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Types of phylogenies and representations

rooted trees unrooted tree
A

A B B

B C A

C D C

D E

E 01 0.1

D

(a) cladogram (b) phylogram (c) unrooted tree
((((A, B), C), D), E); (((A:0.1, B:0.2):0.12, C:0.8):0.123, D:0.4):0.1234, E:0.5);

branches (edges) and their lengths, nodes, tips (leaves)
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The tip-labeled time-tree

A tip-labeled time-tree is described by a tip-labeled ranked topology of

size k and coalescent intervals, u = {uo, . .., Uk }.
u, t
uy t
A B C A B C B A c

These time-trees of size 3 can be interpreted as describing the
possible alternative evolutionary histories or (uniparental) ancestries of
the three individuals represented by the labeled tips.
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The space of tip-labeled time-trees of size 3
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Unranked tree topologies of size 4

AN A A A AN
AN AN AN AN A
AN A A A AN

1 3 2 4 1 4 3 2
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How many trees are there?

For n species there are

(2n—3)!

To=1x8x5x---x(2n-38) = 50

rooted, tip-labelled binary trees:

n #trees

4 15 enumerable by hand

5 105 enumerable by hand on a rainy day

6 945 enumerable by computer

7 10395 still searchable very quickly on computer
8 135135 about the number of hairs on your head
9 2027025 greater than the population of Auckland

10 34459425
20 8.20 x 107
48  3.21 x 107
136  2.11 x 10%7

~ upper limit for exhaustive search

~ upper limit of branch-and-bound searching

~ the number of particles in the Universe

number of trees to choose from in the “Out of Africa”
data (Vigilant et al. 1991)




Felsenstein’s likelihood (1981)

ATGCTTGCAARA

L(T) = Pr{D|T,Q}

The probability of the data,
Pr{D|T, Q} can be efficiently
calculated given a phylogenetic
tree (T), and a probabilistic
model of molecular evolution (Q).

In statistical phylogenetics,
branch lengths are traditionally
unconstrained.



Tree space as a hilly landscape

The space of all possible trees can be visualized as a hilly landscape. Nearby
points in this landscape represent similar trees, and the height of the
landscape is the probability of the tree at that point.
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» This space can be sampled in a Bayesian analysis with MCMC

> The peak can be identified by a search algorithm in the context of
maximum likelihoods



Local tree search and multiple optima

Likelihood

Global Maximum Likelihood tree ~.

local optimum

T

Starting tree of the

heuristic search

Starting tree of the Trees
heuristic search



Bayes rule in statistics

Pr(D|0)Pr(6)

PrOID) = — 5, 3

where

v

P(D|0) is the likelihood,
Pr(8) is the prior distribution and

v

v

Pr(6|D) is the posterior distribution.

v

Pr(D) is the marginal likelihood of the data.
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Bayes rule in phylogenetics

Pr{D|T,Q}p(T)p(Q)
Pr{D}

p(T,QID) =

where
» Pr(D|T,Q) is Felsenstein’s likelihood,
» p(T) is the prior distribution on phylogenetic trees,
» p(Q) is the prior distribution on the model of evolution and
» p(T,Q|D) is the posterior distribution
» Pr(D) is the marginal likelihood of the data.
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Bayesian reconstruction of phylogenetic trees
Yang & Rannala (1997), Mau, Newton & Larget (1998)

In the context of Bayesian phylogenetics, what we want to compute is
the probability of the tree given the data.

We can compute that from the likelihood using Bayes Theorem:

Prior
. - Likelihood Probability
Posterior probability Pr(: :::::::::::3;:2::::;:::' A ) P( A\ )
3 ACAGCCTCATTGTGGACGACAAT
4 ATGGTOET-CCAGAAGRAGTG-E

1 ATAACTTCATTGTAGATAATAAT

2 CTAACTTCATTGTAGATAATAAT —
3 WA GEEMERNN G 11G ;K ARART —

4 AEGGICET - CCAGAAGEAGTG-C

| ATAACTTCATTGTAGATAATAAT
2 CTAACTTCATTGTAGATAATAAT
3 ACAGCCTCATTGTCGACGACAAT

4 ATCCTEOT-CCACAAGEACTG-T

Normalizing constant

This is known as the Posterior probability of the tree. Another
method of reconstructing the evolutionary history is then to find the
tree that has the Maximum Posterior probability.



