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Comparative Genomics
2
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Comparative Genomics
2

Evolution of Individual Human 
Genomes
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Recombination and Genealogies
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The Ancestral 
Recombination Graph 
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Griffiths and Marjoram, J. Comput. Biol., 1996
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Alas, if only we knew the ARG…
! Demography inference!
! Inference of natural selection!
! Recombination rate estimation!
! Phasing/imputation!
! Association mapping!
! ...

5
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ARG surrogates: IBD, IBS, haplotypes, local ancestry 
inference, site-frequency spectrum, PCA
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Explicit ARG Inference
! Importance sampling!

! Griffiths and Marjoram, J. Comput. Biol., 1996!
! Fearnhead and Donnelly, Genetics, 2001!

! Markov chain Monte Carlo sampling!
! Kuhner, Yumato, and Felsenstein, Genetics, 2000!
! Nielsen, Genetics, 2000!

! Heuristics/Parsimony!
! Hein, J. Mol. Evol., 1993!
! Kececioglu and Gusfield, Disc. Appl. Math., 1998!
! Song and Hein, J. Comput. Biol., 2005!
! Minichiello and Durbin, Am. J. Hum. Genet., 2006
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Computationally intensive 

Limited to few samples 

and/or 

Depend on crude approximations
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Sequential Coalescent  
with Recombination

7

Wiuf and Hein, Theor. Popul. Biol., 1999



http://compgen.bscb.cornell.edu
 

3. THE SEQUENTIALLY MARKOV COALESCENT
We first describe a generalization of the standard
coalescent process for a constant population size. At
any point in time the state of the coalescent process is
described by the set of k ancestral lineages, the ith of
which contains ancestral material at a set of mi ordered
non-overlapping intervals on the unit interval (treating
sequences as continuous)

xi Z fðxi1; yi1Þ; ðxi2; yi2Þ;.; ðximi
; yimi

Þg; (3.1)

where xij and yij represent the lower and upper limits
respectively of an interval of ancestral material. The
instantaneous rate of coalescence is the sum of the rates
for all pairs of lineages that can potentially coalesce
(note each pair coalesces independently)

lC Z
X

isj

Ii;j ; (3.2)

where IijZ1 under the standard coalescent for all i and j
(isj ). The instantaneous rate of recombination is

lR Z r=2
X

i

ðyimi
Kxi1Þ: (3.3)

The time until the next event is distributed as a random
exponential variable with rate lCClR, with the type of
event being drawn in proportion to its contribution to
the summed rates. If a coalescent event is chosen, the
resulting lineage acquires the union of the intervals of
ancestral material. After coalescence, if any interval is
represented by just one ancestral lineage the most
recent common ancestor (MRCA) of that interval has
been reached and the interval is removed. Recombina-
tion events result in a splitting of ancestral material,
where the point of splitting is chosen uniformly from
the interval ðxi1; yimi

Þ for a constant recombination rate.
The process for a sample of size n is initialized by
setting kZn and miZ1, xi1Z0, yi1Z1 for all i and
terminated when every point along the sequence has
found an MRCA.

The SMC process requires a simple modification to
the process. If Xi(Zgxi) is the set of all loci at which
chromosome i has ancestral material

Ii;j Z
1 if X ihX js: and isj

0 otherwise
:

(

In other words, if two ancestral lineages have no
interval in common where they share ancestral material
they are not allowed to coalesce.

By restricting coalescent events in this way the
resulting process has three important differences from
the standard coalescent. First, the state-space of ARGs
is much reduced (though the state-space of the set of
marginal genealogies is unaltered). Second, the SMC
model will tend to have many fewer recombination
events in its history (figure 1). Third, the resulting
process has a Markovian structure in the sequential
generation of genealogies along a chromosome.

The Markovian structure along a chromosome is
best described in terms of the sequential algorithm for
simulating a set of marginal genealogies on the unit
interval for n sequences under the SMC model

(figure 2). The algorithm can be described through a
series of steps.

(i) Simulate a standard coalescent history at point 0
(i.e. without recombination). The resulting tree
has a total branch length of T0.

(ii) The distance along the unit interval until the first
recombination event is exponentially distributed
with rate rT0/2. If the point at which the
recombination event occurs is less than one, the
position at which the recombination occurs on the
marginal genealogy is drawn uniformly and the
older portion of the branch on which the event
occurred is erased, resulting in a ‘floating’ lineage.

(iii) The floating lineage coalesces with the remaining
genealogy at rate proportional to the number of
ancestral lineages present (note that the time at
which it rejoins may be older than the current time
of the MRCA or TMRCA). Note also that this is
the point of departure from the standard coalesc-
ent, where the floating lineage may coalesce with
all ancestral lineages, not just those remaining on
the previous genealogy.

(iv) The previous genealogy is discarded and the
process repeated with the new genealogy until
the next recombination event occurs beyond the
unit interval.

Figure 2. The sequentially Markov coalescent with recombi-
nation. The point of the recombination event (indicated by a
crossmark) is placed uniformly on the tree. The branch above
it is removed and the lineage coalesces back to the remaining
tree at a rate proportional to the number of lineages present.

Figure 1. The ratio of the average number of recombination
events in the ARG for the standard coalescent to the average
number of recombination events in the SMCmodel for nZ2.
The average number of recombination events in the SMC is
equal to r.

Approximating the coalescent G. A. T.McVean & N. J. Cardin 1389

Phil. Trans. R. Soc. B (2005)

Sequentially Markov 
Coalescent (SMC)

8

McVean and Cardin, 2005; Marjoram and Wall, 2006

Ti–1 Ti

P(Ti | T1, … , Ti–1) = P(Ti | Ti–1)

Ti–1 ⟘ Ti+1  |  Ti 
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Discretized SMC and  
Hidden Markov Models

! By discretizing time and enumerating 
topologies, the continuous state space of the 
SMC can be approximated by a finite set!

