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!  Part 1:   Ancestral state reconstruction 
 

!  Part 2:   Information loss on trees 
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Part 1:  Ancestral state reconstruction 

Plachetzki D C et al. Proc. R. Soc. B 2010;277:1963-1969 
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Minimum evolution (‘parsimony’): 

Majority Rule 
 
 
 

Maximum likelihood 
 
 
 

? 

Three methods  

Need tree topology but not 
branch lengths or model 

Don’t even need tree 

Need tree, branch lengths and model 

Definition: 
 
For a method M that estimates the ancestral 
state at a node v of a tree from leaf data, and a 
model of character state change, the Accuracy 
of M at v is: 
 

 Pr(M(leaf data)= state of v] 
 



MP vs MR 
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fh = fh1 + fh2

f1 = 2, f2 = 3

fh ⇠ c

 
1 +

p
5

2

!h

n = 2h

fh/2
h ! 0

h 

fh = min{# red tips : MP (root) = {red}}

Q1: Which is more accurate for root state prediction from 
an ‘evolved’ character: parsimony or majority? 
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Q2.  Is it easier to estimate the ancestral state at the root of the tree, 
or an interior node?  
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Root state can be estimated with high precision but 
no other node can be 

Root state can be estimated with low precision but 
all other interior nodes can be 

time

t/2

v1 v2 vn
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......
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⇢

Part 3: Random trees 
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Yule  (pure birth) model 
 
Each lineage gives birth independently at some 
constant rate λ"
"
Grow for time t, or till it has n leaves, or 
condition on both n and t!
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So what happens on a ‘typical’ tree? 
Grow a Yule (pure-birth) tree at 
speciation rate λ for time t 
 
Evolve a binary state from the root to 
the tips binary character (mutation rate m)   

 
Estimate the root state from the tip states using maximum parsimony. 
  
Let Pt!= probability our estimate is correct   
 
Question: what happens to Pt!as t becomes large? 

Pt = St +
1
2
Et

+1 +1 +1 +11 1 1

X

t
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Dynamical system  

 

dEt

dt
= −λEt + λ(Et

2 + 2SDDt );
 

dSt
dt

= −(λ + m)St + mDt + λ(St
2 + 2StEt );

 

dDt

dt
= −(λ + m)Dt + mSt + λ(Dt

2 + 2DtEt );

m
λ 

Pt = St +
1
2
Et
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If                        < 6, then we lose all information about the  
                                 ancestral state as t grows (min evolution). 
 
 

 ‘six is (just) enough’: 

speciation rate   ___________     mutation rate 

If                         > 6, then we don’t speciation rate   ___________     mutation rate 

x = mutation rate/speciation rate 

f(x) =
1

2

⇣
1 +

p
(1 6x)(1 2x)

⌘

Pt  lim
t!1

Pt = f(x) where
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Comparisons (simulations) 

x 

cf. Hanson-Smith, V., Kolaczkowski, B. and Thornton, J.W. (2010). Robustness of  ancestral 
sequence reconstruction to phylogenetic uncertainty. Mol. Biol. Evol.  27: 1988–99. 
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If                        < 4, then any method loses all information about the  
                                 ancestral state as t grows (we’ll see why in 10 mins!). 
 
 

What about majority rule? 

speciation rate   ___________     mutation rate 

Theorem [Mossel +S, 2014] 

Pr(MR correct) >
1

2
+

1

2

✓
1 4m



◆

All t 

What can we say in general (for Yule trees)? 
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"  Theorem 1:  The accuracy of any method in predicting the state at the 
root node of the tree vanishes (as n or t goes to infinity) when the 
mutation rate passes a threshold (dep. on the speciation rate). 

"  Theorem 2:  There is a very simple method that can predict the state 
of a randomly selected node with an accuracy that does not vanish 
(as n or t grows) for any fixed mutation rate. 

Assume any conservative GTR model on any number of  states 

Part 2:  Information loss on trees 
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I(X;Y ) =
X

x,y

p(x, y) log

✓
p(x, y)

p(x)p(y)

◆

I(X;Y ) = 0 () X and Y are independent

I(X;Y ) << 1 ) Y cannot accurately predict X
Fano’s lemma 

by any method! 