Markov chain Monte Carlo (MCMC) robot

[courtesy of Paul O Lewis]
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Drastic “off the cliff”
. downhill steps are almost
+_ never accepted

Slightly downhill steps
are usually accepted

With these rules, it is easy to
see that the robot tends to
stay near the tops of hills

Uphill steps are
always accepted




Markov chain Monte Carlo (MCMC) robot

[courtesy of Paul O Lewis]

10+
Slightly downhill steps
8T are usually accepted |,
because Ris near 1,”
6+ Currently at 6.20 m
Proposed at 5.58 m
R =5.58/6.20 = 0.90

Drastic “off the cliff”

downhill steps are almost

never accepted because
Ris near O

’ |

Currently at 6.20 m
| Proposed at 0.31 m
R =0.31/6.20 = 0.05

4
Currently at 1.0 m

2 Proposed at 2.3 m
1 R=23/1.0=23

Uphill steps are
always accepted
because R > 1

The robot takes a step if it draws

a random number (uniform on 0.0 to 1.0),
and that number is less than or equal to R
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Pure Random Walk

[courtesy of Paul O Lewis]

Proposal scheme:

» random direction

» gamma-distributed step
length (mean 45 pixels,
s.d. 40 pixels)

» reflection at edges

Target distribution:
» equal mixture of 3
bivariate normal hills
» inner contours: 50%
> outer contours: 95%

In this case the robot is
o accepting every step and 5000

392 pixels steps are shown
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Burn In

[courtesy of Paul O Lewis]

Robot is now following
the rules and thus quickly
finds one of the three
hills.

Note that first few steps
are not at all
representative of the
distribution.

100 steps taken from
starting point



Target Distribution Approximation

[courtesy of Paul O Lewis]

How good is the MCMC
approximation?

> 51.2% of points are
inside inner
contours (cf. 50%
actual)

> 93.6% of points are
inside outer
contours (cf. 95%
actual)

Approximation gets
better the longer the
chain is allowed to run.

5000 steps taken



Target distribution versus proposal distribution

» The target distribution is the posterior distribution of interest
» The proposal distribution is used to decide which point to try next
» you have much flexibility here, and the choice affects only the
efficiency of the MCMC algorithm
» MCMC using a symmetric proposal distribution is the Metropolis
algorithm (Metropolis et al. 1953)
» Use of an asymmetric proposal distribution requires a modification
proposed by Hastings (1970), and is known as the
Metropolis-Hastings algorithm

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. 1953. Equation of
state calculations by fast computing machines. J. Chem. Phys. 21:1087-1092.
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The Posterior Distribution on Darwin’s Finches

1 ATAACTTCATTGTAGATAATAAT
2 CTAACTTCATTGTAGATAATAAT
3 -IG_-GIGG-G--
4 ATGGITCCT - CCAGAAGIEAGITG-[€

A AL A

Fee™> Foe o> gL

0.9938 0.0030 0.0012

A\ AN

g™ Feeor

0.0011 0.0009

This posterior probability distribution was computed using Markov chain
Monte Carlo implemented in the BEAST software package (Drummond &
Rambaut, 2007).



The posterior distribution for a moderately large time tree

\

22/112



Summary of BEAST 2 capabilities

Analysis

Estimate phylogenies from alignments

Estimate dates of most recent common ancestors
Estimate gene and species trees

Infer population histories

Estimate substitution rates

Phylogeography
Path sampling
Simulation studies

Models

Trees

Tree Likelihood

Substitution Models

Frequency models
Sitemodels
Tree Priors

Clock Models
Prior distributions

Gene trees, species trees, structured coalescent,
serially sampled trees

Felsenstein, threaded, Beagle

Continuous, Ancestral reconstruction

SNAPP

Auto Partition

JC96, HKY, TN93, GTR

Covarion, Stochastic Dollo

RB, substBMA

Blosum62, CPREV, Dayhoff, JTT, MTREV, WAG
Fixed, estimated, empirical

Gamma site model, Mixture site model

Coalescent constant, exponential, skyline

Birth Death Yule, Birth Death Sampling Skyline
Yule with callibration correction

Multi species coalescent

Strict, Relaxed, Random

Uniform, 1/X, Normal, LogNormal, Gamma, Beta, etc.




Evolution is happening right now!
Rodrigo and Felsenstein, 1999; Drummond et al, 2002

Many pathogens, such as HIV, Hepatitis C and Influenza A, evolve very
rapidly, so that samples of the virus population from different times directly
reveal evolutionary change.

=
ET

[

2004 2006 2008

In fact it becomes possible to calibrate the tree and thus place the tree on a
time scale - by constraining the tips to known sampling times






A calibrated phylogenetic inference
Origin of HIV Epidemic in the Americas, Gilbert et al (2007)

— subtype D
m— — subtype B
38 5 T = Haiti
2¢ 8s Trini
o o4 rinidad
= & Tobago

1950 1960 1970 1980 1990 2000

A phylogenetic reconstruction of samples of HIV-1 virus. Each degree one
node represents a single infected individual from whom a blood sample has
been taken.



Phylodynamics

27/112

The intersection of phylogenetics and mathematical
epidemiology

Includes estimation of epidemiological parameters from
phylogenetic data

In a Bayesian setting, this has the familiar flavor of a hierarchical
tree prior

The hyperparameters of the tree prior become dynamical
parameters of the epidemiological model

The most common approach is to leverage coalescent theory, by
using coalescent machinery augmented with deterministic models
of effective population size parametrized by Ry or its
epidemiological constituents (net infection rate et cetera).