! This opens up the possibility of using hidden 
Markov models (HMM) for inference!

! Standard dynamic-programming algorithms 
for HMMs allow for exact ARG inference, up 
to the SMC and discretization

10
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Hidden Markov Models
11

Hobolth et al., PLOS Genet., 2007;  
Li and Durbin, Nature, 2011

LETTER
doi:10.1038/nature10231

Inference of human population history from
individual whole-genome sequences
Heng Li1,2 & Richard Durbin1

The history of human population size is important for understand-
ing human evolution. Various studies1–5 have found evidence for a
founder event (bottleneck) in East Asian and European popula-
tions, associated with the human dispersal out-of-Africa event
around 60 thousand years (kyr) ago. However, these studies have
had to assume simplified demographic models with few parameters,
and they do not provide a precise date for the start and stop times of
the bottleneck. Here, with fewer assumptions on population size
changes, we present a more detailed history of human population
sizes between approximately ten thousand and a million years ago,
using the pairwise sequentially Markovian coalescent model applied
to the complete diploid genome sequences of a Chinese male (YH)6,
a Korean male (SJK)7, three European individuals (J. C. Venter8,
NA12891 and NA12878 (ref. 9)) and two Yoruba males (NA18507
(ref. 10) and NA19239). We infer that European and Chinese popu-
lations had very similar population-size histories before 10–20 kyr
ago. Both populations experienced a severe bottleneck 10–60 kyr
ago, whereas African populations experienced a milder bottleneck
from which they recovered earlier. All three populations have an
elevated effective population size between 60 and 250 kyr ago, pos-
sibly due to population substructure11. We also infer that the dif-
ferentiation of genetically modern humans may have started as early
as 100–120 kyr ago12, but considerable genetic exchanges may still
have occurred until 20–40 kyr ago.

The distribution of the time since the most recent common ancestor
(TMRCA) between two alleles in an individual provides information
about the history of change in population size over time. Existing
methods for reconstructing the detailed TMRCA distribution have
analysed large samples of individuals at non-recombining loci like
mitochondrial DNA13. However, the statistical resolution of inferences
from any one locus is poor, and power fades rapidly upon moving back
in time because there are few independent lineages probing deep time
depths (in humans, no information is available from mitochondrial
DNA beyond about 200 kyr ago, when all humans share a common
maternal ancestor11). In contrast, a diploid genome sequence contains
hundreds of thousands of independent loci, each with its own TMRCA
between the two alleles carried by an individual. In principle, it should
be possible to reconstruct the TMRCA distribution across the auto-
somes and the X chromosome by studying how the local density of
heterozygous sites changes across the genome, reflecting segments of
constant TMRCA separated by historical recombination events. To
explore whether we could use this idea to learn about the detailed
TMRCA distribution from a diploid whole-genome sequence, we pro-
posed the pairwise sequentially Markovian coalescent (PSMC) model,
which is a specialization to the case of two chromosomes of the sequen-
tially Markovian coalescent model14 (Fig. 1a). The free parameters of
this model include the scaled mutation rate, the recombination rate
and piecewise constant ancestral population sizes (see Methods). We
scaled results to real time, assuming 25 years per generation and a
neutral mutation rate of 2.5 3 1028 per generation15. The con-
sequences of uncertainty in the two scaling parameters will be dis-
cussed later in the text.

To validate our model, we simulated one-hundred 30-megabase
(Mb) sequences with a sharp out-of-Africa bottleneck followed by a
population expansion, and inferred population-size history with
PSMC (Fig. 2a). PSMC was able to recover the parameters used in
the simulation and the variance of the estimate was small between
20 kyr ago and 3 Myr ago. More recently than 20 kyr ago or more
anciently than 3 Myr ago, few recombination events are left in the
present sequence, which reduces the power of PSMC. Therefore, the
estimated effective population size (Ne) in these time intervals was not
as accurate and had large variance. To test the robustness of the model,
we introduced variable mutation rates and recombination hotspots in
the simulation (Supplementary Information). The inference was still
close to the true history (Fig. 2b) and a uniform rate of single nucleo-
tide polymorphism (SNP) ascertainment errors did not change our
qualitative results either (Supplementary Fig. 2). The simulations did,
however, reveal a limitation of PSMC in recovering sudden changes in
effective population size. For example, the instantaneous reduction from
12,000 to 1,200 at 100 kyr ago in the simulation was spread over several
preceding tens of thousands of years in the PSMC reconstruction.

1The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK. 2Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.
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Figure 1 | Illustration of the PSMC model and its application to simulated
data. a, The PSMC infers the local time to the most recent common ancestor
(TMRCA) on the basis of the local density of heterozygotes, using a hidden
Markov model in which the observation is a diploid sequence, the hidden states
are discretized TMRCA and the transitions represent ancestral recombination
events. b, We used the ms software to simulate the TMRCA relating the two
alleles of an individual across a 200-kb region (the thick red line), and inferred
the local TMRCA at each locus using the PSMC (the heat map). The inference
usually includes the correct time, with the greatest errors at transition points.
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Hidden Markov Models
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Hobolth et al., PLOS Genet., 2007;  
Li and Durbin, Nature, 2011
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New Approach:  
Chromosome “Threading”

! Start with a data set of n sequences, D, 
and an ARG for n–1 of them, Gn–1!

! Extend Gn–1 to represent evolutionary 
history of n th sequence, obtaining Gn!

! Sample this extension in a manner 
consistent with the conditional distribution, 
P(Gn | Gn–1, D, Θ), under the DSMC!

