = f(Q[i], R[i])

virtual root

Loop Level Parallelism

P

Q
R

P[i] = f(Q[i], R[i])

virtual root

This operation uses ≥ 95%
of total execution time !

Loop Level Parallelism

P

Q
R

virtual root

Loop Level Parallelism

P

Q
R

virtual root

Loop Level Parallelism

P

Q
R

virtual root

Parallel Post-order Traversal

virtual root

Only need to synchronize at the root
→ MPI_Reduce() to calculate: Σ log(li)

Parallel Post-order Traversal

Σ log(li) Σ log(li)
+

Overall Score

Classic Fork-Join with
Busy-Wait

Trigger

Barrier

Barrier

0 1 2 3

Compute all vectors in
Traversal descriptor

Barrier

Trigger

Trigger

Compute all vectors in
Traversal descriptor

Compute all vectors in
Traversal descriptor

Broadcast Traversal

Busy
wait

Reduce Σ log(li)
Broadcast Traversal

Reduce Σ log(li)
Broadcast new α params.

Reduce Σ log(li)

Synchronizations in RAxML
with Pthreads

 RAxML Pthreads for a run time of about
10 seconds on 16 Cores/16 Threads

 404 taxa 7429 sites: 194,000 Barriers
 1481 taxa 1241 sites: 739,000 Barriers

Classic Fork-Join with
Busy-Wait

Trigger

Barrier

Barrier

0 1 2 3

Compute all vectors in
Traversal descriptor

Barrier

Trigger

Trigger

Compute all vectors in
Traversal descriptor

Compute all vectors in
Traversal descriptor

Broadcast Traversal

Reduce Σ log(li)
Broadcast Traversal

Reduce Σ log(li)
Broadcast new α params.

Reduce Σ log(li)

A D

C B

A

C

A B

C D

A B

C D

A B

C D

α:=0.2

Classic Fork-Join with
Busy-Wait

Trigger

Barrier

Barrier

0 1 2 3

Compute all vectors in
Traversal descriptor

Barrier

Trigger

Trigger

Compute all vectors in
Traversal descriptor

Compute all vectors in
Traversal descriptor

Broadcast Traversal

Reduce Σ log(li)
Broadcast Traversal

Reduce Σ log(li)
Broadcast new α params.

Reduce Σ log(li)

A D

C B

A

C

A B

C D

A B

C D

A B

C D

α:=0.2

For good parallel
performance: the
broadcast must be fast!

Parallel Performance
Problems

 They all start with partitioned datasets!
 How do we distribute partitions to

processors?
 How do we calculate parameter changes?
 How much time does our Broadcast take?
 Goal: Keep all processors busy all the

time → reduce amount of communication
and synchronization!

Data Distribution

OrangutanOrangutan A A C G T T T T A A C G T T T T
Gorilla Gorilla A A G G T T T - A A G G T T T -
ChimpChimp A - G G T T T T A - G G T T T T
Homo SapiensHomo Sapiens A G G A T T T T A G G A T T T T

CPU

cache

CPU

cache

Shared memory

Data Distribution

OrangutanOrangutan A A C G T T T T A A C G T T T T
Gorilla Gorilla A A G G T T T - A A G G T T T -
ChimpChimp A - G G T T T T A - G G T T T T
Homo SapiensHomo Sapiens A G G A T T T T A G G A T T T T

CPU

cache

CPU

cache

Distributed
memory

Distributed
memory

Data Distribution

OrangutanOrangutan A A C G T T T T A A C G T T T T
Gorilla Gorilla A A G G T T T - A A G G T T T -
ChimpChimp A - G G T T T T A - G G T T T T
Homo SapiensHomo Sapiens A G G A T T T T A G G A T T T T

CPU

cache

CPU

cache

Distributed
memory

Distributed
memory

Partitioned data
distribution is not that
trivial!

Data Distribution

OrangutanOrangutan A A C G T T T T A A C G T T T T
Gorilla Gorilla A A G G T T T - A A G G T T T -
ChimpChimp A - G G T T T T A - G G T T T T
Homo SapiensHomo Sapiens A G G A T T T T A G G A T T T T

CPU

cache

CPU

cache

Distributed
memory

Distributed
memory

Data Distribution I

OrangutanOrangutan A A C G T T T T A A C G T T T T
Gorilla Gorilla A A G G T T T - A A G G T T T -
ChimpChimp A - G G T T T T A - G G T T T T
Homo SapiensHomo Sapiens A G G A T T T T A G G A T T T T

CPU

cache

CPU

cache

Distributed
memory

Distributed
memory

Works well when we
have more partitions
than processors:
May lead to load imbalance not
all processors obtain equal
number of sites!

