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Epidemics with sampling : 2 problems

Assumption :
Each infective is sampled/detected after some random time
(symptoms, medical exam)

Goal :
Infer epidemiological dynamics from...

• Problem 1. Pathogen sequence data sampled at all detection
times
= w/ T. Stadler and H. Alexander (ETH Zürich)

• Problem 2. Hospital data in antibiotic-resistant epidemics
stopped at the first detection time
= w/ P. Trapman (U. Stockholm)
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Problem 1 :
Stopping at all
dots before time t

Problem 2 :
Stopping at first
dot = time T
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General framework

• Continuous time
• Branching process assumption : Excess of susceptibles
• Age-dependent death rate : The duration of infectiousness can

have an arbitrary distribution
• Constant birth rate (transmission)
• Constant detection rate
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Splitting tree in forward time (Geiger & Kersting 97)

The transmission tree with sampling can be described by an asexual
population with marks where

6t

rr
r

r r
• individuals reproduce

independently

• death rate may depend on age

• birth rate is constant

• detection rate is constant.

The population size process (Nt; t ≥ 0) is a non-Markovian
birth–death process.



Epidemics w/ sampling Model Transmission tree Problem 1 Problem 2 Proofs Ack.

Splitting tree in forward time (Geiger & Kersting 97)

The transmission tree with sampling can be described by an asexual
population with marks where

6t

rr
r

r r
• individuals reproduce

independently

• death rate may depend on age

• birth rate is constant

• detection rate is constant.

The population size process (Nt; t ≥ 0) is a non-Markovian
birth–death process.



Epidemics w/ sampling Model Transmission tree Problem 1 Problem 2 Proofs Ack.

Without marks (1)

The transmission tree stopped at t can be oriented as follows...
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...where the times H1,H2,H3 . . . are the node depths.
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Without marks (2)
The oriented, reconstructed tree at t can be represented...
Like this...

...Or like that
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Coalescent point process

• Mathematical result : The node depths H1,H2,H3 . . . of the tree
form a sequence of independent and identically distributed
positive random variables killed at its first value larger than t
(Lambert 2010, Lambert & Stadler 2013)

In particular, conditional on Nt 6= 0, the population size Nt

follows a geometric distribution.

• Such a tree is called a coalescent point-process :
• fast simulation of reconstructed trees
• Easy computation of the likelihood of a tree (product form).
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Coalescent point process
6
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Likelihood of tree with node depths (hi)1≤i≤n−1

L (T ) = p(t)
n−1

∏
i=1

f (hi).
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Adding marks : 2 problems

• Problem 1. Likelihood of the tree spanned by all the distinct
detection times ?
; Previously known : case when death rate is constant (Stadler et al

2012)

• Problem 2. Likelihood of the tree stopped at the first detection
time T ?
; Previously known : NT is (still) geometric (Trapman & Bootsma

2009)
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Problem 1 : Assumptions and notation

• A sampled individual immediately leaves the infective
population.

• Si := sampling time of individual i
• Ri := coalescence time between individuals i−1 and i.
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Problem 1 : Result

Theorem (Lambert, Alexander & Stadler 2013)
The pairs (Si,Ri) form a killed Markov chain with semi-explicit
transitions, where the transition probability only depends on the
second component (Si).

; Inference of model parameters from viral phylogenies (HIV, flu).
For any given oriented tree T with coalescence times (xi)2≤i≤n and
sampling times (yi)1≤i≤n,

L (T ) = g(y1)k(yn)
n

∏
i=2

f (yi−1;xi,yi).

Limitations :

1 Transitions are only semi-explicit ;

2 The Markov chain property depends on the orientation...
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Problem 2 : Assumptions

• Patients have i.i.d lengths of stay in the hospital, all distributed as
some r.v. K

• Conditional on infection, the length of stay of a patient is a
size-biased version of K

• Detection rate per patient =: δ
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Problem 2 : Notation
For individual i, set
• Ui := time elapsed from entrance of the hospital up to infection
• Ai := time elapsed from infection up to T
• Ri := residual lifetime in the hospital after T .

Set m := E(K) and let φ denote the inverse of the convex function

x 7→ x− λ

m

∫
(0,∞]

(1− e−xy)P(K > y)dy.

T
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Problem 2 : Result

Theorem (Lambert & Trapman 2013)
Conditional on NT = n, the triples (Ui,Ai,Ri) of the n infectives at
time T are independent and identically distributed, distributed as

E(f (U,A,R)) =
λ

m
φ(δ )

φ(δ )−δ

∫
∞

u=0
du
∫

∞

a=0
da
∫

∞

z=u+a
P(K ∈ dz)e−φ(δ )a f (u,a,z−u−a),

In particular, the times Ji = Ui +Ai spent in the hospital up to time T
are independent and identically distributed, distributed as the r.v. J

P(J ∈ dy) =
λ/m

φ(δ )−δ
P(K > y)

(
1− e−φ(δ )y)dy.

; Inference from hospital data (dates of entrance in the hospital).
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Jumping contour of a tree
a) Binary tree with edge lengths and b) Contour process of its
truncation below time t.
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Jumping contour of a tree with marks
a) Binary tree with marks, b) its reconstructed tree and c) its contour
process.
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Co-authors
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SMILE : A cross-disciplinary group in CIRB

• CIRB = Center for Interdisciplinary
Research in Biology (Collège de
France)

• SMILE = Stochastic Models for the
Inference of Life Evolution
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SMILE group in June 2012
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Institutions

• Stochastic Models for the Inference of Life Evolution (SMILE)
⊂ Center for Interdisciplinary Research in Biology

⊂ Collège de France

• Stochastics & Biology group
⊂ Laboratoire de Probabilités et Modèles Aléatoires

⊂ UPMC University Paris 06

• ANR Modèles Aléatoires eN Écologie, Génétique, Évolution (MANEGE)
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Conference announcement
Mathematics for an Evolving Biodiversity
Montréal, Canada
September 16–20, 2013
Organizers : Jonathan Davies (McGill), Nicolas Lartillot (CNRS & U.
Montréal) and myself
http://www.crm.umontreal.ca/2013/Biodiversity13/
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