! In repeated applications this operation is 
the basis of an ARG sampling algorithm

12

Rasmussen et al., PLOS Genetics, 2014
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ARGweaver Sampling
13

Rasmussen et al., PLOS Genetics, 2014
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Threading
14

Rasmussen et al., PLOS Genetics, 2014



http://compgen.bscb.cornell.edu
 

Threading
14

Rasmussen et al., PLOS Genetics, 2014
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Threading
14

Solution: stochastic traceback with HMM

Rasmussen et al., PLOS Genetics, 2014
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Graphical Models
15
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ARGweaver Converges Quickly
16

Rasmussen et al., PLOS Genetics, 2014
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Recovery of Features of 
Simulated ARGs

17
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Part 2: ARGweaver Results

18
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Recovery of Times to Most 
Recent Common Ancestry

19
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Recovery of Allele Age
21
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Real Data: 
Regions of High TMRCA
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Regions of Shared Human/Chimp 
Polymorphism Have Old TMRCAs
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Leffler et al., Science, 2013
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Leaf Trace
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Putative Balancing !
Selection at FREM3
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Leffler et al., Science, 2013
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KCNE4 Promoter
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Query Interface
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Future Work
! Simultaneous phasing and ARG inference!
! Demography inference!
! Community resources!

! Extended dynamic querying of ARGs!
! On-the-fly threading!

! Association mapping!
! Any problem addressed by Li & Stephens model!

33
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Part 3: Demography Inference
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Estimates of TMRCAs from autosomal genes are higher than
those from mtDNA or NRY. In theory, they should be higher by a
factor of four and the estimates are in this direction, although the
number of autosomal genes studied is small and estimates of
TMRCAs vary considerably94. For analyses of autosomal and X
chromosomes, recombination can complicate genealogies and
make TMRCAs impossible to estimate. There is also the possibil-
ity of heterozygote advantage, which has the potential to increase
estimates of TMRCA. Heterozygote advantage may be wide-
spread throughout the human genome but has been very difficult
to show unequivocally, and the only fully confirmed example is
sickle cell anemia, for which very large samples were required.
There is some optimism, however, that the development of tech-
niques that can detect heterosis for some genes in yeast95 may
lead to greater success in other organisms, including humans.

Tracking migrations of our species using DNA
A recent synthesis of Y chromosome phylogeography, paleoan-
thropological and paleoclimatological evidence suggests a pos-
sible hypothesis for the evolution of human diversity96–98.
Around 100 kya or shortly after, a small population of about
1,000 individuals (that is, a tribe), most probably from East
Africa, expanded throughout much of Africa. Then, between
60 and 40 kya there was a second expansion, most probably
from a descendant population, into Asia and from there to the
other continents (Fig. 3). This may be referred to as the ‘stan-
dard model of modern human evolution’; it is also called ‘out
of Africa 2’ in recognition of an earlier expansion of Homo
erectus from Africa into Eurasia around 1.7 million years ago
and assumes that anatomically modern humans (also called
Homo sapiens sapiens) replaced earlier poorly known species of
Homo that descended from the first migrants of H. erectus98.
Genetic data provide some indication that the spread of
humans into Asia occurred through two routes. The first was a
southern route, perhaps along the coast to south and southeast
Asia, from where it bifurcated north and south99. In the south,
these modern humans reached Oceania between 60 and 40 kya,

whereas the northern expansion later reached China, Japan
and eventually America (this might represent the second
migration to America, associated with the NaDene languages,
postulated by Greenberg100). The second was a central route
through the Middle East, Arabia or Persia to central Asia, from
where migration occurred in all directions reaching Europe,
east and northeast Asia about 40 kya, after which the first and
principal migration to America suggested by Greenberg
occurred not later than 15 kya101.

It is still unresolved whether the divergence between these two
expansion routes occurred in Africa or after entry into west Asia,
and, if the latter, where it happened. Most literature accepts with-
out discussion that the entry to Europe and central Asia was
through the Levant. It is not at all certain that this was the only or
the earliest route. These two initially divergent routes converged
later, especially in the extreme East and America.

An alternative to the out of Africa 2 hypothesis, originated by
Weidenreich102 and expanded and called ‘multiregional’ by
Wolpoff103, maintains that all human populations living today
originated in their various continents and evolved in parallel into
modern humans. The main basis of this hypothesis is the claim
that most ancient fossils (essentially those from Europe and Asia
but not Oceania and America, where the human fossils found are
all very recent and of modern human type) show a continuous
morphological transition to modern humans. An extreme exam-
ple of parallel evolution that included the doubling of brain vol-
ume is invoked to explain this scenario. In later versions of the
multiregional model, parallelism is claimed to be the result of
substantial intermigration100,104.

Recent quantitative anthropological research on several
human skulls has shown no morphological continuity in the var-
ious continents85. In addition, in the only part of the world
where there existed a human type with some clear similarity to
modern humansnamely Neandertals in Europe and west Asia
this purported ancestor of modern Europeans disappeared
shortly after the appearance of modern humans (40–30 kya).
MtDNA analysis of three Neandertals from Germany105,106,

40,000

>40,000
(50–60,000?)

100,000

50–60,000

15–35,000

BOB CRIMI

Fig. 3 The migration of modern Homo sapiens. The scheme outlined above begins with a radiation from East Africa to the rest of Africa about 100 kya and is fol-
lowed by an expansion from the same area to Asia, probably by two routes, southern and northern between 60 and 40 kya. Oceania, Europe and America were
settled from Asia in that order.
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through the Levant. It is not at all certain that this was the only or
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but not Oceania and America, where the human fossils found are
all very recent and of modern human type) show a continuous
morphological transition to modern humans. An extreme exam-
ple of parallel evolution that included the doubling of brain vol-
ume is invoked to explain this scenario. In later versions of the
multiregional model, parallelism is claimed to be the result of
substantial intermigration100,104.
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human skulls has shown no morphological continuity in the var-
ious continents85. In addition, in the only part of the world
where there existed a human type with some clear similarity to
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migration to America, associated with the NaDene languages,
postulated by Greenberg100). The second was a central route
through the Middle East, Arabia or Persia to central Asia, from
where migration occurred in all directions reaching Europe,
east and northeast Asia about 40 kya, after which the first and
principal migration to America suggested by Greenberg
occurred not later than 15 kya101.