Coalescent models



Bayesian coalescent inference

29/112

Kingman’s coalescent is a mathematical theory describing a
genealogy of a small random sample from a large background
population.

Provides a probability distribution over tree space given a
population size history: P(G|N)
Old coalescent trees come from large populations

Star-like coalescent trees come from exponentially growing
populations

In a Bayesian framework the coalescent is a hierarchical prior on
tree space.

Backwards in time model

Applied to both within-host and between-host population
dynamics



The coalescent with serial samples
Many epidemiological agents evolve very rapidly, so that the effect of
sampling the population at different times becomes important.

Fig. 3. The underlying Wright-Fisher population and serially-sampled ies from two i The first ion has a constant ion size over the history
of the genealogy, while the second population has been exponentially growing. The coalescent likelihood caleulates the probability of a genealogy given a particular
background population history (e.g., constant or exponentially growing) and can therefore be employed to estimate the population history that best reflects the shape of the
co-estimated phylogeny.
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Bayesian integration of uncertainty in genealogies

—————
I [ =
—
H_E

How similar are these two trees? Both of them are plausible given the
data. We can use Bayesian Markov chain Monte Carlo to average the
coalescent over all plausible trees.
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The Bayesian skyline plot

Drummond et al (2005), Molecular Biology and Evolution

Dengue-4 Bayesian skyline plot (15 epochs)

1000

The Bayesian skyline
plot estimates a
demographic function
that has a certain fixed
number of steps (in this A T T
example 15) and then
integrates over all
possible positions of the
break points, and
population sizes within
each epoch.

Population size * generation length

Population size * generation length
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Validating the Bayesian skyline plot

Bayesian skyline (49 or 12 epochs)

100
10
—Median (49)
1 —lower (49)
8 0.1 — upper (49)
}:’ —truth
F 001 ~——Median (12)
0.001 —lower (12)
—upper (12)
0.0001
0.00001

0 0.002 0.004 0.006 0.008
Time (mutations)
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Comparison of BSP to parametric coalescent model
Hepatitis C in Egypt

100000

10000

1000

Population size (Nt)

10

0.0 500 100.0 150.0 200.0

Years (before 1993)
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Extending the BSP with Stochastic Variable Selection

Heled and Drummond (2008), Molecular Biology and Evolution

85

Population

Y

Time
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Comparison of EBSP to BSP on Egypt Hepatitis C

10°

— EBSP (stepwise E(A) = 6) median
- - BSP (m=24) median

10"

10°

population

10%

101 L

10°

0 50 100 150 200
Years (Before 1993)
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Detecting evolutionary bottlenecks using EBSP

480 contemporaneous samples from a single locus

3000

[ N
[=] o
o o
o (=]
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Q
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o
o

Population (red HPD, blue furgel)

500

0 200 400 600 800 1000 1200
Time
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Detecting evolutionary bottlenecks using EBSP

16 contemporaneous samples from each of 32 loci

4000
3000
2000

1000

Population (red HPD, blue target)

o] 200 400 600 800 1000 1200
Time

38/112



Detecting evolutionary bottlenecks using EBSP

480 samples sampled through time from a single locus

5000

rget)

4000

3000

2000

Population (red HPD, blue t

1000

0 200 400 600 800 1000
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The population dynamics of genetic diversity in Influenza A
Rambaut et al (2008) Nature 453:615-620

25
20 New York H3N2 H1N1
— HA —HA
215 NA —NA
[4
210
el
o8
? 0
S 00 New Zealand
o
215
©
£10
5
0
1990 1992 1994 1996 1998 2000 2002 2004 2006

Year

Figure 1| Population dynamics of genetic diversity in influenza A virus.
Bayesian skyline plots of the HA and NA segments for the A/H3N2 and
A/HI1N1 subtypes in New York state (top) and New Zealand (bottom). The
horizontal shaded blocks represent the winter seasons. The y-axes represent
a measure of relative genetic diversity (see Methods for details). The shorter
timescale of New Zealand skyline plot is due to the shorter sampling period.
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Birth-death models



42

Sampled Sampled Sampled

Transmission histor L. . .
y transmission history gene tree transmission tree

B

An oriented transmission tree and the embedded un-oriented viral
gene tree.



Birth-death-serial-sampled (BDSS) tree prior

Stadler, 2010

—x=t,

X1 = brca

The per-lineage dynamics are captured by a simple set of rate equations:

R R BNy R Ny

Ry is the expected number of secondary infections per infected individual:

A
Ro =
wtrp

Where r is the probability that sampling removes the lineage from infectious category.



Connecting coalescent growth rates and epidemic models

There is a simple relationship between Ry and growth rate g at the
start of the epidemic:

R0:1+g 3)

where d is total death rate (Wallinga & Lipsitch, 2007). Taking:

d=pu+ry (4)
g=A-d (5)

it is easy to show this Ry is the same as for BDSS model, so
coalescent-estimated g is also an estimate of A — p — ra.

