Bayesian robust principal component analysis to detect genomic regions involved in local adaptation

Michael GB Blum, Nicolas Duforet-Frebourg

CNRS, Université Joseph Fourier Grenoble

Principal component analysis in population genetics

Suo et al EJHG 2011

Local adaptation

- Definition: greater fitness of individuals in their local habitats due to natural selection
- Scanning genomes to look for the outlier regions, which have been involved in local adaptation

Holsinger and Weir, Nat Rev Genet 2009

Local adaptation Does it matter for health?

- Local adaptation in humans
 The diversity of the local pathogenic environment is the predominant driver of local adaptation Fumagalli et al. PLoS G 2011
- Local adaptation in pathogens
 The loci involved in local adaptation are drug resistance loci in the Plasmodium falciparum malaria parasite Park et al. PNAS 2012

Principal component analysis (PCA)

PCA with K components is an optimal approximation of rank K for the matrix of genotypes X

$$X_i = \sum_{k=1}^K \lambda_i^k E_k$$

X_i: Genotype of the ith individual (0,1,1,2,0,0,.....)

 E_k : vector of loadings $(E_k^1, E_k^2, E_k^3, ...)$ of the same length as X_i

Principal component analysis (PCA)

$$X_i = \sum_{k=1}^K \lambda_i^k E_k$$

In the example of East Asiatic data, the outlier loci in E_1 correspond to the regions involved in adaptation along the latitudinal gradient (*Laloe and Gautier, arXiv*)

Robust Bayesian principal component analysis

A probabilistic version of PCA
 Tipping and Bishop JRSSB 1999

$$X_i = \sum_{k=1}^K \lambda_i^k E_k + \varepsilon_i$$

• The location-shift model for outlier detection Verdinelli and Wasserman 1991

$$p(E^{j}) = (1 - \pi) N(0, \sigma^{2}) + \pi N(A, \sigma^{2})$$

where π is the genome-wide outlier probability.

Robust Bayesian principal component analysis

Can account for different proportions of outliers for each PC

$$\pi = \pi_1 + \pi_2 + \ldots + \pi_K$$

where π_k is the probability to be outlier for the kth PC.

- A general advantage of Bayesian method for genome scan Stephens and Balding Nat Rev Genet 2009
 - Provide an estimate of the false discovery rate because for each loci we have P(no selection | D) and P(selection | D)

A simulation study in a divergence model

Neutral divergence (ms)

Divergence with selection (*SimuPOP*) 4% out of 10,000 SNPs under selection

Methods for selection scan:

- F_{st} A measure of differentiation between populations
- Standard PCA and PCAdapt
- BayeScan (Foll and Gaggiotti Genetics 2008)
 Assumes a mechanistic model
 of instantaneous divergence

A simulation study in a divergence model

A simulation study in a divergence model

Comparing methods of selection scan

Precision =1-False Discov. Rate Fraction of loci under selection among the significant loci

Comparing methods of selection scan

Precision

Fraction of loci under selection among the significant loci

Fraction of the loci under selection that are significant

Robustness w.r.t. the choice of K

Conclusions

 PCA and a Bayesian variant of PCA (PCAdapat) can be used for selection scan

 Robustness of (non-parametric) statistical models compared to a mechanistic model

$$X_i = \sum_{k=1}^K \lambda_i^k E_k \quad \text{vs} \quad /$$