It is still unresolved whether the divergence between these two
expansion routes occurred in Africa or after entry into west Asia,
and, if the latter, where it happened. Most literature accepts with-
out discussion that the entry to Europe and central Asia was
through the Levant. It is not at all certain that this was the only or
the earliest route. These two initially divergent routes converged
later, especially in the extreme East and America.

An alternative to the out of Africa 2 hypothesis, originated by
Weidenreich102 and expanded and called ‘multiregional’ by
Wolpoff103, maintains that all human populations living today
originated in their various continents and evolved in parallel into
modern humans. The main basis of this hypothesis is the claim
that most ancient fossils (essentially those from Europe and Asia
but not Oceania and America, where the human fossils found are
all very recent and of modern human type) show a continuous
morphological transition to modern humans. An extreme exam-
ple of parallel evolution that included the doubling of brain vol-
ume is invoked to explain this scenario. In later versions of the
multiregional model, parallelism is claimed to be the result of
substantial intermigration100,104.

Recent quantitative anthropological research on several
human skulls has shown no morphological continuity in the var-
ious continents85. In addition, in the only part of the world
where there existed a human type with some clear similarity to
modern humansnamely Neandertals in Europe and west Asia
this purported ancestor of modern Europeans disappeared
shortly after the appearance of modern humans (40–30 kya).
MtDNA analysis of three Neandertals from Germany105,106,
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Fig. 3 The migration of modern Homo sapiens. The scheme outlined above begins with a radiation from East Africa to the rest of Africa about 100 kya and is fol-
lowed by an expansion from the same area to Asia, probably by two routes, southern and northern between 60 and 40 kya. Oceania, Europe and America were
settled from Asia in that order.
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Estimates of TMRCAs from autosomal genes are higher than
those from mtDNA or NRY. In theory, they should be higher by a
factor of four and the estimates are in this direction, although the
number of autosomal genes studied is small and estimates of
TMRCAs vary considerably94. For analyses of autosomal and X
chromosomes, recombination can complicate genealogies and
make TMRCAs impossible to estimate. There is also the possibil-
ity of heterozygote advantage, which has the potential to increase
estimates of TMRCA. Heterozygote advantage may be wide-
spread throughout the human genome but has been very difficult
to show unequivocally, and the only fully confirmed example is
sickle cell anemia, for which very large samples were required.
There is some optimism, however, that the development of tech-
niques that can detect heterosis for some genes in yeast95 may
lead to greater success in other organisms, including humans.

Tracking migrations of our species using DNA
A recent synthesis of Y chromosome phylogeography, paleoan-
thropological and paleoclimatological evidence suggests a pos-
sible hypothesis for the evolution of human diversity96–98.
Around 100 kya or shortly after, a small population of about
1,000 individuals (that is, a tribe), most probably from East
Africa, expanded throughout much of Africa. Then, between
60 and 40 kya there was a second expansion, most probably
from a descendant population, into Asia and from there to the
other continents (Fig. 3). This may be referred to as the ‘stan-
dard model of modern human evolution’; it is also called ‘out
of Africa 2’ in recognition of an earlier expansion of Homo
erectus from Africa into Eurasia around 1.7 million years ago
and assumes that anatomically modern humans (also called
Homo sapiens sapiens) replaced earlier poorly known species of
Homo that descended from the first migrants of H. erectus98.
Genetic data provide some indication that the spread of
humans into Asia occurred through two routes. The first was a
southern route, perhaps along the coast to south and southeast
Asia, from where it bifurcated north and south99. In the south,
these modern humans reached Oceania between 60 and 40 kya,

whereas the northern expansion later reached China, Japan
and eventually America (this might represent the second
migration to America, associated with the NaDene languages,
postulated by Greenberg100). The second was a central route
through the Middle East, Arabia or Persia to central Asia, from
where migration occurred in all directions reaching Europe,
east and northeast Asia about 40 kya, after which the first and
principal migration to America suggested by Greenberg
occurred not later than 15 kya101.

It is still unresolved whether the divergence between these two
expansion routes occurred in Africa or after entry into west Asia,
and, if the latter, where it happened. Most literature accepts with-
out discussion that the entry to Europe and central Asia was
through the Levant. It is not at all certain that this was the only or
the earliest route. These two initially divergent routes converged
later, especially in the extreme East and America.

An alternative to the out of Africa 2 hypothesis, originated by
Weidenreich102 and expanded and called ‘multiregional’ by
Wolpoff103, maintains that all human populations living today
originated in their various continents and evolved in parallel into
modern humans. The main basis of this hypothesis is the claim
that most ancient fossils (essentially those from Europe and Asia
but not Oceania and America, where the human fossils found are
all very recent and of modern human type) show a continuous
morphological transition to modern humans. An extreme exam-
ple of parallel evolution that included the doubling of brain vol-
ume is invoked to explain this scenario. In later versions of the
multiregional model, parallelism is claimed to be the result of
substantial intermigration100,104.

Recent quantitative anthropological research on several
human skulls has shown no morphological continuity in the var-
ious continents85. In addition, in the only part of the world
where there existed a human type with some clear similarity to
modern humansnamely Neandertals in Europe and west Asia
this purported ancestor of modern Europeans disappeared
shortly after the appearance of modern humans (40–30 kya).
MtDNA analysis of three Neandertals from Germany105,106,
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Estimates of TMRCAs from autosomal genes are higher than
those from mtDNA or NRY. In theory, they should be higher by a
factor of four and the estimates are in this direction, although the
number of autosomal genes studied is small and estimates of
TMRCAs vary considerably94. For analyses of autosomal and X
chromosomes, recombination can complicate genealogies and
make TMRCAs impossible to estimate. There is also the possibil-
ity of heterozygote advantage, which has the potential to increase
estimates of TMRCA. Heterozygote advantage may be wide-
spread throughout the human genome but has been very difficult
to show unequivocally, and the only fully confirmed example is
sickle cell anemia, for which very large samples were required.
There is some optimism, however, that the development of tech-
niques that can detect heterosis for some genes in yeast95 may
lead to greater success in other organisms, including humans.

