Identifiability of phylogenetic networks: do not distinguish the indistinguishable

Fabio Pardi¹, Celine Scornavacca²

1: CNRS – LIRMM, Montpellier 2: CNRS – ISEM, Montpellier

Phylogenetic trees

Darwin described evolution as 'descent with modification', a phrase that does not necessarily imply a tree representation...

The implicit assumption of using trees is that, at a macroevolutionary scale, each (current or extinct) species or gene *only descends from one ancestor*

Phylogenetic trees

Darwin described evolution as 'descent with modification', a phrase that does not necessarily imply a tree representation...

The implicit assumption of using trees is that, at a macroevolutionary scale, each (current or extinct) species or gene *only descends from one ancestor*

For alleles within a population, we already know this is not true... because of sex (cf. Adam Siepel's talk yesterday about ARGs)

However, sometimes inheritance is from multiple ancestors, because of reticulate events, e.g:

- 1) Hybrid speciation
- 2) Lateral gene transfer
- 3) Recombination

However, sometimes inheritance is from multiple ancestors, because of reticulate events, e.g:

- 1) Hybrid speciation
- 2) Lateral gene transfer
- 3) Recombination

However, sometimes inheritance is from multiple ancestors, because of reticulate events, e.g:

1) Hybrid speciation

However, sometimes inheritance is from multiple ancestors, because of reticulate events, e.g:

However, sometimes inheritance is from multiple ancestors, because of reticulate events, e.g:

Phylogenetic networks

In the presence of reticulate events, phylogenies are networks, not trees

The study of phylogenetic networks is a new interdisciplinary field: maths, CS, biology...

2011

Phylogenetic networks

Phylogenetic networks

N

Phylogenetic network inference

Implicit assumption/hope in the phylogenetic network community: at a macroevolutionary scale, the ratio data/reticulations is 'large enough' to allow the inference of the network itself... (c.f. ARGs)

?

An optimization problem where a candidate network is evaluated *on the basis of how well the trees it displays fit the data:*

Many possible formulations:

Data:

Sequence alignments: (typically given in blocks)

An optimization problem where a candidate network is evaluated *on the basis of how well the trees it displays fit the data:*

Many possible formulations:

Data:

Sequence alignments: (typically given in blocks)

$$A_1 \qquad A_2 \qquad \cdots \qquad A_m$$

Goal:

Find *N* that minimizes $F(N|A_1, A_2, ..., A_m) = \sum_{i=1}^{m} \min_{T \in \mathcal{T}(N)} F(T|A_i)$ subject to constraints on the complexity of *N*

An optimization problem where a candidate network is evaluated *on the basis of how well the trees it displays fit the data:*

Many possible formulations:

Data:

Sequence alignments: (typically given in blocks)

Goal:

Find N that minimizes $\mathbf{Pr}(A_1, A_2, \dots, A_m | N) = \prod_{i=1}^{m} \mathbf{Pr}(A_i | N) = \prod_{i=1}^{m} \mathbf{Pr}(A_i | N)$

 $\cdots \qquad A_m$ $\sum_{T \in \mathcal{T}(N)} \mathbf{Pr}(A_i|T) \mathbf{Pr}(T|N)$

An optimization problem where a candidate network is evaluated *on the basis of how well the trees it displays fit the data:*

Many possible formulations:

Data:

Clusters of taxa: $\{a, b\}, \{d, e\}, \{d, e, f\}, \{a, b, c, d, e, f\}, \{e, f\}, \{c, d, e, f\}, \dots$

Goal:

Find N that maximizes the number of input clusters that are `explained' by one of the trees displayed by N

subject to constraints on the complexity of ${\cal N}$

An optimization problem where a candidate network is evaluated *on the basis of how well the trees it displays fit the data:*

Many possible formulations:

Data:

Trees with 3 taxa: (inferred from other data)

$$\bigwedge_{a,b,c}$$

$\bigwedge_{c f a} \bigwedge_{d e}$

Goal:

Find N that maximizes the number of input trees that are `consistent' with one of the trees displayed by N

subject to constraints on the complexity of ${\cal N}$

An optimization problem where a candidate network is evaluated *on the basis of how well the trees it displays fit the data:*

Many possible formulations:

Data:

Any trees on the same taxa: (inferred from other data)

Goal:

Find N that maximizes the number of input trees that are `consistent' with one of the trees displayed by N

subject to constraints on the complexity of N

An optimization problem where a candidate network is evaluated *on the basis of how well the trees it displays fit the data:*

Many possible formulations...

