ARGweaver: Genome-wide Inference of Ancestral Recombination Graphs

Adam Siepel

Biological Statistics & Computational Biology Center for Comparative and Population Genomics Cornell University, Ithaca, NY

Joint work with Matthew Rasmussen, Melissa Hubisz, and Ilan Gronau

Comparative Genomics

Comparative Genomics

nature

Evolution of Individual Human Genomes

Recombination and Genealogies

The Ancestral Recombination Graph

Griffiths and Marjoram, J. Comput. Biol., 1996

Alas, if only we knew the ARG...

- Demography inference
- Inference of natural selection
- Recombination rate estimation
- Phasing/imputation
- Association mapping

Alas, if only we knew the ARG...

- Demography inference
- Inference of natural selection
- Recombination rate estimation
- Phasing/imputation
- Association mapping

ARG surrogates: IBD, IBS, haplotypes, local ancestry inference, site-frequency spectrum, PCA

Explicit ARG Inference

Importance sampling

- Griffiths and Marjoram, *J. Comput. Biol.*, 1996
- Fearnhead and Donnelly, Genetics, 2001

Markov chain Monte Carlo sampling

- Kuhner, Yumato, and Felsenstein, Genetics, 2000
- Nielsen, Genetics, 2000

Heuristics/Parsimony

- Hein, J. Mol. Evol., 1993
- Kececioglu and Gusfield, *Disc. Appl. Math.*, 1998
- Song and Hein, J. Comput. Biol., 2005
- Minichiello and Durbin, Am. J. Hum. Genet., 2006

Explicit ARG Inference

- Importance sampling Fearnhead and Daylei, tensive ompiner, Yumatewici Felsenstein, Hean crude approximations Hean crude approximations Kececioghon Gusfield, Depand Hein.
 - Minichiello and Durbin,

Sequential Coalescent with Recombination

http://compgen.bscb.cornell.edu

Wiuf and Hein, Theor. Popul. Biol., 1999

Sequentially Markov Coalescent (SMC)

$$P(T_i \mid T_1, ..., T_{i-1}) = P(T_i \mid T_{i-1})$$
$$T_{i-1} \perp T_{i+1} \mid T_i$$

http://compgen.bscb.cornell.edu

McVean and Cardin, 2005; Marjoram and Wall, 2006

Discretized SMC and Hidden Markov Models

- By *discretizing* time and *enumerating topologies*, the continuous state space of the SMC can be approximated by a finite set
- This opens up the possibility of using *hidden Markov models* (HMM) for inference
- Standard dynamic-programming algorithms for HMMs allow for *exact ARG inference*, up to the SMC and discretization

Hidden Markov Models

Coal-HMM

Hobolth et al., *PLOS Genet.*, 2007; Li and Durbin, *Nature*, 2011

Hidden Markov Models

Coal-HMM

Hobolth et al., *PLOS Genet.*, 2007; Li and Durbin, *Nature*, 2011

New Approach: Chromosome "Threading"

- Start with a data set of *n* sequences, *D*, and an ARG for *n*–1 of them, *G_{n-1}*
- Extend G_{n-1} to represent evolutionary history of *n* th sequence, obtaining G_n
- Sample this extension in a manner consistent with the conditional distribution, P(G_n | G_{n-1}, D, Θ), under the DSMC
- In repeated applications this operation is the basis of an *ARG sampling* algorithm

ARGweaver Sampling

Threading

Threading

Threading

Solution: stochastic traceback with HMM

Graphical Models

SMC (discretized)

Threading

Reduced Threading

Rasmussen et al., PLOS Genetics, 2014

http://compgen.bscb.cornell.edu

ARGweaver Converges Quickly

http://compgen.bscb.cornell.edu

Recovery of Features of Simulated ARGs

Part 2: ARGweaver Results

Recovery of Times to Most Recent Common Ancestry

Accuracy of Inferred Trees

mutation rate/recombination rate

Recovery of Allele Age

Real Data: Regions of High TMRCA

HLA Region

Regions of Shared Human/Chimp Polymorphism Have Old TMRCAs

Leffler et al., Science, 2013

Leaf Trace

Putative Balancing Selection at FREM3

http://compgen.bscb.cornell.edu

Leffler et al., Science, 2013

KCNE4 Promoter

http://compgen.bscb.cornell.edu

Sites Under Selection Have Decreased Allele Age

http://compgen.bscb.cornell.edu

...Even After Accounting for Derived Allele Frequency

Genes and Sweeps (CEU)