"  Probability Primer: 
!  Let X and Y be any two discrete random variables. 
!  The mutual information of (X,Y ) is: 

 

 

= DKL(pXY ||pXpY )

Markovian processes that destroy information 
(exponentially fast) 

 

Theorem:  For any finite state Markov chain, where a 
transition from any state to any other is possible in some 
fixed number of  steps with probability > p >0 then: 

I(X0;Xt) < Cect

 
 
  Theorem applies to a (1-dimensional) 

Markov chain, not for a Markov 
process on a (branching) tree (but 
applies to a path from root to leaf). 

 
 

I(X⇢;XL)

L

⇢

  Transition rates can vary arbitrarily with time 



Data processing inequality 
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X⇢ ! XL ! XL0

If                                   (where                        )   then 

*           *       *     *            * 

I(X⇢;XL)  I(X⇢;XL0)

1Fischer, M. and Thatte, B. (2009). Journal of Theoretical Biology 260: 290--293. 

X ?Y ZX ! Y ! Z

But! – MP can be more accurate on subsets of  leaves of  (an ultrametric 
tree)  than on all leaves1 

I(X;Z)  I(X;Y ) and I(Y ;Z)
L0L

Thus, 

A caution… 

!  Throwing away data never increases information (e.g. deleting 
fast evolving sites for tree estimation) – same for MLE under 
true model. 

"  But when don’t know the ‘true’ model (i.e. always except in simulations!) 
it can still (sometimes) be a good thing to do (to avoid correcting under 
an incorrect model)… 
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Application 2 
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d

dp
I(X⇢;XL) < 0

p

But! – MP can be more accurate when substitution probabilities 
increase1 

1  S. Roch (Pers. Comm).  

Another property of I: subadditivity 

If (Y1, Y2, . . . , Yk) are conditionally independent given X then:

I(X; (Y1, Y2, . . . , Yk)) 
kX

i=1

I(X;Yi)

Example: Data = k characters (c1, c2,…) generated i.i.d. by an 
unknown tree topology T, with some prior on branch lengths.  

I(T ; Data)  kI(T ; c1)



Application 
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I(X⇢;YL) 
X

l2L
I(X⇢, Yl)

But is                                           ? 

For 2-state symmetric model – yes!  Evans et al. (2000) 
For r-state symmertic models r>4 – no!  Allan Sly, (2011). 

I(X⇢;XL)  I(X⇢;YL)

XL YL

Subadditivity of  I implies that  

X⇢ X⇢

(unzipping) 

Getting our hands (slightly) dirty… 

!  For the 2-state symmetric model  
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↵ yy

t 

r 

I(X⇢;Yl) = exp(4rt)

I(X⇢;XL)  n exp(−4rt) t 

I(X⇢;XL)  I(X⇢;YL) I(X⇢;YL) 
X

l2L
I(X⇢, Yl)

So why was 4 best possible?… 
[10 mins ago]  
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I(X⇢, XL)  n exp(−4rt)

Other useful tricks:   “Coupling” and 
percolation/branching process theory 

t

Nt 

Nt ⇠ Geo(et)

) E[Nt] = exp(t)

Reconstructing a complete scenario:  
 
a curious combinatorial result 
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D(E) = min{d(e, e0) : e, e0 2 C}

D(E) ≥ 3 ) MP reconstruction from leaf states is correct at every node of T⇢

Theorem [S+Penny, 2005] 
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Part 3: Reconstructing trees 

Another combinatorial curiosity…	


…..ACGTCG……. 

…..ACGTCG……. 

…..ACGTCG……. 

…..ACGTCG……. 

Theorem [Dress +S, 2005] 

Suppose that :  
  n species evolved on some unknown tree T. 

 
   for every three species, the sequence at the median node can be determined. 

   the sequences are long enough that each edge of  the tree has a transition in at least one 
site.  

Then the unknown tree T can be reconstructed without error. 
 

[Easy proof using ‘symbolic ultrametric theory’ of Boecker and Dress] 

Examples of deep and controversial 
phylogenetic resolutions 
 
!  Origin of metazoa 

(~550-600 mya) 

!  Origin of photosynthesis 
(>2.5 bya) 

!  Rooting the ‘tree’ of life 
(~3.5 bya) 
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Tree reconstruction: connection with information 
theory 

time 

T4 

T3 
T2 T1 

Time 

Y ! S ! XL

XL

Y

S

k  exp(4rt)/n

I(Y ;XL)  I(S;XL)

I(S;XLi
) = I(Si;XLi

)

I(S;XL) 
4X

i=1

I(S;XLi
)

I(Si : XLi
) 

X

l2Si

kX

j=1

I(Slj ;Xlj)

Problems for reconstructing a tree  
(even when the model is known and nice!) 
 

