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Introduction

Cancer is a genetic disease

= Cancer cells harbor various i
types of genetic alteration,
including

point mutations

insertions

deletions

chromosome rearrangements
mitotic recombination

loss or gain of whole
chromosome arms

Most cancer cells are aneuploid

karyotype of a colon cancer cell

Cancer progression
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Cancer develops in multiple steps
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Armitage & Doll 1954, Nordling 1953
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Vogelgram: Linear genetic progression

Vogelstein et al. 1988, Jones et al. 2008
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Hallmarks occur in different orders
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Cancer is heterogeneous at multiple levels

Population Intra-patient Intra-tumor

Spatial, temporal Tissue

Intra-tumor
Genetic

Florian Markowetz

Inter-patient and intra-patient diversity

Marusyk et al (2012)

Cancer as an evolutionary process
(Nowell, Science 1976)

The Clonal Evolution of
Tumor Cell Populations
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Cancer ecology and evolution
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Finite populations: The Moran process
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= Fixation probability of a single allele p = 1o 1/?\]

with selective advantage r: 1-1/r

= Mean waiting time: 7o N2
= Rate of loss of diversity: 2/ N2

Oncogenes
= Oncogenes increase fitness, if one allele is mutated or

inappropriately expressed. They are activated by:

a specific point mutation I —_— i

a gene amplification

or chromosomal fusion I | I |

Fixation of oncogene mutations

= The probability that a mutant with selective advantage r has
been fixed in a (small) population of size N by time t is

P(t) =1— ¢ Nurt

= Observation: Large compartments accelerate the
accumulation of advantageous mutations, small
compartments slow it down.

= Most tissues with high cell turnover are organized in many
small compartments.

= For example, colonic crypts...

The colon is organized into 107 crypts, each consisting
of 1,000 to 4,000 cells.

colon wall ’I‘ apoptosis

cell division
and migration

stem cell

Colon cancer arises in a crypt
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The linear process of cancer

The mutation |

has to occur
here
'
PPy Y

p=1/N and P(t) = 1 —e~ %, independent of r _

Tumor suppressor genes (TSGs)

= Somatic mutations in TSGs are recessive: inactivation of
one allele is (nearly) neutral, while inactivating the second
allele confers a fithess advantage. TSGs are inactivated by
two point mutations

one point mutation followed by loss of heterozygosity (LOH).

1 — i

i
or

TSG inactivation in small populations:
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TSG inactivation in intermediate populations:
one hit (“stochastic tunneling”)
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TSG inactivation in large populations:
two hits (not rate limiting)

|

>
(8]
c
(3]
=]
o
[
=
w“—

Il =G
0 1 2

2 hits time

Summary: three dynamic laws for TSG inactivation

2 hits
1 hit
Log Ty
Time until 0 hits (2 non-limiting)

50% chance

Log N

Population size Novak (2006)




TSG inactivation and genetic instability
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Cancer progression
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The Wright-Fisher process

generation 1
generation 2

generation 3

Wright-Fisher process, extensions
= Multinomial sampling in . /.
discrete generations X
= Four model parameters:
= N — population size
= d — number of driver genes ‘

= u — mutation rate
= s — selective advantage

X(t41) | X () ~ MUIt(N(2), 6o(t; u, s, d), ..., 0, (t; u, 5, d))

al (PLoS Comput Biol 2007)




The waiting time to cancer
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= How long does it take until the first cell with any 20 out of
100 mutations occurs?

The speed of adaptation

= The time until the first cell with kK mutations appears is

_klog?[s/(ud)]
- 2slog N

= Thus, we waiting time to cancer is dominated by the
selective advantage s.
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Accumulation of driver and passenger mutations

= Branching process model:

v 4ks?
n = —log——logk
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Pasargers

Drvans Crers Bozic et al (PNAS 2010)

Intra-tumor genetic diversity
and treatment

Intra-tumor diversity itself has prognostic value

Diagnostics

Prognostics

Incidenron ol asgnignol




Sources of tumor diversity:
* Genetic variation

* Differentiation hierarchies
* Environment
* Stochasticity

— Functional variation

Almendro et al (Annu Rev Pathol Mech Dis 2013)