Can we still estimate g accurately with exponential coalescent?



Estimating growth rate based on coalescent approach

45/112

Table : The measure of accuracy of estimating growth rate g in exponential
growth tree prior, where true value g = A\ — . — rip = 4.24 x 1074

BDSS 1 tree 2 trees 5 trees
mean of median 0.0004488872 | 0.0004460723 0.0004396722
relative error 0.1705658 0.1316335 0.07757073
relative bias 0.05869633 0.05205729 0.03696277
HPD interval width | 0.0003617696 | 0.0002531587 0.0001581470
95% HPD accuracy 95% 96% 93%
Coalescent 1 tree 2 trees 5 trees
mean of median 0.0004845768 | 0.0004319822 0.0004147897
relative error 0.2701248 0.1972525 0.1244552
relative bias 0.1428698 0.01882604 —0.02172247
HPD interval width | 0.0001942935 | 0.0001265572 | 7.699674 x 10~°
95% HPD accuracy 48% 46% 46%




Birth—death skyline plot reveals temporal changes
of epidemic spread in HIV and hepatitis C virus (HCV)

Tanja Stadler®"?, Denise Kiihnert™><", Sebastian Bonhoeffer®, and Alexei J. Drummond®<

2Department of Environmental Systems Science, Eidgendssische Technische Hochschule Ziirich, 8092 Zrich, Switzerland; and “Department of Computer
Science and “Allan Wilson Centre for Molecular Ecology and Evolution, University of Auckland, Auckland, New Zealand

Edited by Robert M. May, University of Oxford, Oxford, United Kingdom, and approved November 15, 2012 (received for review May 10, 2012)

Phylogenetic trees can be used to infer the processes that generated
them. Here, we introduce a model, the Bayesian birth-death skyline
plot, which explicitly esti the rate of issis recovery,
and sampling and thus allows inference of the effective reproduc-
tive number directly from genetic data. Our method allows these
parameters to vary through time in a piecewise fashion and is im-
plemented within the Beast2 software framework. The method is
a powerful alternative to the existing coalescent skyline plot, pro-
viding insight into the differing roles of incidence and prevalence in
an epidemic. We apply this method to data from the United King-
dom HIV-1 ic and Egyptian hepatitis C virus (HCV) epidemi

The analysis reveals temporal changes of the effective reproductive
number that highlight the effect of past public health interventions.

birth-death prior | epidemiological dynamics | phylodynamics

The birth-death skyline model essentially combines two pre-
vious approaches. Previously, a skyline model was introduced that
assumed samples were all taken at one point in time, corre-
sponding to a sample of extant species (10). Earlier work had also
described how to model sequential sampling for constant epide-
miological rates (a birth-death alternative to the exponential
growth coalescent model; see refs. 9 and 11). Combining the
skyline model (10) with the sequential sampling model (11), and
embedding the result in a Bayesian inference framework (9),
yields the approach described in this paper.

We apply the birth-death skyline method to an HIV trans-
mission cluster from the United Kingdom and a sample of
hepatitis C virus (HCV) sequences from Egypt to investigate the
temporal changes of epidemic spread. We decided to use these
two datasets as they are representatives of very different epi-
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A Stochastic Simulator of Birth-Death Master Equations with
Application to Phylodynamics

Timothy G. Vaughan’“'2 and Alexei ). Drummond™?

"Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand
?|nstitute of Veterinary Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
3Department of Computer Science, University of Auckland, Auckland, New Zealand

*Corresponding author: E-mail: tgvaughan@massey.acnz.

Associate editor: Asger Hobolth

Abstract

In this article, we present a versatile new software tool for the simulation and analysis of stochastic models of population
phylodynamics and chemical kinetics. Models are specified via an expressive and human-readable XML format and can be
used as the basis for generating either single population histories or large ensembles of such histories. Importantly,
phylogenetic trees or ks can be generated alongside the histories they correspond to, enabling investigations into
the interplay between g logies and population dy ics. Summary statistics such as means and variances can be
recorded in place of the full ensemble, allowing for a reduction in the of y used. important consid-
eration for models including large bers of individual subpopulations or demes. In the case of population size
histories, the resulting simulation output is written to disk in the ﬂe:uble JSON format, which is easily read into numerical
analysis environments such as R for visualization or further processing. Simulated phylogenetic trees can be recorded
using the standard Newick or NEXUS formats, with extensions to these formats used for non-tree-like inheritance
relationships.

