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Introduction
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Cancer is a genetic disease

 Cancer cells harbor various 
types of genetic alteration, 
including
 point mutations
 insertions insertions
 deletions
 chromosome rearrangements
 mitotic recombination
 loss or gain of whole

chromosome arms

4© Niko Beerenwinkel, ETH Zurich

Most cancer cells are aneuploid
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normal karyotype karyotype of a colon cancer cell

Cancer progression

……
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adenoma carcinomaorigin

Genetic progression (accumulating mutations)
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Cancer develops in multiple steps

7

Multistage theory

 uj = u small  ⇒  Prob(one step by time t) = 1 − e−ut ≈ ut.

 Then the incidence is                                                   and
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Ik(t) = (ut)k−1u = uktk−1

log Ik = k logu+ (k − 1) log t
Armitage & Doll 1954, Nordling 1953

Cancer incidence data
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Age

Vogelgram: Linear genetic progression
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Vogelstein et al. 1988, Jones et al. 2008

The hallmarks of cancer
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Hanahan, Weinberg (2001, 2011)

Hallmarks occur in different orders

Tumor 1

Tumor 2
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Tumor 2

Tumor 3

Tumor 4

Tumor 5

…

Hanahan, Weinberg (2001, 2011)
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Cancer is heterogeneous at multiple levels

Population Intra-patient
Spatial, temporal

Intra-tumor
Tissue

Intra-tumor
Genetic
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Florian Markowetz

Inter-patient and intra-patient diversity
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Marusyk et al (2012)

Cancer as an evolutionary process
(Nowell, Science 1976)
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Cancer ecology and evolution
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Greaves and Maley (2012)

ecosystem = tissue 
microenvironment

Molecular profiling of tumors

Tumour
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DNA RNA Protein ChIP
Van’t Veer et al (2002) http://ms.lbl.gov Ross-Innes et al (2012)

Cancer initiation
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Finite populations: The Moran process
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Key results
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 Fixation probability of a single allele 
with selective advantage r:

 Mean waiting time:

 Rate of loss of diversity:
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ρ =
1− 1/r
1− 1/rN

τ ∝ N2
2/N2

Oncogenes

 Oncogenes increase fitness, if one allele is mutated or 
inappropriately expressed. They are activated by:

1 a specific point mutation1. a specific point mutation

2. a gene amplification

3. or chromosomal fusion
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Nowak (2006)

Fixation of oncogene mutations

 The probability that a mutant with selective advantage r has 
been fixed in a (small) population of size N by time t is

P (t) = 1− e−Nuρt

 Observation: Large compartments accelerate the 
accumulation of advantageous mutations, small 
compartments slow it down.

 Most tissues with high cell turnover are organized in many 
small compartments.

 For example, colonic crypts…
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The colon is organized into 107 crypts, each consisting 
of 1,000 to 4,000 cells.

colon wall apoptosisX
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stem cell

cell division 
and migration

Colon cancer arises in a crypt

polyp 
(1mm3, or 106 cells)
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The linear process of cancer
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X

ρ = 1/N and P (t) = 1− e−ut, independent of r

The mutation 
has to occur 
here

Nowak (2006)

Tumor suppressor genes (TSGs)

 Somatic mutations in TSGs are recessive: inactivation of 
one allele is (nearly) neutral, while inactivating the second 
allele confers a fitness advantage. TSGs are inactivated by

1. two point mutations

or

2. one point mutation followed by loss of heterozygosity (LOH).
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Nowak (2006)

TSG inactivation in small populations:
two hits

ue
nc

y

0 1
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TSG inactivation in intermediate populations:
one hit (“stochastic tunneling”)

ue
nc

y

0
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TSG inactivation in large populations:
two hits (not rate limiting)

en
cy

29© Niko Beerenwinkel, ETH Zurich

time

fr
eq

ue 0

1 2

2 hits

1u 2u

20 1

Summary: three dynamic laws for TSG inactivation

Log T

2 hits

1 hit
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Log N

Log T1/2

0 hits (2 non-limiting)

Population size

Time until
50% chance

Nowak (2006)
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TSG inactivation and genetic instability

Cells  
without CIN 1u 2u
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Cells  
with CIN

cu cu

TSG mutation CIN mutation

cu

1u
3u

Cancer progression
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Genetic progression of cancer
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adenoma
106 cells

carcinoma
109 cells1 cell

progressioninitiation

The Wright-Fisher process

generation 1

generation 2
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generation 3

generation 4

Wright-Fisher process, extensions 

 Multinomial sampling in 
discrete generations

 Four model parameters:
N l ti i
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 N — population size
 d — number of driver genes
 u — mutation rate
 s — selective advantage

X(t+1) | X(t) ∼ Mult(N(t), θ0(t;u, s, d), . . . , θk(t;u, s, d))

Evolutionary dynamics of cancer progression
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Genetic progression

Beerenwinkel et al (PLoS Comput Biol 2007)
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The waiting time to cancer

 How long does it take until the first cell with any 20 out of 
100 mutations occurs?
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 The time until the first cell with k mutations appears is

The speed of adaptation

τ ≈ k log2 [s/(ud)]

 Thus, we waiting time to cancer is dominated by the 
selective advantage s.
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τk ≈
2s logN

The probability of developing cancer

normal mutation rate
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genetic instability

Accumulation of driver and passenger mutations

 Branching process model:

 Data:
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Bozic et al (PNAS 2010)