!  Short interior edges 

!  Long edges 

!  Many taxa (n) 
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A

B

C

D

t

T 
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Simplest model 

3 1 2 4 5 6 7 

time 

1   2   3   4   5    6    7 

Kimura and Crow’s “infinite alleles” model.  
The probability of any partition can be computed via Mobius inversion (Evans et al. 2004) 

e 7! p(e)

30 

  
How many such ‘evolved’ characters are needed? 
 
 
 

 
!  Proof relies on combinatorial arguments, and 

 basic property of branching processes. 
!  P > ½, k changes to poly(n). 
  
 

Theorem [Mossel +S, 2004] 

What about finite-state models, which will generate homoplasy? 

P = max{p(e)}, p = min{p(e) : e is interior}

For P < 1
2 , the number of characters k needed to corrected reconstruct T

(w.p. > 1 ✏) is: k = c · log(n)
p
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Finite state models: short and long edges 
 
 
 

↵ yy
r 

A

B

C

D

t 

T 

Infinite alleles model as t ! 0, k grows at rate 1
t

Finite state model 

as t ! 0, k grows at rate 1
t2

k = sequence length needed to accurately 
reconstruct this tree   

as T grows, k grows at rate exp(cT )

but if T = t then as t ! 0, k grows at the rate 1
t

What about is t shrinks? 
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Deep divergences 

? 

T4 

ε"

T3 
T2 T1 

time 
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T 

Question: How do these two factors 
(short, long) interact? 

k = ⇥

✓
1

✏2

◆

k = ⇥

✓
exp(cT )

n

◆

k = ⇥

✓
exp(cT )⇥ 1

✏2

◆



Recent developments 

!  Does ‘rates across sites’ help? 

"  For long edges it can: for certain distributions instead of 
                               it suffices to have 

       
 What about additional noise from lineage sorting? 

"  For short edges, the sequence length can still be kept at 
 
 

Dasarathy, Nowak, Roch (2014).  [Data requirement for phylogenetic inference from 
multiple loci: A new distance method. ArXiv: April 28, 2014: ] 

[Martyn  and S.  (2012). JTB 314: 157-163.] 

k = ⇥(exp(cT )) k = ⇥(T )

k = ⇥

✓
1

✏2

◆

How does the required sequence length (for tree 
reconstruction) depend on n (=# taxa)? 
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Cat ……..ACCCGTCGTT…. 
Daisy …. CACCATCGTT… 
Rice…….AACCAGCGTT… 
 
 
 

) k ≥ c · log(n)

b(n) = 2⌦(n log(n))

#data-sets of k characters for n species, over an r-letter alphabet

= (rn)k = rnk

Fine, but what about ‘evolved’ data 

Suppose we evolve k characters independently on a tree 
under a 2-state symmetric model with 
 
 

Theorem 1 [Erdos, PL, Szkeley, S, Warnow (1999)] 
 For some (‘stringy’) trees  accurate tree reconstruction is possible with  

 
 But for other (‘bushy’) trees our approach required 

 
 However, for almost all trees it suffices to have: 

 
k = ⇥(log(n)s)

k = ⇥(log(n))

k = ⇥(nt)

Theorem 2 [Daskalakis, Mossel, Roch (2011)]   
 
This conjecture holds (and is tight) 

Conjecture:   Provided that  
accurate tree reconstruction can be achieved for ALL trees with  k = ⇥(log(n))

↵ yy
p(e) 2 [p, P ] for every edge e

P <
1

2

✓
1− 1p

2

◆

Does finding a tree need more data than to ‘test’ if a given 
one is correct? 

!  Reconstructing:  
"  Given k characters generated by (unknown) tree T: 

!  We need  log(n) sites for finite-state and infinite state models to reconstruct T. 

!  Testing:   
"  Given data, and candidate tree, Tc , is T = Tc? 
 