Voight et al., PLOS Biol, 2006

Relative TMRCA Halflife (RTH)

Neutral Drift

RTH = half-TMRCA / TMRCA

RTH = half-TMRCA / TMRCA

RTH = 1/3 RTH = 1/3 RT

RTH = 1/6

http://compgen.bscb.cornell.edu

http://compgen.bscb.cornell.edu

Query Interface

Query ARGweaver results < ×			
$\leftrightarrow \Rightarrow$ C \Box compgen.bscb.cornell.edu/ARGweaver/CG_results/			☆ 🔌 🗧
Apps 🔢 Google Calendar 🖲 NY Times 🗤 Wash Post 🚾 Weather.com	Yahoo Weather 📄 Fbook sł	nare 📄 book 📄 Journals	🔲 Utility 🛛 » 📋 Other Bookmarks
ARGweaver: Extract results from Complete Genomics 54 unrelated genomes			
Note: this tool takes a long time for large genetic regions (roughly 30 sec/Mb) and may time-out after 10 minutes (check end of output for time-out errors!)			
Genome-wide results are available for bulk download here.			
Select region (he10 counds outcomes only):			
Select region (ng19 coords, autosomes only):	Subset by population: • Select all • clear		
chr2:223940001-223950000	🗹 ASW: African-	🗹 GIH: Gujarati Indian	🗹 MXL: Mexican-
Or, upload bed file with regions: Choose File No file chosen	American	(Texas)	American
	☑ NA19700	☑ NA20845	☑ NA19648
Retrieve statistics for:	☑ NA19701	☑ NA20846	☑ NA19649
Continuous regions	✓NA19703	☑ NA20847	☑ NA19669
○CG polymorphisms	☑ NA19704	✓NA20850	☑ NA19670
	☑ NA19834	🗹 JPT: Japanese	☑NA19735
Statistics:	🗹 CEPH: European	☑ NA18940	🗹 PUR: Puerto Rican
Time to the most common ancestor (TMRCA)	⊘ NA12889	⊘ NA18942	✓HG00731
Relative TMRCA halflife (RTH)	⊘ NA12890	⊠ NA18947	✓HG00732
 Total branchlength of tree 	⊘ NA12891	☑ NA18956	🗹 TSI: Toscans (Italy)
Estimated population size	⊘ NA12892	🗹 LWK: Luhya (Kenya)	✓NA20502
Recombination rate	🗹 CEU: Utah residents	✓NA19017	✓NA20509
Allele Age at CG polymorphisms	✓NA06985	✓NA19020	✓NA20510
Trees (Newick format)	☑ NA06994	✓NA19025	✓NA20511
	⊘ NA07357	☑ NA19026	🗹 YRI: Yoruba (Nigeria)
Result Type:	⊘ NA10851	🗹 MKK: Maasai (Kenya)	✓NA18501
One result for each MCMC sample	⊘ NA12004	☑NA21732	✓NA18502
Compute summary statistics across samples (not available for newick	🗹 CHB: Han Chinese	⊘ NA21733	☑ NA18504
trees):	⊘ NA18526	⊘ NA21737	✓NA18505
Average over samples	⊘ NA18537	⊘ NA21767	⊘ NA18508
Standard deviation across samples	⊘ NA18555		⊘ NA18517
Median across samples	⊘ NA18558		✓NA19129
95% Confidence Interval (2.5%,97.5% quantiles)			✓NA19238
			✓NA19239

Save to file (blank prints to screen):

compress with gzip

Get results

Reference: Matthew D. Rasmussen, Melissa J. Hubisz, Ilan Gronau, Adam Siepel. *Genome-wide inference of ancestral recombination graphs*. Submitted. Pre-print available on arXiv.