Data Distribution II

OrangutanOrangutan A A C G T T T T A A C G T T T T
Gorilla Gorilla A A G G T T T - A A G G T T T -
ChimpChimp A - G G T T T T A - G G T T T T
Homo SapiensHomo Sapiens A G G A T T T T A G G A T T T T

CPU

cache

CPU

cache

Distributed
memory

Distributed
memory

Works well when we
have more processors
than partitions:
However we will need to
compute: P(t)=eQt for each
partition at each processor!

Data Distribution II

OrangutanOrangutan A A C G T T T T A A C G T T T T
Gorilla Gorilla A A G G T T T - A A G G T T T -
ChimpChimp A - G G T T T T A - G G T T T T
Homo SapiensHomo Sapiens A G G A T T T T A G G A T T T T

CPU

cache

CPU

cache

Distributed
memory

Distributed
memory

Works well when we
have more processors
than partitions:
However we will need to
compute: P(t)=eQt for each
partition at each processor!

eQ
1
teQ

1
t eQ

2
teQ

2
t

Data Distribution II

OrangutanOrangutan A A C G T T T T A A C G T T T T
Gorilla Gorilla A A G G T T T - A A G G T T T -
ChimpChimp A - G G T T T T A - G G T T T T
Homo SapiensHomo Sapiens A G G A T T T T A G G A T T T T

CPU

cache

CPU

cache

Distributed
memory

Distributed
memory

Works well when we
have more processors
than partitions:
However we will need to
compute: P(t)=eQt for each
partition at each processor!

eQ
1
teQ

1
t eQ

2
teQ

2
t

Performance impact
depends on number of
states in data/dimension
of Q

Data Distribution I

OrangutanOrangutan A A C G T T T T A A C G T T T T
Gorilla Gorilla A A G G T T T - A A G G T T T -
ChimpChimp A - G G T T T T A - G G T T T T
Homo SapiensHomo Sapiens A G G A T T T T A G G A T T T T

CPU

cache

CPU

cache

Distributed
memory

Distributed
memory

Works well when we
have more partitions
than processors:
May lead to load imbalance not
all processors get equal
number of sites!

How do we distribute
partitions to processors?

Load Balance I

P0 P1

G0 G1 G2 G3

Load Balance I

P0 P1

Load Balance I

P0 P1

Find the partition-to-
processor assignment
such that the maximum
number of sites per
processor is minimized →
this is NP-hard

Load Balance I

 The multiprocessor job scheduling problem in
phylogenetics

 Problem when #partitions >> #cores
 Tested per-site data distribution versus Longest

Processing Time (LPT) heuristics
 25 taxa, 220,000 sites, 100 genes

 GAMMA model

naïve: 613 secs

LPT: 550 secs
 CAT model

naïve: 298 secs

LPT: 127 secs

 Larger protein dataset under GAMMA: 10-fold
performance improvement!

J. Zhang, A. Stamatakis: "The Multi-Processor Scheduling Problem in Phylogenetics",
11th IEEE HICOMB workshop (in conjunction with IPDPS 2012).

Partitioned Branch Lengths
& other parameters

Load-Balance II

Zoom

Synchronization Points

 Assume 10 branches
 Each branch requires 10 Newton-Raphson

Iterations
 Each NR Iteration requires a syncronization via a

reduction operation
 One branch/partition at a time: 100 sync. points,

less work (only one partition) per sync. point
 All branches concurrently: 10 sync. points, more

work per sync. point
 Branches will need distinct number of operations
 Add convergence state → bit vector

Synchronization Points

Org1 AC GT
Org2 AC TT

Synchronization Points

Org1 AC GT
Org2 AC TT

Synchronization Points

Org1 AC GT
Org2 AC TT

00

Synchronization Points

Org1 AC GT
Org2 AC TT

00

00

Synchronization Points

Org1 AC GT
Org2 AC TT

00

01
00

Synchronization Points

Org1 AC GT
Org2 AC TT

00

01
00

11

In this example: 4 instead of 7 sync points!

Synchronization Points

Org1 AC GT
Org2 AC TT

00

01
00

11

Implications for Bayesian programs: Propose
e.g., new α parameters or new branch lengths
simultaneously for all partitions!