Intra-tumor genetic diversity
and treatment
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Intra-tumor diversity itself has prognostic value

Diagnostics Prognostics
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Marusyk et al (Nat Rev Cancer 2012), Maley et al (Nat Genet 2006)

 Personalized medicine
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Causes and consequences of tumor diversity

Sources of tumor diversity:
• Genetic variation
• Differentiation hierarchies
• Environment
• Stochasticity

43

Almendro et al (Annu Rev Pathol Mech Dis 2013)

→ Functional variation

Intra-tumor diversity affects the value of biomarkers
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Almendro et al (Annu Rev Pathol Mech Dis 2013)

Most mutations originate prior to tumor initiation

where S is the number of 
bases, μ is the per-base 
mutation probability and t

E[Npassenger] = Sμt

mutation probability, and t
the number of times the 
tissue has self-renewed
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Tomasetti et al (PNAS 2013)

Resistance development
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Bozic et al (Trends Mol Med 2012)

The probability of treatment success
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Bozic et al (Trends Mol Med 2012)

P (eradication) = P1P2P3

Prob. of no resistance 
mutation arising 
during expansion

Prob. of no resistance 
mutation arising 
during steady state

Prob. of no resistance 
mutation arising 
during treatment

(density-dependent branching process model)

Competing tumor progression hypotheses

Model

Monoclonal
evolution

Polyclonal
evolution Self-seeding

Mutator
phenotype

Cancer
stem cells
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Tumor mass

Phylogeny

Navin et al (Mol Oncol 2010)
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Strategies for intra-tumor sampling

 Deconvolution of pooled sample

 Laser capture microdissection

 Cell sorting

 Single-cell analysisg y

 Tree reconstruction methods:
 Rearrangement phylogeny (Greenman et al., 2011)
 TuMult (Letouze et a., 2010)
 MEDICC (Schwarz et al.)

 Roland Schwarz’ talk!
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Sector Ploidy Profiling
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Navin et al (Genome Res 2010)

Correlation among copy 
number porfiles

NJ tree

Estimating intra-tumor diversity 
from next-generation 

i d t
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sequencing data

Wright-Fisher model: Expected mutant distribution

 Include neutral 
mutations (passengers)

 Trace individual 
genotypes

simulation
power law

nc
y
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 Most genetic 
variants occur at low 
frequencies

Clone size

F
re

qu
e

n

Next-generation ultra-deep sequencing
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Mixed sample Aligned reads

deep sequencing

Single nucleotide variants
Sequencing error

Calling single-nucleotide variants (SNVs)
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Mixed sample Aligned reads

deep sequencing

Single nucleotide variants
Sequencing error
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Challenges in NGS-based diversity estimation

1. Most SNVs are expected to occur at low frequencies

2. Sample processing and sequencing errors are not uniform

3. Need to test many positions
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deepSNV: Likelihood ratio test
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−2 log L(Xs,i,b, Ys,i,b | H0)
L(Xs,i,b, Ys,i,b | H1)

∼ χ21

Overdispersion

phiX replicates tumor vs. normal

α= 1000 α= 137
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Application: Renal cell carcinoma
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Loss of heterozygosity

 14 hemizygous SNPs
 Allele frequency ratio r = fA / fa ≈ 2 on chr. 3

43% cancer cells in
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ρ =
r/r0 − 1

r/r0 + n− 1

43% cancer cells in 
all tumor samples!

Evolutionary history
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A breast tumor sequenced at 188-fold coverage

 Frequency distribution of mutations:
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Nik-Zainal et al (Cell 2012)

Phasing pairs of subclonal mutations

 Independent vs. subclonal evolution:
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Nik-Zainal et al (Cell 2012)

63

Nik-Zainal et al (Cell 2012)

Dependencies among clonal 
mutations
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(order constraints)

Accumulation of driver mutations

 Cancer mutations accumulate in a series of clonal 
expansions

… but not always in the same linear order.
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A B DC

Partial order

66
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Individual progression
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Genotypes at diagnosis
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Observed genotypes

69

Waiting time distribution

TS ∼ Exp(λS)
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TA ∼ Exp(λA)

TB ∼ Exp(λB)

TC ∼ TA+Exp(λC)

TD ∼ max(TA, TB) + Exp(λD)
Gerstung et al (PLOS ONE 2012)

Posets define the geometry of genotype space

A CB A CB
A B

C

71

C

{A, B, C}

{A, B}

{A}

{A, B, C}

{A, B}

{A}

{B}

{A, B, C}

{A, B}

{A}

{B}

{C} {A, C}

{B, C}

Hidden conjunctive Bayesian network (H-CBN)

Time to
occurrence

of mutations
Time to diagnosis

72

Genotype

Observed
genotype

censoring

noise
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The genetic progression score (GPS) is a prognostic 
biomarker

GPS = E
h
max{Tj | Xj = 1}

i
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MeningiomaProstate cancerGlioblastoma Oral cancer

Progression on the level of genes and pathways
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Glioblastoma multiforme
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genes pathways

Drivers and passengers

 Frequency

 Mutual exclusivity

 Prior knowledge

 Dependency
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p y

SUMMARY

 Tumor development is a stochastic evolutionary process.

 Intra-tumor heterogeneity is abundant and associated with 
failure of targeted treatment.

 Tumor diversity can be detected and quantified by deep-
coverage next-generation sequencing.

 Intra-tumor phylogeny is an open problem, characterized 
by specific features of cancer evolution and by 
experimental techniques.
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