Key words: stochastic simulation, population genetics, phy
modeling.

ic trees, chemical kinetics simulation, epidemic



<beast version="2.0" namespace='beast.core.parameter:master.beast >
<run spec='Trajectory ' simulationTime="50">

<model spec="Model >

<|— CGompartment populations in model—>
<population spec='Population' populationName='S" id='S"'/>
<population spec='Population’ populationName="1" id="1"/>

<population spec='Population’ populationName="'R' id="R"'/>

<|-— Reactions giving rise to stochastic dynamics —>
<reaction spec='Reaction’ reactionName="Infection’ rate="0.001">
S+ 1= 21

</reaction>

<reaction spec='Reaction’ reactionName='Recovery ' rate='0.2 ">
I — R

</reaction>

</modet>

<!— Initial compartment occupancies —>

<initialState spec='InitState ">

<populationSize spec='PopulationSize’ population="@5" size='999"/>
<populationSize spec='PopulationSize' population="@!" size="1"/>
</initialState>

<!— Output file specification —>
<output spec='JsonOutput’ fileName="SIR_output.json’'/>

</run>
</beast>

Fic. 1. MASTER input file specifying a single fixed time length simulation of a stochastic SIR model.



Infectious compartment size

Time

Fic. 3. Histories generated using the two-deme structured SIR model.
Note the clear delay between peak infection in deme 0 and peak infec-
tion in deme 1.
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Fic. 5. A stochastic logistic model with inheritance tracking
(a) Inheritance relationships between reactants (top) and products
(bottom). (b) A typical tree produced by MASTER.
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Within-host demographic fluctuations and correlations in early
retroviral infection
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Received 12 July 2011 populations of viruses and their target cells during the early stages of infection. In particular, we
Received in revised form present an exact treatment of a discrete-population, stochastic, continuous-time master equation
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description of HIV or similar retroviral infection dynamics, employing Monte Carlo simulations. The
results of calculations employing Gillespie's direct method clearly demonstrate the importance of
considering the microscopic details of the interactions which constitute the macroscopic dynamics. We
Keywords: then employ the t-leaping approach to study the statistical characteristics of infections involving
HV realistic absolute numbers of within-host viral and cellular populations, before going on to investigate
??pula[fm‘ dy!‘mfm. the effect that initial viral population size plays on these characteristics. Our main conclusion is that




Target Cell Infected Cell

—(x/ fﬁﬂ®
Virion '
»

Fig. 1. Schematic of the model used in this paper, detailing the microscopic
processes involving target cells (X), infected cells (Y) and virions (V). Each arrow
represents a single process occurring at the rate given by its label, with its
tail(s) indicating the one or more bodies which instigate the process and the head
indicating the product. The dashed line indicates that infected cells are not
consumed in the production of virions.
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Fic. 4. Using MASTER to perform within-host infection dynamics sim-
ulations. (a) Expected viral load conditional on chronic infection.

(b) Relative covariance between infected cell and virion within-host
populations.



Sampling ancestors



Fully ranked tree with sampled internal nodes

A 1
2

3

B C 4
D 5

m
o))
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How many trees with sampled internal nodes are there?

We can recursively count these trees using equations:

S(n) = A(n) = "0 1!
nm mln{/ Nm—1}
S(n1,...,nm): (/.)(nm 1)
xR(nm)S(m, ey Nt 10— )

R(7)

Time complexity is O(mn?), where n is the number of sampled
individuals and m is the number of sampling times.
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Birth-death-sampling-through-time model
with sampled ancestors

birth rate A
death rate p

v

v

v

sampling rate 1

v

become noninfectious probability r

This model produces only trees in which each sampled node has
distinct rank.
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Bayesian MCMC analysis with BEAST 2

Since this model produces trees which are not necessarily bifurcating
we need to extend Bayesian MCMC methods and adapt BEAST 2 for
dealing with a new type of tree.

» Prior distribution

» Proposal mechanism

» Likelihood (peeling algorithm)
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Prior distribution

Stadler at el.:

TN, fs20, 7y tor = Xo] = A (0(1 — 1))

<T1 <oy 110+ (= Dpal)atn)
i=0 T\ =
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Proposal mechanism

An extension of Wilson-Balding operator

» Choose an edge e; that terminates at node i.

» Choose an edge ¢e; such that at least one end of g; is above i or a
leaf j which is above i excluding the edges adjacent to e;.

> Prune the edge e; together with the descendant subtree and
attach it to the edge e; or to the leaf .
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Proposal mechanism

Wilson-Balding operator
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Proposal mechanism

Wilson-Balding operator
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Proposal mechanism

Wilson-Balding operator
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Proposal mechanism

Wilson-Balding operator

67/112



Proposal mechanism

Extension of Wilson-Balding operator

68/112



Proposal mechanism

Extension of Wilson-Balding operator
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Proposal mechanism

Extension of Wilson-Balding operator
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Proposal mechanism

Every tree is reachable with finite number of moves.

Hastings ratio is as follows:

attaching to internal leaf root
removing from | branch branch
internal branch % (031) “i,‘ %
node ﬁw 1 (DiﬂeIX;I
root branch % (Df_’1) el1x, .
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Sampling from prior BEAST 2

72/112

A=2,p=1,v%=1,andr = 0.5.

nNe

X0:3
yi=2
yo =1

y3=20



Sampling from prior BEAST 2

Chain length of 100000 and log every 100.
Thus, 1000 trees were sampled. ESS is 1000.