Load Balance II

A. Stamatakis, M. Ott: "Load Balance in the Phylogenetic Likelihood Kernel".
Proceedings of ICPP 2009, Vienna, Austria, September 2009.

Classic Fork-Join with
Busy-Wait

Trigger

Barrier

Barrier

0 1 2 3

Compute all vectors in
Traversal descriptor

Barrier

Trigger

Trigger

Compute all vectors in
Traversal descriptor

Compute all vectors in
Traversal descriptor

Broadcast Traversal

Reduce Σ log(li)
Broadcast Traversal

Reduce Σ log(li)
Broadcast new α params.

Reduce Σ log(li)

A D

C B

A

C

A B

C D

A B

C D

A B

C D

α:=0.2

For good parallel
performance: the
broadcast must be fast!
Remember: 10 secs 16
cores approx 500,000
times.
What happens if we have
1000 partitions and
propose 1000 new alpha
parameters?

Alternative MPI
parallelization

? ?

MPI_Reduce()
MPI_Bcast()

MPI_Reduce()
MPI_Bcast()

-55000 -55000

-55001 -55001

P0 P1

E
xecut ion

tim
e

Alternative MPI
parallelization

? ?

MPI_Reduce()
MPI_Bcast()

MPI_Reduce()
MPI_Bcast()

-55000 -55001

-55001 -55000

P0 P1

E
xecut ion

tim
e

I think this is the way we
will have to do it in the
future.

Outline
 Computing the Likelihood
 Optimizing & Parallelizing Likelihood

Computations
 Saving Memory in Likelihood Computations
 HPC population genetics

Gappy Phylogenomic Alignments

Red Gene Yellow Gene

Sequence 1

Sequence 5

Missing Data Data

A Multi-Gene Model

Initial mesh-based
Approach

 Good performance
 Only works for per-partition branch length estimates
 Very high code complexity

→ only proof-of-concept implementation

→ production abandoned because too complex
 Does not work for dense datasets!
 How long will datasets stay gappy?

A. Stamatakis, N. Alachiotis: "Time and memory efficient likelihood-based tree searches
on gappy phylogenomic alignments", Proceedings of ISMB 2010, Boston,
Massachusetts, July 2010. In Bioinformatics, 26(12):i132-i139.

Initial mesh-based
Approach

 Good performance
 Only works for per-partition branch length estimates
 Very high code complexity

→ only proof-of-concept implementation

→ production abandoned because too complex
 Does not work for dense datasets!
 How long will datasets stay gappy?

A. Stamatakis, N. Alachiotis: "Time and memory efficient likelihood-based tree searches
on gappy phylogenomic alignments", Proceedings of ISMB 2010, Boston,
Massachusetts, July 2010. In Bioinformatics, 26(12):i132-i139.

Closely-related theoretical work on
gappy datasets:
M. Sanderson, M. McMahon, M. Steel:
“Terraces in Phylogenetic Tree
Space”, Science 2011.
The RAxML prrof-of-concept
implementation now prints out the
number of terrace moves
encountered during a search.

Easier Memory-saving
Techniques

 Resurrection of subtree equality vectors for
gappy alignments

 Out-of-core execution/external memory algos

 Trading memory for computations

F. Izquierdo-Carrasco, A. Stamatakis: "Computing the Phylogenetic Likelihood Function Out-
of-Core", accepted for publication at IEEE HICOMB 2011 workshop (held in conjunction with
IPDPS 2011), Anchorage, USA, May 2011.

A. Stamatakis, T. Ludwig, H. Meier, M.J. Wolf: “AxML: A Fast Program for Sequential and
Parallel Phylogenetic Tree Calculations Based on the Maximum Likelihood Method”. In
Proceedings of 1st IEEE Computer Society Bioinformatics Conference (CSB2002), 21–28,
Palo Alto, California, August 2002.

F. Izquierdo-Carrasco, J. Gagneur, A. Stamatakis: "Trading Memory for Running Time in
Phylogenetic Likelihood Computations", Bioinformatics 2012 conference, Vilamoura, Portugal,
February 2012.

Easier Memory-saving
Techniques

 Resurrection of subtree equality vectors for
gappy alignments

 Out-of-core execution/external memory algos

 Trading memory for computations

F. Izquierdo-Carrasco, A. Stamatakis: "Computing the Phylogenetic Likelihood Function Out-
of-Core", accepted for publication at IEEE HICOMB 2011 workshop (held in conjunction with
IPDPS 2011), Anchorage, USA, May 2011.