Tracking migrations of our species using DNA
A recent synthesis of Y chromosome phylogeography, paleoan-
thropological and paleoclimatological evidence suggests a pos-
sible hypothesis for the evolution of human diversity96–98.
Around 100 kya or shortly after, a small population of about
1,000 individuals (that is, a tribe), most probably from East
Africa, expanded throughout much of Africa. Then, between
60 and 40 kya there was a second expansion, most probably
from a descendant population, into Asia and from there to the
other continents (Fig. 3). This may be referred to as the ‘stan-
dard model of modern human evolution’; it is also called ‘out
of Africa 2’ in recognition of an earlier expansion of Homo
erectus from Africa into Eurasia around 1.7 million years ago
and assumes that anatomically modern humans (also called
Homo sapiens sapiens) replaced earlier poorly known species of
Homo that descended from the first migrants of H. erectus98.
Genetic data provide some indication that the spread of
humans into Asia occurred through two routes. The first was a
southern route, perhaps along the coast to south and southeast
Asia, from where it bifurcated north and south99. In the south,
these modern humans reached Oceania between 60 and 40 kya,

whereas the northern expansion later reached China, Japan
and eventually America (this might represent the second
migration to America, associated with the NaDene languages,
postulated by Greenberg100). The second was a central route
through the Middle East, Arabia or Persia to central Asia, from
where migration occurred in all directions reaching Europe,
east and northeast Asia about 40 kya, after which the first and
principal migration to America suggested by Greenberg
occurred not later than 15 kya101.

It is still unresolved whether the divergence between these two
expansion routes occurred in Africa or after entry into west Asia,
and, if the latter, where it happened. Most literature accepts with-
out discussion that the entry to Europe and central Asia was
through the Levant. It is not at all certain that this was the only or
the earliest route. These two initially divergent routes converged
later, especially in the extreme East and America.

An alternative to the out of Africa 2 hypothesis, originated by
Weidenreich102 and expanded and called ‘multiregional’ by
Wolpoff103, maintains that all human populations living today
originated in their various continents and evolved in parallel into
modern humans. The main basis of this hypothesis is the claim
that most ancient fossils (essentially those from Europe and Asia
but not Oceania and America, where the human fossils found are
all very recent and of modern human type) show a continuous
morphological transition to modern humans. An extreme exam-
ple of parallel evolution that included the doubling of brain vol-
ume is invoked to explain this scenario. In later versions of the
multiregional model, parallelism is claimed to be the result of
substantial intermigration100,104.

Recent quantitative anthropological research on several
human skulls has shown no morphological continuity in the var-
ious continents85. In addition, in the only part of the world
where there existed a human type with some clear similarity to
modern humansnamely Neandertals in Europe and west Asia
this purported ancestor of modern Europeans disappeared
shortly after the appearance of modern humans (40–30 kya).
MtDNA analysis of three Neandertals from Germany105,106,
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lowed by an expansion from the same area to Asia, probably by two routes, southern and northern between 60 and 40 kya. Oceania, Europe and America were
settled from Asia in that order.
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sequence data resulted in contigs and scaffolds that do not map
against the human reference genome. Many of these scaffolds corre-
sponded to gaps in the current human reference assembly, including
gaps over 200,000 bp in length (see Supplementary Information).

Single-nucleotide differences from the human reference genome
assembly (NCBI Build 36, also known as hg18) were identified for the
five southern African genomes and compared with those from eight
available personal genomes4–8. In what follows, the term ‘SNP’ means
a single-nucleotide difference from the human reference assembly, not
including insertions/deletionsof abase, andwithout restrictionsonallele
frequency in a population. SNPs were called using the software Newbler
(for Roche/454), Corona Lite (for SOLiD) and MAQ10 (for Illumina).

Consistent with the view that southern Africans are among the most
divergent humanpopulations,we identifiedmore SNPs inKB1, and to a
lesser extent inABT, thanhave been reported in other individual human
genomes (Fig. 2 andTable 1), although a portionof the variation in SNP
numbers may stem from differences in technology and levels of
coverage. The number of SNPs that are novel (that is, not previously
seen in other individuals) is far higher for KB1 and ABT than for other
individual whole genomes (Table 1). KB1 and ABT each have approxi-
mately 1 million SNPs that are not shared with each other or with the
publishedYoruban, Asian or European complete genomes4–8 (Fig. 2). In

the 117megabases (Mb) of sequenced exome-containing intervals, the
average rate of nucleotide differences between a pair of the Bushmen
was 1.2 per kilobase, compared to an average of 1.0 per kilobase
differing between a European and Asian individual. The higher SNP
rate in Bushmen is reflected by the offset of the red and black lines in
Fig. 3b. The autosomal diversity of the study participants is mirrored
by the diversity of the mitochondrial genomes. Whereas Europeans
on average show approximately 20 differences from the Cambridge
reference sequence (CRS)11, our southern African participants show
up to 100 mitochondrial SNPs relative to the CRS (Supplementary
Tables 4 and 5 and Supplementary Figs 1 and 2). More importantly,
despite all mitochondrial sequences belonging to the same hap-
logroup L0, up to 84 differences are observed between pairs of parti-
cipants’ mitochondrial genomes (Supplementary Table 4).