Some networks display exactly the same trees:

а

b

С

Some networks display exactly the same trees:

Some networks display exactly the same trees:

Some networks display exactly the same trees:

Because N_1 and N_2 display the same trees, they are equally good to any of the inference methods we saw – no matter the input data

Some networks display exactly the same trees:

Because N_1 and N_2 display the same trees, they are equally good to any of the inference methods we saw – no matter the input data

(Recall that a network is evaluated on the basis of how well the trees it displays fit the data)

Some networks display exactly the same trees:

Because N_1 and N_2 display the same trees, they are equally good to any of the inference methods we saw – no matter the input data

UNIDENTIFIABILITY

Branch lengths can be used to distinguish between otherwise indistinguishable scenarios:

Branch lengths can be used to distinguish between otherwise indistinguishable scenarios:

Branch lengths can be used to distinguish between otherwise indistinguishable scenarios:

 N_2 is the only network to which we can assign branch lengths so that it displays T_1 and T_2

Indistinguishable networks

 N_1 and N_2 display the same trees (i.e. including branch lengths) and are thus *indistinguishable* even to methods accounting for lengths

Take home message (1) for the mathematician

- N_1 and N_2 are *indistinguishable* if they display the same trees (with branch lengths)
- A *funnel* is a node with indegree > 0 and outdegree = 1:
- N* is the canonical form of N if: N* is indistinguishable from N and N* has no funnel

Take home message (1) for the mathematician

- N_1 and N_2 are *indistinguishable* if they display the same trees (with branch lengths)
- A *funnel* is a node with indegree > 0 and outdegree = 1:
- N* is the canonical form of N if: N* is indistinguishable from N and N* has no funnel

Theorem

- Every network has a canonical form
- The canonical form of a network is unique (under mild assumptions 'U.m.a.')

Take home message (1) for the mathematician

- N_1 and N_2 are *indistinguishable* if they display the same trees (with branch lengths)
- A *funnel* is a node with indegree > 0 and outdegree = 1:
- N* is the *canonical form* of N if: N* is indistinguishable from N and N* has no funnel

Theorem

- Every network has a canonical form
- The canonical form of a network is unique (under mild assumptions 'U.m.a.')

Corollary 1

U.m.a., N_1 and N_2 are indistinguishable iff they have the same canonical form

Corollary 2

U.m.a., a network in canonical form is uniquely determined by the trees it displays

Take home message (2) for the biologist

The canonical form of a network N is a simplified, but 'equivalent', version of N that excludes all unrecoverable aspects of N. For example:

Take home message (2) for the biologist

The canonical form of a network N is a simplified, but 'equivalent', version of N that excludes all unrecoverable aspects of N. For example:

If N is reconstructed by an inference method, then even assuming perfect data, the true phylogenetic network is just one of the many that are indistinguishable from N ... the canonical form is representative of all of them.

Take home message (3) for the computational biologist

Network inference methods should only attempt to reconstruct what they can uniquely identify: canonical forms

Theorem

- Every network has a canonical form
- The canonical form of a network is unique (under mild assumptions)

networks

Take home message (3) for the computational biologist

Network inference methods should only attempt to reconstruct what they can uniquely identify: canonical forms

Theorem

- Every network has a canonical form
- The canonical form of a network is unique (under mild assumptions)

Instead of searching (or directly constructing) within network space, one should carry out the inference in a reduced space:

- Partially address the problem of multiple optimal networks

Multiple optimal networks

Inferring networks in canonical form should partially address the problem of multiple optima :

Huson and Scornavacca. Syst Biol 2012: —

A minimum hybridization network computed by Dendroscope 3 [...] It is one of **486** networks calculated by the program.

> It is not hard to see that some of these 486 networks are simply indistinguishable

Canonical forms for the mathematician, again

The existence is proven with a simple reduction algorithm

Uniqueness is much harder to prove and relies on the network satisfying the following property:

Theorem

- Every network has a canonical form
- The canonical form of a network is unique (under mild assumptions)

No pair of distinct paths having the same endpoints have the same length

 $\sum \lambda_e \neq \sum \lambda_e$ $e \in \pi_1$

Canonical forms for the mathematician, again

The existence is proven with a simple reduction algorithm

Uniqueness is much harder to prove and relies on the network satisfying the following property:

Theorem

- Every network has a canonical form
- The canonical form of a network is unique (under mild assumptions)

No pair of distinct paths having the same endpoints have the same length

We must impose:

$$\begin{split} \lambda_1 + \lambda_6 &\neq \lambda_2 + \lambda_3 + \lambda_5 + \lambda_8 \\ \lambda_1 + \lambda_6 &\neq \lambda_2 + \lambda_{10} + \lambda_9 + \lambda_8 \\ \lambda_2 + \lambda_3 + \lambda_5 + \lambda_8 &\neq \lambda_2 + \lambda_{10} + \lambda_9 + \lambda_8 \\ \end{split}$$
which happens with probability 1

Thank you for your attention!