A. Stamatakis, T. Ludwig, H. Meier, M.J. Wolf: “AxML: A Fast Program for Sequential and
Parallel Phylogenetic Tree Calculations Based on the Maximum Likelihood Method”. In
Proceedings of 1st IEEE Computer Society Bioinformatics Conference (CSB2002), 21–28,
Palo Alto, California, August 2002.

F. Izquierdo-Carrasco, J. Gagneur, A. Stamatakis: "Trading Memory for Running Time in
Phylogenetic Likelihood Computations", Bioinformatics 2012 conference, Vilamoura, Portugal,
February 2012.

These techniques can be
used in all likelihood-
based programs!

Subtree Equality Vectors
An old idea revisited

 Acceleration of Likelihood-function by detecting (and avoiding
recomputation) of identical patterns in subtrees

 Detecting identical patterns may induce high bookkeeping
overhead

 Conditional in innermost likelihood kernel loop may perturb pre-
fetching and branch prediction

 Ancient papers

Stamatakis et al. “Accelerating Parallel Maximum Likelihood-
based Phylogenetic Tree Calculations using Subtree Equality
Vectors”, Supercomputing 2002.

Stamatakis et al. “AxML: A Fast Program for Sequential and
Parallel Phylogenetic Tree Calculations based on the
Maximum Likelihood Method”, CSB2002.

Some old paper by Fredrik from the 90ies?

l_p(i):=f(g(l_q(i)), g(l_r(i)))

p

q r

l_p

l_q l_r

Subtree Equality Vectors

p

q r

l_p(i):=f(g(l_q(i)), g(l_r(i)))

P1: l_p(i) = l_p(j)
if s_p(i) = s_p(j)

Subtree Equality Vectors

p

q r

l_p(i):=f(g(l_q(i)), g(l_r(i)))

P1: l_p(i) = l_p(j)
if s_p(i) = s_p(j)

Subtree Equality Vectors

1011011001 1010011000

1010011001Bit-wise &

Bit-wise &

p

q r

Subtree Equality Vectors
Implementation Option 1

p

q r

Subtree Equality Vectors
Implementation Option 2

Initial Results
Dataset Gappyness ≈ 80%

Memory Allocation SEVs

re-root

Memory Allocation SEVs

re-root

Need to free() and
malloc() the vectors

again

Frequent free() and malloc()
in Pthreads version

 Can lead to performance
degradation → global lock

 Solution: use multi-core allocators
 AMD Magny 48-core server 256GB
 33,000 species, 8000 sites
 Standard malloc(): 33,400 secs
 Facebook jemalloc(): 18,200 secs

Subtree Equality Vectors
Summary

 Memory savings depend on
 Proportion of missing data in input

 Speedups depend on
 Flops saved versus bookkeeping

overhead
 Implementation of malloc() and free() on

multicores when memory saving is used
in the Pthreads version
≈ 50% faster with dedicated allocators

Search Strategies
ML Analyses

good

bad

Search Space
Search
Strategy

Tree Search

Tree Search

Tree Search

Tree Search

Tree Search

Only three vectors are
affected by the change!

Tree Search

Most operations are local
to the tree!

Traversal Lengths

Vectors/nodes in traversal listLo
g

of
 f

re
qu

en
cy

 d
ur

in
g

a
no

rm
al

 s
ea

rc
h

Out-of-core

 Likelihood computations exhibit high
data locality
→ mostly short local traversals
→ expect low miss rate

Out of core

1

2

3

4

Toward
the root

RAM

3

2

5

1

4
6

DISK (~100
MB/s)

Binary
file(s)

Miss Rate

Performance

Summary: Out-of-core

 Performance substantially better
than for paging

 … but still disappointing, not
practical

 Works for dense datasets!
 Future Work: test with solid state

disks

Recomputing Vectors
instead of storing them

 Out of core: high data locality of vectors
 Proof: we only need log(#taxa) + 2

vectors in memory to compute the
likelihood on any unrooted binary tree

 Performance does not depend on
gappyness!