To determine whether the novel SNPs represent ancestral alleles or
arose since Bushmen separated from other populations, we examined
the homologous nucleotide in the chimpanzee genome. SNPs that
match the chimpanzee genome indicate that the difference is ancestral,
whereas differences from chimpanzee indicate a derived allele. Of the
743,714 novel SNPs in KB1, the human reference genome matches
with the chimpanzee genome for 87% of these, whereas the KB1
genome matches chimpanzee for only 6%. For the remaining 7%,
the chimpanzee nucleotide could not be determined (6%) or differed
from both the Bushman and the reference (1%). These fractions are
essentially unchanged if we account for the estimated 3,600 false-
positive SNP calls (that is, 0.0009 of 4 million), which can be assumed
to appear as novel variants. Thus, very few of the novel differences in
KB1’s genome are ancestral nucleotides retained in the Bushmen;
instead, the vast majority are changes that accumulated since the
Bushmen lineage diverged from other human populations.

The large number of novel SNPs raises concerns regarding the ability
of current genotyping arrays to capture effectively the true extent of
genetic diversity and haplotype structure represented in southern
Africa. Assessing percentage heterozygosity for 1,105,569 autosomal
SNPs using current-content Illumina arrays, we were surprised to find
lower heterozygosity in KB1 compared to a region-matched European
control (SupplementaryData andSupplementary Fig. 3a, b), because it
is well known that genetic diversity is highest in Africa. However,
analysis of whole-genome sequencing data for KB1 and ABT revealed

Identifier Name Location of origin Linguistic group Y chromosome

KB1 !Gubi Southern Kalahari Tuu-speaker B2b

NB1 G/aq’o Northern Kalahari Juu (Ju/’hoansi) A3b1

TK1 D#kgao Northern Kalahari Juu (Ju/’hoansi) A2

MD8 !Aî Northern Kalahari Juu (!Kung) E1b1b1

ABT Tutu South Africa Bantu (Xhosa/Tswana) E1b1a8a *
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Figure 1 | Map of southern Africa. The figure shows ethnic grouping and
localities of study participants, KB1, NB1, TK1, MD8 and ABT
(a–e, respectively), areas of arid and desert climates and the geographic
distribution of the Khoisan and Niger–Congo languages30. The Khoisan

languages are characterized by clicks, denoting additional consonants. The !
is a palatal click; / is a dental click; and # is an alveolar click26. Note that the
ABTY chromosome haplogroupwas determined using both genotyping and
sequencing data generated by this study.
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Figure 2 | Three-way relationships among SNPs. SNPs from KB1 are
comparedwith those of the YorubanNA19240 andABT (left panel), andwith
an American of European descent (J. C. Venter) and a Chinese individual
(YH) (right panel). Numbers are given in thousands. Variant positions that
appear in all eight previous genomes were ignored, leading to a slightly
smaller number of total SNPs (for example, 3,761,019 differences from the
reference assembly for KB1, compared to 4,053,781 if they are included) and
fewer SNPs in each three-way intersection. Similar relationships are found
when other individuals from the geographical groups are examined.
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sequence data resulted in contigs and scaffolds that do not map
against the human reference genome. Many of these scaffolds corre-
sponded to gaps in the current human reference assembly, including
gaps over 200,000 bp in length (see Supplementary Information).

Single-nucleotide differences from the human reference genome
assembly (NCBI Build 36, also known as hg18) were identified for the
five southern African genomes and compared with those from eight
available personal genomes4–8. In what follows, the term ‘SNP’ means
a single-nucleotide difference from the human reference assembly, not
including insertions/deletionsof abase, andwithout restrictionsonallele
frequency in a population. SNPs were called using the software Newbler
(for Roche/454), Corona Lite (for SOLiD) and MAQ10 (for Illumina).

Consistent with the view that southern Africans are among the most
divergent humanpopulations,we identifiedmore SNPs inKB1, and to a
lesser extent inABT, thanhave been reported in other individual human
genomes (Fig. 2 andTable 1), although a portionof the variation in SNP
numbers may stem from differences in technology and levels of
coverage. The number of SNPs that are novel (that is, not previously
seen in other individuals) is far higher for KB1 and ABT than for other
individual whole genomes (Table 1). KB1 and ABT each have approxi-
mately 1 million SNPs that are not shared with each other or with the
publishedYoruban, Asian or European complete genomes4–8 (Fig. 2). In

the 117megabases (Mb) of sequenced exome-containing intervals, the
average rate of nucleotide differences between a pair of the Bushmen
was 1.2 per kilobase, compared to an average of 1.0 per kilobase
differing between a European and Asian individual. The higher SNP
rate in Bushmen is reflected by the offset of the red and black lines in
Fig. 3b. The autosomal diversity of the study participants is mirrored
by the diversity of the mitochondrial genomes. Whereas Europeans
on average show approximately 20 differences from the Cambridge
reference sequence (CRS)11, our southern African participants show
up to 100 mitochondrial SNPs relative to the CRS (Supplementary
Tables 4 and 5 and Supplementary Figs 1 and 2). More importantly,
despite all mitochondrial sequences belonging to the same hap-
logroup L0, up to 84 differences are observed between pairs of parti-
cipants’ mitochondrial genomes (Supplementary Table 4).

To determine whether the novel SNPs represent ancestral alleles or
arose since Bushmen separated from other populations, we examined
the homologous nucleotide in the chimpanzee genome. SNPs that
match the chimpanzee genome indicate that the difference is ancestral,
whereas differences from chimpanzee indicate a derived allele. Of the
743,714 novel SNPs in KB1, the human reference genome matches
with the chimpanzee genome for 87% of these, whereas the KB1
genome matches chimpanzee for only 6%. For the remaining 7%,
the chimpanzee nucleotide could not be determined (6%) or differed
from both the Bushman and the reference (1%). These fractions are
essentially unchanged if we account for the estimated 3,600 false-
positive SNP calls (that is, 0.0009 of 4 million), which can be assumed
to appear as novel variants. Thus, very few of the novel differences in
KB1’s genome are ancestral nucleotides retained in the Bushmen;
instead, the vast majority are changes that accumulated since the
Bushmen lineage diverged from other human populations.