Count Percent Topology
263 26.30 ((1)2)3
242 24.20 ((1,2))3
238 23.80 ((1,2),3)
193 19.30 ((1)2,3)
26 2.60 (1,(2)3)
20 2.00 ((1)3,2)
14 1.40 (1,(2,3))
4 0.40 ((1,3),2)

74.4% of trees have sampled internal nodes.
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Sampling from prior BEAST 2

26.3%
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Sampling from prior BEAST 2

24.2%
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Sampling from prior BEAST 2

23.8%
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Sampling from prior BEAST 2

19.3%
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Sampling from prior BEAST 2

A[Bj, ..., Bx] is a subtree with the root at sampled node A and
By, ..., Bk are all the sampled node under nodes A that occurs in this
subtree.

Count Percent Clade
1000  100.00 1]
544 54.40 2(]
505 50.50 3[1, 2]
456 45.60 2[1]
449 44.90 3

26 2.60 3[2]
20 2.00 3[1]
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Sampling from prior BEAST 2

A[B] means that sampled node A is an ancestor of sampled node B.

Count Percent Pair
531 53.10  3[2]
525 52.50  3[1]
456 45.60 2[1]
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Sampling from prior BEAST 2

r=20.9
ESS = 995.77

Count Percent Topology

708 70.80  ((1,2),3)

106 10.60  ((1)2,3)
97 9.70  ((1,2))3

32 3.20 ,(2,3))

(1
31 3.10 ((1,3),2)

13 1.30 ((1)2)3
1

8 080  (1,(2)3)
5 050  ((1)3,2)

22.9 % of trees have sampled internal nodes.



Further work:

» Likelihood
» More operators

» Using other models, i.e. skyline model
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Structured tree models



Structured trees
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Structured Coalescent

» Accommodates subdivision (demes) in the population

» Initially described by Tajima (1989) and Hudson (1990)
» Implemented in Migrate (Beerli and Felsenstein, 1999; 2001)
» Estimates subpopulation sizes and migration rates in both ML and
Bayesian framework

More recent Extensions
» Serial sampling of data (Ewing et al., 2004)
» Number demes change over time (Ewing and Rodrigo, 2006a)

» Ghost demes - demes that are hidden/not sampled (but you know
they are there; Beerli, 2004; Ewing and Rodrigo, 2006b)
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Two-deme Wright-Fisher model
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Fic. 2.5. A simplified view of Fisher-Wright subpopulations with migration.
Migration events, shown as dashed lines between subpopulations, are explic-
itly placed on the genealogy (right), as bold circles. The ds signify intervals
between migration nodes, coalescent nodes, and leaf nodes.

» In general, N; is the population size of population (deme) i.

» my is the probability that an individual in population i was
produced from a parent in population j.
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Two-deme structured coalescent trees

e W

Ny = No = 1000, mi2 = moy; = 0.0008. There are 15 samples from
each deme, all sampled at the same time.
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Two-deme structured coalescent trees

e L

A standard phylogenetic inference method would infer just the tree.
Here we show the true trees, tips annotated with known demes.
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Structured coalescent likelihood

The structured
coalescent likelihood
can be expressed as a
product over time
intervals from the tips to
the root of the ancestral
genealogy.

In the standard
panmictic coalescent,
the number of intervals
is known, but in the
structured coalescent its
an unknown random
variable.
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Histogram of migration events
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Prior distribution of the number of migration events
in the two deme, 30 sample example.



Bayesian MCMC of structured coalescent
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In a non-structured Bayesian coalescent analysis, the tree topology
and coalescent times are sampled in a Markov chain of correlated
states. The size of the discrete structure is fixed to n — 1 coalescent
events. Operators involve modifying the ancestral relationship tree
topology or altering the times of the coalescent events.

For the structured coalescent we have to introduce new “operators”
that can add or remove migration events to the ancestral history. When
a migration event is added it must be given a time and location on the
tree. This increases the state space and thus the computational
demand on the inference.



Beerli and Felsenstein (2001) proposal distribution

1. Tree proposals based on
“dissolving” part of the tree and
then redrawing from the
(conditional) prior.

2. Good at sampling from the prior

3. Bad when the sequence data is
informative about the tree,
because random coalescent
subtrees won't fit the sequence
data well.
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Ewing, Nicholls and Rodrigo (2004) proposal distribution

91/112

. “Standard” tree state proposals,

rejecting when inconsistent typed
tree generated.

. Type-specific operators

A. Migration-pair birth/death move
B. Migration merge-split move

. Relatively poor mixing.