Intra-tumor diversity affects the value of biomarkefs

Primary tumor Residual disease Metastatic disease Metastatic disease

Pavallel progression

Relapse
—_—
Lirspar
progression

Disgnasis of relapse

Treatment decivion based
on initlal diagnasis

Almendro et al (Annu Rev Pathol Mech Dis 2013)
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Most mutations originate prior to tumor initia'tion

E[Npassenger] = Sut

where S is the number of
bases, y is the per-base
mutation probability, and ¢
the number of times the
tissue has self-renewed

Tomasett et al (PNAS 2013)

Resistance development
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Bozic et al (Trends Mol Med 2012)

P(eradication) = Py P,P3

_— \
Prob. of no resistance Prob. of no resistance

mutation arising mutation arising
during steady state during treatment

Prob. of no resistance
mutation arising
during expansion

(density-dependent branching process model) Bozic ot al (Trends Mol Med 2012)
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Strategies for intra-tumor sampling

= Deconvolution of pooled sample
= Laser capture microdissection

= Cell sorting

= Single-cell analysis

= Tree reconstruction methods:
Rearrangement phylogeny (Greenman et al., 2011)
TuMult (Letouze et a., 2010)
MEDICC (Schwarz et al.)

- Roland Schwarz’ talk!

Correlation among copy
number porfiles

NJ tree

Estimating intra-tumor diversity
from next-generation
sequencing data

Wright-Fisher model: Expected mutant distribution

= |nclude neutral

mutations (passengers) B oo
= Trace individual g
genotypes o

Frequency
li -]
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- Most genetic 2
variants occur at low
frequencies s . )

Clone size

deep sequencing

Mixed sample

Aligned reads

@ ee 00 Single nucleotide variants
® Sequencing error

deep sequencing = -
-

Mixed sample

Aligned reads

@ ee o0 Single nucleotide variants
® Sequencing error




Challenges in NGS-based diversity estimation

1. Most SNVs are expected to occur at low frequencies
2. Sample processing and sequencing errors are not uniform

3. Need to test many positions
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A breast tumor sequenced at 188-fold coverage

= Frequency distribution of mutations:

Chromosomes without subclonal
copy number variation

Cluster D

CILi:;te,(\|I Cluster B Cluster C
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Fraction of reads reporting mutation

Phasing pairs of subclonal mutations

= |ndependent vs. subclonal evolution:

Mutually exclusive mutations

Mutations shewing subclonal evolution
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Dependencies among clonal
mutations
(order constraints)

Accumulation of driver mutations

= Cancer mutations accumulate in a series of clonal
expansions

... but not always in the same linear order.

Partial order
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Individual progression Genotypes at diagnosis
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The genetic progression score (GPS) is a prognostic
biomarker

GPS = E [max{T} | X; = 1}]

Glioblastoma Prostate cancer Meningioma Oral cancer
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SUMMARY

= Tumor development is a stochastic evolutionary process.

= Intra-tumor heterogeneity is abundant and associated with
failure of targeted treatment.

= Tumor diversity can be detected and quantified by deep-
coverage next-generation sequencing.

= Intra-tumor phylogeny is an open problem, characterized
by specific features of cancer evolution and by
experimental techniques.

Jonas Behr

Acknowledgements

Simona Constantinescu

Ariane Hofmann
Janos Kelemen
Pejman Mohammadi
Hesam Montazeri
Thomas Sakoparnig
Fabian Schmich
David Seifert
Juliane Siebourg
Ewa Szczurek
Armin Tépfer

Collaborators:

Tibor Antal (Edinburgh)

Christian Beisel (D-BSSE, ETH Zurich)
Nick Eriksson (23andMe)

Moritz Gerstung (Sanger Institute)
Manoj Mahimkar (Tata Memorial Center, Mumbai)
Holger Moch (University Hospital Zurich)
Martin Nowak (Harvard)

Jorg Rahnenfiihrer (TU Dortmund)
Alejandro A. Schaffer (NCBI, NIH)

Arne Traulsen (MPI Evolutionary Biology)
Bert Vogelstein (Johns Hopkins)

Funding:
SNF, SHCS, SystemsX.ch,
Swiss Cancer League, SIB

www.cbg.ethz.ch
I @ e e s

13