The large number of novel SNPs raises concerns regarding the ability
of current genotyping arrays to capture effectively the true extent of
genetic diversity and haplotype structure represented in southern
Africa. Assessing percentage heterozygosity for 1,105,569 autosomal
SNPs using current-content Illumina arrays, we were surprised to find
lower heterozygosity in KB1 compared to a region-matched European
control (SupplementaryData andSupplementary Fig. 3a, b), because it
is well known that genetic diversity is highest in Africa. However,
analysis of whole-genome sequencing data for KB1 and ABT revealed
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sequence data resulted in contigs and scaffolds that do not map
against the human reference genome. Many of these scaffolds corre-
sponded to gaps in the current human reference assembly, including
gaps over 200,000 bp in length (see Supplementary Information).

Single-nucleotide differences from the human reference genome
assembly (NCBI Build 36, also known as hg18) were identified for the
five southern African genomes and compared with those from eight
available personal genomes4–8. In what follows, the term ‘SNP’ means
a single-nucleotide difference from the human reference assembly, not
including insertions/deletionsof abase, andwithout restrictionsonallele
frequency in a population. SNPs were called using the software Newbler
(for Roche/454), Corona Lite (for SOLiD) and MAQ10 (for Illumina).

Consistent with the view that southern Africans are among the most
divergent humanpopulations,we identifiedmore SNPs inKB1, and to a
lesser extent inABT, thanhave been reported in other individual human
genomes (Fig. 2 andTable 1), although a portionof the variation in SNP
numbers may stem from differences in technology and levels of
coverage. The number of SNPs that are novel (that is, not previously
seen in other individuals) is far higher for KB1 and ABT than for other
individual whole genomes (Table 1). KB1 and ABT each have approxi-
mately 1 million SNPs that are not shared with each other or with the
publishedYoruban, Asian or European complete genomes4–8 (Fig. 2). In

the 117megabases (Mb) of sequenced exome-containing intervals, the
average rate of nucleotide differences between a pair of the Bushmen
was 1.2 per kilobase, compared to an average of 1.0 per kilobase
differing between a European and Asian individual. The higher SNP
rate in Bushmen is reflected by the offset of the red and black lines in
Fig. 3b. The autosomal diversity of the study participants is mirrored
by the diversity of the mitochondrial genomes. Whereas Europeans
on average show approximately 20 differences from the Cambridge
reference sequence (CRS)11, our southern African participants show
up to 100 mitochondrial SNPs relative to the CRS (Supplementary
Tables 4 and 5 and Supplementary Figs 1 and 2). More importantly,
despite all mitochondrial sequences belonging to the same hap-
logroup L0, up to 84 differences are observed between pairs of parti-
cipants’ mitochondrial genomes (Supplementary Table 4).

To determine whether the novel SNPs represent ancestral alleles or
arose since Bushmen separated from other populations, we examined
the homologous nucleotide in the chimpanzee genome. SNPs that
match the chimpanzee genome indicate that the difference is ancestral,
whereas differences from chimpanzee indicate a derived allele. Of the
743,714 novel SNPs in KB1, the human reference genome matches
with the chimpanzee genome for 87% of these, whereas the KB1
genome matches chimpanzee for only 6%. For the remaining 7%,
the chimpanzee nucleotide could not be determined (6%) or differed
from both the Bushman and the reference (1%). These fractions are
essentially unchanged if we account for the estimated 3,600 false-
positive SNP calls (that is, 0.0009 of 4 million), which can be assumed
to appear as novel variants. Thus, very few of the novel differences in
KB1’s genome are ancestral nucleotides retained in the Bushmen;
instead, the vast majority are changes that accumulated since the
Bushmen lineage diverged from other human populations.

The large number of novel SNPs raises concerns regarding the ability
of current genotyping arrays to capture effectively the true extent of
genetic diversity and haplotype structure represented in southern
Africa. Assessing percentage heterozygosity for 1,105,569 autosomal
SNPs using current-content Illumina arrays, we were surprised to find
lower heterozygosity in KB1 compared to a region-matched European
control (SupplementaryData andSupplementary Fig. 3a, b), because it
is well known that genetic diversity is highest in Africa. However,
analysis of whole-genome sequencing data for KB1 and ABT revealed
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languages are characterized by clicks, denoting additional consonants. The !
is a palatal click; / is a dental click; and # is an alveolar click26. Note that the
ABTY chromosome haplogroupwas determined using both genotyping and
sequencing data generated by this study.
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KB1 3,761
KB1 3,761
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NA19240 3,250
J.C. Venter 2,738

Figure 2 | Three-way relationships among SNPs. SNPs from KB1 are
comparedwith those of the YorubanNA19240 andABT (left panel), andwith
an American of European descent (J. C. Venter) and a Chinese individual
(YH) (right panel). Numbers are given in thousands. Variant positions that
appear in all eight previous genomes were ignored, leading to a slightly
smaller number of total SNPs (for example, 3,761,019 differences from the
reference assembly for KB1, compared to 4,053,781 if they are included) and
fewer SNPs in each three-way intersection. Similar relationships are found
when other individuals from the geographical groups are examined.
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Integrated Statistical Model 
(MCMCcoal)

38

Yang, 2002; Rannala & Yang, 2003; 
Burgess & Yang, 2008

AATGAACCGTTTCTGAGGCCATT!
AGTGAACCGTTACTGACGCCATT!
AATGAATCGTTACTGAGGCTATT

Xi Gi θ, τ
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Integrated Statistical Model 
(MCMCcoal)

38

Yang, 2002; Rannala & Yang, 2003; 
Burgess & Yang, 2008

AATGAACCGTTTCTGAGGCCATT!
AGTGAACCGTTACTGACGCCATT!
AATGAATCGTTACTGAGGCTATT

Xi Gi θ, τ

Goal: P(θ, τ | X)