 Can be combined with the orthogonal
SEV approach

Tree Shapes

Virtual Root

Tree Shapes

Virtual Root

Tree Shapes

Virtual Root

Tree Shapes

Virtual Root

Tree Shapes

Virtual Root

Tree Shapes

Virtual Root

Tree Shapes

Virtual Root

Tree Shapes

Virtual Root

Tree Shapes

Virtual Root Max number of
required vectors: 4

Tree Shapes

Virtual Root

Tree Shapes

Virtual Root

Tree Shapes

Virtual Root

Tree Shapes

Virtual Root

Tree Shapes

Virtual Root

Tree Shapes

Virtual Root

Tree Shapes

Virtual Root

Tree Shapes

Virtual Root

Tree Shapes

Virtual Root

Tree Shapes

Virtual Root

Tree Shapes

Virtual Root

Tree Shapes

Virtual Root Max number of
required vectors: 2

Results

Results
Production-Level
Implementation
in RAxML-Light!

Results

No performance penalties
for methods that re-traverse

the entire tree, e.g., divergence
time tools such as DDPDIV

Outline
 Computing the Likelihood
 Optimizing & Parallelizing Likelihood

Computations
 Saving Memory in Likelihood Computations
 HPC population genetics

HPC Pop. Gen.

 Omega statistics code
 Dynamic programming algorithm
 Up to two orders of magnitude:

 faster than existing codes
 less memory

 Multi-grain parallelization

 Forward in time simulator
 Algorithmic engineering
 New data structures
 Vector instructions
 1-2 orders of magnitude faster than SFS
 Work in progress: Parallelization

OmegaPlus: Selective Sweep Detection
using the ω Statistic

compute the ω statistic at this position

OmegaPlus computes the ω statistic at N equidistant
positions in the alignment.

OmegaPlus

For each position, a maximum user-defined region that the sweep
may have affected is analyzed.

region

window i

For each position, OmegaPlus computes ω for all possible window sizes
within the user-defined region.
Each window i+1 contains one SNP more than the previous window i.

OmegaPlus

window i+1

OmegaPlus

window i+2

OmegaPlus

The ω statistic uses linkage-disequilibrium (LD) information to detect
non-random associations of alleles at different alignment positions.

The LD at each site can be represented as a binary vector to calculate
the squared correlation coefficient r

ij
2 between two sites i and j.

#1-1 pairs

#1s at site i #1s at site j

OmegaPlus

L Region R Region

Number of SNPs in L Number of SNPs in R

OmegaPlus

Selective sweep theory predicts LD increase at both sides
of a selective sweep …

OmegaPlus

… but not across the selected site.

OmegaPlus

Fast computation of sums for a
region using dynamic
programming.

0

0

0

0

Site j

i

i+1

i+2

i+3

j+1

j+2

j+3

OmegaPlus

r
j+3,j+2

2
0

r
i+2,j+1

2
0

r
i+1,j

2
0

0

Site j

i

i+1

i+2

i+3

j+1

j+2

j+3

OmegaPlus

r
j+3,j+2

2
0

r
i+2,j+1

2
0

r
i+1,j

2
0

0

Site j

i

i+1

i+2

i+3

j+1

j+2

j+3

Direction of calculations

OmegaPlus

Forward-in-Time Simulation
(FiTS)

 Most accurate method for simulating
pop. Gen. datasets
 Works for small population sizes
 Straight-forward method to simulate
evolution of multiple non-neutral mutations
 Combines various evolutionary forces
under complex demographic scenarios
 Problem: orders of magnitude slower
than backward simulation

Toward Whole-Genome
FiTS

 Simulate non-neutral
mutations forward in
time

 Keep track of ancestry
 Progressively create

ancestral graph
 Add neutral mutations

in the end “backward-
like”

rec1

indi1 indi3indi2

mut1 mut2

rec2 mut3

Towards Whole-Genome
FiTS

 Advantage: yields complete history for all
simulated sequences in the population

 Uses:
 high-quality random number generators
 efficient data structures
 SIMD/SSE3 instructions

 At present: 1-2 orders of magnitude faster than
SFS code

 Planned:
 parallelization on shared-memory machines
 trait-based fitness function

Some other projects

 Protein model assignment in partitioned datasets with joint branch
length estimates

 Is this NP-hard?
 Can we design good heuristics?

 RAxML goes Bayesian
 Phylogenetic short read identification and alignment in metagenomics
 Discrete algorithms on tree sets → building consensus trees and

identifying rogue taxa
 Species delimitation in metagenomic samples

 Novel protein substitution models

Tonight

Thank you for your
Attention !

Psiloritis peak, Crete, Greece, April 28, 2012

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Subtree Equality Vectors
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172