ARGweaver software website: http://github.com/mdrasmus/argweaver/

http://compgen.bscb.cornell.edu

Future Work

- Simultaneous phasing and ARG inference
- Demography inference
- Community resources
 - Extended dynamic querying of ARGs
 - On-the-fly threading
- Association mapping
- Any problem addressed by Li & Stephens model!

Part 3: Demography Inference

Schuster et al, Nature, 2010

Integrated Statistical Model (MCMCcoal)

AATGAACCGTTTCTGAGGCCATT AGTGAACCGTTACTGACGCCATT AATGAATCGTTACTGAGGCTATT

 X_i

 \bigcap_{G_i}

http://compgen.bscb.cornell.edu

Yang, 2002; Rannala & Yang, 2003; Burgess & Yang, 2008

Integrated Statistical Model (MCMCcoal)

http://compgen.bscb.cornell.edu

Yang, 2002; Rannala & Yang, 2003; Burgess & Yang, 2008

http://compgen.bscb.cornell.edu

http://compgen.bscb.cornell.edu

http://compgen.bscb.cornell.edu

http://compgen.bscb.cornell.edu

http://compgen.bscb.cornell.edu

40

Ilan Gronau

Ilan Gronau

*

The genealogy prior, $P(G_i | \boldsymbol{\theta}, \boldsymbol{\tau}, \mathbf{m}),$ must allow for migration (another Poisson process)

Ilan Gronau

The genealogy prior, $P(G_i | \boldsymbol{\theta}, \boldsymbol{\tau}, \mathbf{m}),$ must allow for migration (another Poisson process)

> The *locus data likelihood*, $P(X_i | G_i)$, is unchanged

Phasing Integration

$$P(X|G) = \sum_{\mathcal{P} \in \{0,1\}^{k \times n}} P(X|\mathcal{P},G) P(\mathcal{P})$$
$$= \prod_{j} \left(\frac{1}{2^{|\mathcal{H}_j|}} \sum_{\mathcal{P}^j \in \{0,1\}^{|\mathcal{H}_j|}} P(X^j \mid \mathcal{P}^j,G) \right)$$

General Model

http://compgen.bscb.cornell.edu

MCMCcoal Algorithm

- Step 1: Update coalescent times
- Step 2: Subtree pruning and regrafting of genealogy
- Step 3: Update θ's
- Step 4: Update τ's, adjusting associated coalescent times via "rubber band"
- Step 5: Global scaling of θ's and τ's (mixing step)

Changes to Sampler

- The "regrafting" operation now allows lineages to pass through migration bands
- New steps are needed to update the individual migration times and the global migration parameters
- Certain additional conflicts must be considered when updating population divergence times

Simulation Results

Simulation Results

Gronau et al., Nature Genetics, 2011

Main Results

37,574 "neutral" loci, each 1 kbp in length

Gronau et al., Nature Genetics, 2011

Main Results

Application to Domestic & Wild Canids

http://compgen.bscb.cornell.edu

Bob Wayne, Elaine Ostrander, John Novembre

Best Model

Freedman, Gronau et al., PLOS Genetics, 2014

Archaic Hominin Analysis

http://compgen.bscb.cornell.edu

Sergi Castellano, Martin Kuhlwilm, Svante Paabo

Best Model (So Far)

Limitations of G-PhoCS

- Discards most of the data
- Must use short loci due to restrictive assumption of no intralocus recombination
- Fails to benefit from demographic information in LD structure
- Want to use full ARG!

First Goal: IM + ARGweaver

First Goal: IM + ARGweaver

log (generations)

Preliminary Results

Preliminary Results

Simons Center for Quantitative Biology at Cold Spring Harbor Laboratory

- Recently launched Center, with founding donation from Simons Foundation
- Focus on several areas of QB, including genomics, gene regulation, cancer biology, and neuroscience
- Faculty & fellow positions opening soon
- Several postdoc positions in my group
- See me if interested!

Acknowledgments

Contributors:, Matthew Rasmussen, Melissa Hubisz, Ilan Gronau

Other Group Members: Charles Danko, Andre Martins, Lenore Pipes, Brad Gulko, Jaaved Mohammed

Collaborators: John Novembre, Adam Freedman, Bob Wayne, Sergi Castellano, Martin Kuhlwilm, Svante Paabo