Finite sites model, 
Felsenstein’s pruning 
algorithm

Censored 
coalescent model

Gamma priors

P(X, G, θ, τ) = P(θ) P(τ) ∏ P(Gi | θ, τ) P(Xi | Gi)
i
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Data and Phylogeny
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Challenge #1: Data quality / heterogeneity
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Challenge #1: Data quality / heterogeneity

Solution: Uniform realignment, genotype inference
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Challenge #1: Data quality / heterogeneity

Challenge #2: Gene flow between populations

Solution: Uniform realignment, genotype inference
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Challenge #2: Gene flow between populations
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Solution: Uniform realignment, genotype inference

Solution: IM-like genealogy sampling (G-PhoCS)
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Challenge #1: Data quality / heterogeneity

Challenge #2: Gene flow between populations

Challenge #3: Unphased data

Solution: Uniform realignment, genotype inference

Solution: IM-like genealogy sampling (G-PhoCS)

Solution: Phasing integration
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*

P(Gi | θ, τ, m),
The genealogy prior,

must allow for 
migration (another 
Poisson process)

Ilan Gronau
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Allowing for Migration
40

*

P(Gi | θ, τ, m),
The genealogy prior,

must allow for 
migration (another 
Poisson process)

The locus data 
likelihood,  
P(Xi | Gi), 
is unchanged

Ilan Gronau
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Phasing Integration
41

7. Rescaling: In this step, the times of migration events and the migration rates are scaled along with
the other times and parameters. The migration rates are scaled by the inverse of the factor applied to
{✓p} and {⌧p}, since 1/m defines the expected waiting time for a migration event.

S4.3 Accommodating Diploid Genomes

Each of the diploid individuals in our analysis contains two haploid samples with information relevant to
our analysis, but in our raw data these these haploid samples are intertwined and represented only as a
sequence of site-wise diploid genotypes. It is of course possible to disentangle these haploid sequences
using automatic phasing tools, but this process is imperfect, particularly in cases in which high-quality
genotype reference panels are not available, as with our Southern African genomes. Moreover, differences
in phasing accuracy between the genomes in our study could produce biases in our analysis.

To avoid these problems, we took the approach of integrating over all possible phasings in our analysis,
considering them to be equally likely a priori. We devised a method for performing this phasing integration
that is fairly efficient, at least for small numbers of individuals. In simulation studies, this method appears
to work essentially as well as conditioning on the true phase for the purposes of our analysis (Section S6.3),
and its computational cost is low.

The theory and practice behind phasing integration
In this section we describe how the locus likelihood P (Xi |Gi) is computed when an alignment Xi contains
unphased diploid genotypes, consisting of both homozygous (homs) and heterozygous (hets) genotypes.
For simplicity, we omit the subscript i in this discussion, and assume that the alignment X spans k diploid
samples and n sites. (An alignment including both haploid and diploid samples can easily be accommodated
within this setting as well.)

Let the phasing P of a locus be a k ⇥ n binary matrix defining the manner in which each position in
each diploid genome is partitioned between the two associated haploid samples. The locus-likelihood can
be calculated by summing over all possible phasings as follows:

P (X|G) =

X

P2{0,1}k⇥n

P (X|P, G) P (P) , (14)

where we assume the prior P (P) does not depend on the genealogy. Notice that the conditional likelihood
P (X|P, G) can be computed in the ordinary way for haploid samples, because the phasing P allows a hap-
loid genotype to be unambiguously assigned to each leaf of the genealogy at each position in the alignment.
In practice, the summation only needs to consider phasing assignments of hets, because the conditional like-
lihood is invariant to the assignments for homs. Nevertheless, the number of distinct phasings of X is still
exponential in the total number of hets in X , which will in general make integration by simple enumeration
infeasible.

Let us further assume a uniform prior distribution P (P). Using conditional independence of the align-
ment columns given the genealogy and phasing, and uniformity of the phasing prior, equation 14 can be
rewritten as:

P (X|G) =

Y

j

0

B

@

1

2

|Hj |
X

Pj2{0,1}|Hj |
P (Xj | Pj , G)

1

C

A

, (15)

where Xj denotes the jth column of X , and Pj denotes a binary phasing vector for the hets at column j
(denoted Hj).
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MCMCcoal Algorithm
! Step 1: Update coalescent times!
! Step 2: Subtree pruning and regrafting of 

genealogy!
! Step 3: Update θ’s!
! Step 4: Update τ’s, adjusting associated 

coalescent times via “rubber band”!
! Step 5: Global scaling of θ’s and τ’s 

(mixing step)

43

Rannala and Yang, Genetics, 2003
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Changes to Sampler
! The “regrafting” operation now allows 

lineages to pass through migration bands!
! New steps are needed to update the 

individual migration times and the global 
migration parameters !

! Certain additional conflicts must be 
considered when updating population 
divergence times

44
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Simulation Results
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Application to Domestic & Wild Canids
47
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Best Model
48
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Archaic Hominin Analysis
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Best Model (So Far)
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Limitations of G-PhoCS
! Discards most of the data!
! Must use short loci due to restrictive 

assumption of no intralocus recombination!
! Fails to benefit from demographic 

information in LD structure!
! Want to use full ARG!
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First Goal: IM + ARGweaver
52
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First Goal: IM + ARGweaver
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Preliminary Results
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Preliminary Results
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Simons Center for Quantitative Biology 
at Cold Spring Harbor Laboratory

! Recently launched Center, with founding 
donation from Simons Foundation  !

! Focus on several areas of QB, including 
genomics, gene regulation, cancer biology, 
and neuroscience!

! Faculty & fellow positions opening soon!
! Several postdoc positions in my group!
! See me if interested!
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