A

ﬁH



Operator design strategy

With some exceptions, we take the following general approach to
operator development.
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Operator design strategy

With some exceptions, we take the following general approach to

operator development.
» Apply a standard tree move paying no

attention to types.
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Operator design strategy

With some exceptions, we take the following general approach to

operator development.
» Apply a standard tree move paying no

attention to types.

» Type-changes along altered branches are
regenerated.

» Regeneration is accomplished by drawing
new migration paths from a continuous time
Markov process generated by the current
rate matrix conditional on types at each end
of the branch.
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Uniformization method (Fearnhead and Sherlock, 2006)

Method for drawing trajectories from a continuous time Markovian
jump process conditioned on the beginning and end states:

0
5Pilt) = Zj:mijpf(t) G)

The uniformized process has a state independent intensity
p = max;(—mj) and a discrete-time transition matrix

]
U=-m+1. (7)
P

Method

1. Generate event times according to Poisson process with rate p.

2. Use standard forward-backward algorithm to determine
transitions at these event times conditional on end states.
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Comparison with ENR04-style sampler

» For comparison, we have taken the operators used by Ewing,
Nicholls and Rodrigo (2004) in their multi-type tree sampler and
re-implemented them in BEAST 2.

» The benefit of their operators is that they are computationally
simple and hence achieve reasonable mixing despite being
“small” moves.

» The results were compared on three sets of simulated data.
Simulated on 2-demes, 3-demes, 4-demes respectively:

o @
mi3 M3z M4
N2 1 3 ér_ § § ( )
mi2
Mma1 P Ne N2
21
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Proposal kernel weights

Kernel weights

Operator ENR04 VD13
Scale(m) 1 1
Scale(N) 1 1
Scale(u) 1 1
Scale(k) 1 1
DeltaExchange(m) 1 1
UpDown(N,{z, m)) 1 1
MultiTypeUniform 10 10
UpDown((Tree, N), (1, m)) 10 10
Scale(Tree) 10 10

TypeSubtreeExchangeEasy 10 -
TypeWilsonBaldingEasy 10 -
TypePairBirthDeath 10 -
TypeMergeSplitExtended 10 -
TypeBirthDeath 10 -

TypeSubtreeExchange - 10

TypeWilsonBalding - 10
NodeShiftRetype(root) - 10
NodeShiftRetype(rest) - 10
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Two-deme: true tree example

mopy = 0.8

No =

=

mqg = 0.4
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Two-deme performance comparison

95% HPD coverage mean ESS seconds/eff. sample

Parameter | VD13 ENRO04 VD13 ENRO4 | VD13 ENRO04
Ny | 0.96 0.96 3337 1517 12 21
N; | 0.96 0.96 4827 1632 9 19
mo,s | 0.93 0.93 5918 2296 7 14
myo | 0.90 0.90 5927 1945 7 16
u | 0.94 0.94 2112 388 20 82
Tree Height | 0.93 0.92 3274 206 13 154
Tree Length - - 1319 235 32 135

VD13 is 2 to 12 times faster depending on the summary statistic. Tree length
is a good central statistic.
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Three-deme: true tree example

1 — €
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Three-deme performance comparison

95% HPD coverage mean ESS seconds/eff. sample
Parameter | VD13 ENRO04 VD13 ENRO4 | VD13 ENRO04

Ny | 0.96 0.95 3119 1620 16 21

N; | 0.98 0.98 4064 1767 12 20

N, | 0.97 0.97 3244 1563 16 22

mo, | 0.93 0.93 1499 954 34 37

mio | 0.93 0.93 1279 800 41 44

mpo | 0.93 0.93 1477 981 35 36

Mmeo | 0.95 0.95 1385 866 37 40

myo | 0.94 0.92 1205 746 43 47

myy | 0.90 0.93 1489 941 35 37
w | 0.99 0.98 1411 266 37 132
Tree Height | 0.98 0.97 1874 125 28 284
Tree Length - - 896 159 59 223

VD13 is 1 to 10 times faster depending on the summary statistic. Tree
length is a good central statistic.



Four-deme: true tree example

—%
o
:EE_.:‘:‘

N3

—_—
M3y
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Four-deme performance comparison

95% HPD coverage mean ESS seconds/eff. sample

Parameter | VD13 ENRO04 VD13 ENRO4 | VD13 ENRO04
No | 0.96 0.96 2560 1578 23 25
Ny | 0.94 0.94 2743 1486 21 27
N, | 0.91 0.91 2458 1467 24 27
N3 | 0.95 0.95 2699 1569 22 25
mos | 0.80 0.81 935 739 64 55
mg 1 | 0.93 0.93 811 652 74 62
myq | 0.91 0.92 913 693 65 58
mzo | 0.95 0.95 898 726 66 56
myo | 0.84 0.85 777 649 77 62
mys | 0.84 0.85 718 542 83 75
mgo | 0.88 0.89 901 756 66 53
my3 | 0.93 0.93 914 716 65 56
u | 0.94 0.93 956 185 62 220
Tree Height | 0.95 0.96 1115 91 53 447

112



Multi-type birth-death process
Assume that the process is started with one infected individual in
deme or of type i € {1...d} attime t = 0. With time increasing from
the past to the present, in a time step At the process can undergo
1. a birth event, so that another infected individual is created in
deme i
Ni(t + At) = Ni(t) + 1,
2. adeath event, implying the recovery or removal of an infected
individual in deme i:

Ni(t + At) = Ni(t) — 1,

3. a sampling event, yielding the removal of an infected individual as
in 2., but this time the removal is observed, or

4. a migration event, indicating that an individual changes from
deme i to demej # i:

Ni(t + At) = Ni(t) — 1 and Nj(t + At) = N(t) + 1.