  

"  For finite-state data we still need log(n) sites to test  

"  But for infinite-state data a constant(!) number of sites suffices 

 

Theorem 

  Teasing: 
Given data, and that and ‘T =T1 or T2’, which is it? 



Can adding more taxa help (even if you don’t care about them)? 

 
 Add taxa         build tree         ignore the added taxa 
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Sequence length required to find the correct tree (on the 
subset of  species) can be reduced logarithmically this way  

Intermission…. 

38 

39 

Part 4: Lateral gene transfer 

Simone Linz                 Daniel Huson               Andreas Pedersen 
!  In prokaryotes, if nearly all genes have been 

transferred between lineages many times is it 
meaningless to talk about a species ‘tree’?  
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LGT 
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  a               b             c   a               b             c 

  a               b             c 

LGT 
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  a               b             c   a               b             c 

  a               b             c 

LGT combinatorics 

43 

(ii)

a b c d e f

(i)

a b c d e f
1

2

3

4

5

6

time

Suppose we have some ‘species tree’   
(e.g. the tree of bacterial cell divisions) 

 
!  Can random LGT lead to statistical inconsistency in  
  estimating this species tree from gene trees? 

 
!  When can we infer a species tree from gene trees? 
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Possibilities for the LGT rates in the model: 
 
 
 
 
 
Rate of transfer from x to y is constant 
 
Rate of transfer from x to y depends on the branches 
 
Rate of transfer from x to y depends on d(x,y) and/or time 
 
 
 

 In all cases, the number of LGT events in the tree  
 has a Poisson distribution 
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a ⇤ c

time t{b,c}

b

⇢

σ2

σ1

t(⇢)

0

          a                    b                c 

 

Harder:  What about 3-taxon 
reconstruction if other taxa present?  

Easy: Under model, 3-taxon tree 
reconstruction is statistically consistent if no 
other lineages are involved. 

(cf. lineage sorting story – there extra lineages don’t matter)? 

LGT: the gene tree for (a,b,c) 
[ ‘fixing’ and ‘moving’ transfers] 
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a ⇤ c

time t{b,c}

b

⇢

σ2

σ1

t(⇢)

0    a                        b                   c 

Walking between trees (“pass the port”) 
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Theorem 

A zone of inconsistency 
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Corollary 

B = 3(tbc  ta⇤)

What about the other tree? 
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b c ⇤a

(ii)

a ⇤ c

t t{b,c}  t{a,⇤}

t{a,⇤}

b

(i)

0

t⇢ ⇢
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The other tree shape 
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MYBOV1
MYTUB1
MYLEP1
MYULC1
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MYCOB1
MYCOB3
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MYSME1
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COEFF1
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ARTHR1
ACCEL1
KINEO
BILON1
RUXYL1

The other tree shape 
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The other tree shape 

No statistical 
inconsistency  
arises for this  
tree shape 

Can we reconstruct a tree under rampant LGT? 
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Triplet-based (R*) tree reconstruction is a statistically consistent estimator of the  
species tree under the random LGT model if the expected number G of LGTs per gene is 
‘not too high’. 
 
Example:   for Yule trees with n leaves the following suffices: 

Theorem [c.f. also Roch and Snir 2013] 

Particular case:  [S,Linz, Huson, Sanderson] 
 
Take n=200 (Yule-shape tree), and suppose each gene is transferred on 
average 10 times.  Then the species tree is identifiable from sufficiently 
many gene trees.   
 
 

G ≤
n− 2
3ln(n2)

Can we reconstruct a tree under rampant LGT? 
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Under the bounded rates (e.g. Yule model), it is possible to reconstruct the topology of a 
phylogenetic  tree for n taxa  w.h.p. from N = Ω(log(n)) gene tree topologies if the 
expected number of LGT transfers is no more than a constant times n/log(n).  

Theorem 1 [Roch and Snir, 2013]  

Theorem 2  [Roch and Snir, 2013]  

Under the Yule model, it is not possible to reconstruct the topology of a phylogenetic  tree 
w.h.p. from N gene trees if the expected number of LGT events is more than Ω(n log(N))  
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Example 1 
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MYBOV1
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1338 rooted gene trees on variable taxon sets from 
the  Actinobacteria phylum.  “Primordial tree” in Dendroscope 

Further details 
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