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A tenth crucial question regarding model use in

phylogenetics

John Gatesy

Department of Biology, University of California — Riverside, Spieth Hall 2314, Riverside, CA 92521, USA

‘Unfortunately, in most phylogenetic analyses, even if
a log-likelthood s calculated, it is never compared
with the best log-likelihood value to see if the models
being considered are adequate. In fact, the fit is almost
invariably awful, which may explain why such com-
parisons are not often made.’

J. Reeves, 1992 [1]

Kelchner and Thomas addressed nine key questions
regarding the use of stochastic models in phylogenetics
[2]. A tenth crucial question was not explored in detail in
their TREE review: ‘In modern systematic studies, how
often is the fit between model and data absolutely poor?” At
their best, models should provide adequate explanations of
complex biological patterns. Yet until now, systematists
have been preoccupied primarily with the relative fit of
competing models to DNA datasets [3]. Simple methods for
detecting an absolutely poor fit between DNA sequence
data and a particular model have existed for some time
[1,4-6], but, unfortunately, these tests have been imple-
mented in relatively few cases [7]. Perhaps either buoyed
by studies that asserted the robustness of model-based
methods [8] or daunted by computational demands, sys-
tematists have hidden their heads in the sand for ~15
years.

In most published studies, statistical criteria are
applied to determine which model, among a set of compet-
ing models, fits the empirical data best [3]. From the initial
set, a particular model can be chosen as ‘optimal,” but

might simply represent the best of several extremely poor
choices, none of which fit the empirical data well. Given the
simplicity of most models, it is possible that model selec-
tion in modern systematics is analogous to an overweight
man shopping in the petites department of a women’s
clothing store. A particular garment might fit the portly
man best, but this does not imply a good overall fit. Like-
wise, to assume that any of the simple molecular models
commonly utilized by systematists [3] provide a good fit to
the data is a leap of faith, especially considering that the
most parameter-rich model (i.e. the largest dress in the
store) often is chosen as the best for published data
matrices [2].

Adequate models of molecular evolution are a
prerequisite for successful interpretation of data in the
model-based approach tosystematics [1-10]. For example,
statistical consistency (touted as a hallmark of this frame-
work [9]) and accuracy of branch support values are not
guaranteed given a mismatch of model to data [8,10].
The fact that the goodness of fit between DNA data and
current models is unknown is a disturbing aspect of phy-
logenetic analysis in the 21st century. Are molecular
models poor fits to the highly complex datasets compiled
by modern systematists? Unfortunately, and a bit embar-
rassingly, we still do not know the answer to this
tenth crucial question for the great majority of published
datasets [7].



I__ Linear Regression: Omnibus test .

Call:
Im(formula = educ ~ urban +

Coefficients:
Estimate Std.
(Intercept) -555.92562 123.

urban -0.00476 0
percap 0.07236 0
under18 1.55134 0

Residual standard error: 40.
Multiple R-squared: 0.5902,
F-statistic: 22.08 on 3 and

percap + underl18, data = educ.df)

Error t value Pr(>|tl)
46634 -4.503 4.56e-05 **x

.056174 -0.092 0.927
.01165  6.211 1.40e-07 ***
.31545 4.918 1.16e-05 **x*

53 on 46 degrees of freedom
Adjusted R-squared: 0.5634
46 DF, p-value: 5.271e-09




ILinear Regression: Outliers vs. Fitted values :
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Linear Regression: Influential observations
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II\/IodeI fitness in ML: Omnibus test .

i
» Deviance statistic -

M
= Z (Inpi —In(N;/N))
Jj=1

Assess significance using parametric bootstrap (Goldman,
1993a)

» Pearson X? statistic
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Assessment similar to above.




Model fitness in ML: Outliers vs. Fitted values
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Obs vs. Exp

Model fitness in ML: Outliers vs. Fitted values

Deviation




Likelihood IF

Model fitness in ML: Outliers vs. Fitted values

Likelihood Influence




II\/IodeI fitness in ML: Influence measures E

LA SR ORRRUAL.,

Topology:
Branches:

Parameters:

Problem:

Robinson-Foulds, SPR, NNI etc.

Weighted RF, branch score distance, geodesic
distance

Leave-one-out

~
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IFy (6)) = ‘

What is the standard error of the shape parameter?




Model fitness in ML: Simulation settings

General settings: 19 taxa, 600 sites...
Simulation 1: All good...

Simulation 2: Concatenated alignment...

LA SR ORRRERL,

Simulation 3: Total chaos...

Simulation 4: Actual data...




Simulation 1 Simulation 2

Simulation 3



G Statistics

Simulation 1 Simulation 2
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Likelihood IF

Simulation 1 Simulation 2
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f Smoothing the Likelihood IF :

Simulation 1 Simulation 2
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Simulation 3 Actual data
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Simulation 2

Rotinson Foulds

Simulation 1
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Branch score distance

Simulation 1 Simulation 2

Branch Score Distance




IGamma Shape Parameter 5

o

Simulation 1 Simulation 2
T il |
T e |
E " : | | ‘\ |
! Simulation 3 Actual data

T L

20 o

mmmmmmmmmm

”W




Invariant Sites Parameter IF

Simulation 1 Simulation 2

Invariant sites IF







I Other ideas
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Other ideas
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Other ideas
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I__ Resulting questions i

» Which influence measures are essential?

» Are the single sites informations available from inferences as
informative as leave-one-out measures?

» What is the unit of information? Site or taxon?

» Do site-wise comparisons make sense in the age of genomics?
» Should we use blocks of sites instead of single sites?

» What is an appropriate confidence interval for topologies?