The process terminates when no infected individuals are left.
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Multi-type birth-death process notation

| | | |

LA LY A1,2, 11,2, 91,2 [P SN SN IR
I I I I
VAo, oo, P2 ) X292, 2,2, P22 v A23s 23,23 )
I I I I
I I I
! p—— ! !
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I I I
I I I
I I I
I I I
I I I
I I I
I I I
I | I
| ——— |
I i I
I I I
I I I
I I I
I I I
I I
——
i
I
I

—

|
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to=0 Ty t1 T2 21 n ty Y2 Y3 tm = Ya

Notation under the multi-type birth—death model. Birth events are
denoted by x;, sampling events by y; and the one migration event z.

105/112



Priors for comparison of BDMM with Structured Coalescent

Simulations | Multi-type Birth—death | Structured Coalescent
Ri LogN(0.4,0.6) LogN(0.5,1) -
0 LogN(-1,1) N (80,20) -
s B(1,10) B(1,100) -
tm - LogN(2.,1.25) -
m'* | Exp(0.01) Exp(0.01) Exp(0.01)
N; - - LogN(-2,2)

Table : Prior distributions for the simulation study and the phylogeographic
analysis of human Influenza H3N2 sequences from Australia and New
Zealand. The Beta distribution is denoted by B, the normal distribution by A/,

(,j € {1.2}).
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Parameter estimates

Multi-type Birth—death

Structured Coalescent

Median 95% HPD Median 95% HPD
R 1.00 (0.93-1.06) - -
Ro 1.01 (0.98-1.05) - -
1 71 (26-112) - -
02 72 (26-114) - -
Sy 0.0035 (0.0001-0.0132) - -
Sz 0.0013  (0.0001-0.0066) - -
Mmi2 0.024 (0.0002-0.064) - -
Mz 0.035 (0.0036-0.077) - -
Migration events in tree 18 (13-23) 11 (8-13)
Root of the tree (yr) 1997 (1996-1998) 1999 (1997-2000)
Origin of the epidemic (yr) 1978 (1966—1985) - -
Ny - - 0.85 (0.43-1.37)
N> - - 1.22 (0.77-1.74)
mss - - 0.024 (9 x 1077-0.099)
m3s - - 0.076 (0.004-0.153)

Table : Phylogeographic analysis of Influenza H3N2. Posterior median
estimates with 95% HPD intervals of Australasian H3 dataset.




Comparison of estimate migration history

Figure : H3N2 analysis: Posterior distribution of multi-type phylogenies.
The posterior phylogenies of the multi-type birth—death analysis and
Structured coalescent of human influenza virus, with the two sampling
locations Australia and New Zealand denoted by blue and purple,
respectively, were plotted with the program DensiTree.

108/112



Posterior distribution of number of migrations
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Figure : H3N2 analysis: Posterior distribution of the number of
migrations. The histograms show the posterior density of the number of
migrations in the phylogenetic tree from the analysis under the multi-type
birth—death model (blue) and under the structured coalescent (purple).



Integrating population dynamics with population genetics?

Genealogical models Population dynamics models

» Focus on genetics of a » Focus on coupled interactions
population, especially neutrality between different types, hosts

» Account for stochastic nature of » Often deterministic, rather than
mutation and drift stochastic models

» Forward simulation and » Forward simulation and
equilibrium solutions equilibrium solutions

» Powerful inference tools > Parameters closely aligned to

real measurable quantities
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Integrating population dynamics with population genetics?

Genealogical models Population dynamics models
» Generally poor at describing

. ) » Poor at handling evolution
dynamics and selection

» Poor at describing genetic

» Not readily parameterized by variation

“real-life” parameters

» Poor inference tools
» Parameters such as Ne(t)

can’t be compared with real
measurements in absolute
terms
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Dynamical population genetics

What would a synthesis look like?
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Microscopic descriptions of all processes including

Selection, competition

Mutation, type switching

Birth, death, infection, genetic drift et cetera
Demographic stochasticity

Environmental stochasticity

v

>
>
>
>

Natural modeling of stochastic parts of the process
Retains non-linear coupling between different types and hosts
Handles both neutral and selected variation

Parameters can be readily connected with real measurable
quantities

Simulation, analysis and inference tools
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