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What is Phylogenetic Inference?

Phylogenetic inference attempts to reconstruct (a cartoon of)
the evolutionary history of a collection of taxa (e.g., species).
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What is Phylogenetic Inference?

Phylogenetic inference attempts to reconstruct (a cartoon of)
the evolutionary history of a collection of taxa (e.g., species).

This history typically takes the form of a tree.

The Doum palm Hyphaene compressa in Kenya (Photo: Charles Godfray)
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What is Phylogenetic Inference?

Phylogenetic inference attempts to reconstruct (a cartoon of)
the evolutionary history of a collection of taxa (e.g., species).

A real phylogeny.
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Uses of Phylogenetic Inference

As famously stated by Th. Dobzhansky (1973):
nothing makes sense in biology except in the light of evolution.

Phylogenies embody and display evolution.

Phylogenetic inference has become a mainstay of computational biology,
with over 10,000 citations per year to inference packages.

Phylogenies can be used with
any system that evolved from a common ancestor .

Taxa can be biological species, but also genes, protein folds, biological
networks, pathogens and their hosts, pattern of epidemics, etc.

Beyond these, taxa can also be languages, ethnic customs, craft products
(from flint arrowhead to computer worms), artistic styles, fashions, etc.
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How DoWe Infer a Phylogeny?

We need:

Comparable data (homologous characters) on contemporary taxa
DNA sequences, protein structures, contact networks, regulatory networks,

morphological characters, brush strokes, etc.

A model of evolution for these data
character substitution matrices, gains and losses of morphologic characters, tandem

and segmental duplication of genomic regions, genomic rearrangements, etc.

An inference algorithm
simple heuristics such as neighbor-joining as well as search and estimation
procedures for NP-hard optimization criteria such as maximum parsimony

and maximum likelihood
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Uses of Phylogenies

Phylogenies are (almost) everywhere:

Fundamental research in evolutionary biology, systems biology, biomedicine,
clinical medicine, etc.

Public health (host-pathogen co-evolution, vaccine design, spread of disease)

Drug design

Agriculture

Conservation biology

Linguistics

Anthropology (e.g., migration patterns, dispersion of memes)

Sociology (e.g., evolution of social networks)

Art history (e.g., evolution of styles and techniques, forgery detection)

Security (ditto)
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Uses of Phylogenies

Phylogenies are (almost) everywhere:

Fundamental research in evolutionary biology, systems biology, biomedicine,
clinical medicine, etc.

Public health (host-pathogen co-evolution, vaccine design, spread of disease)

Drug design

Agriculture

Conservation biology

Linguistics

Anthropology (e.g., migration patterns, dispersion of memes)

Sociology (e.g., evolution of social networks)

Art history (e.g., evolution of styles and techniques, forgery detection)

Security (ditto)

But they are not used enough!
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Transfer of Knowledge

Comparative methods

The workhorse of computational biology, also known as
“guilt by association.”

Knowledge gained in well studied systems is transferred
to a system under study using pairwise comparisons.
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Transfer of Knowledge

Comparative methods

The workhorse of computational biology, also known as
“guilt by association.”

Knowledge gained in well studied systems is transferred
to a system under study using pairwise comparisons.

Transfer learning / Inductive transfer

In machine learning, an approach to abstracting knowledge
gained on one or more problems in order to apply it
to another problem, often using graphical models.
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Pairwise Comparisons in CompBio

The basis for most homology and orthology assignments.
The foundation of all homology-based inference methods (gene hunting,
structure prediction, functional prediction, etc.)

Works well for closely related systems, but degrades rapidly with increased
evolutionary distance.
Fortunately, there remains a lot of low-hanging fruit.

To handle more distantly related systems, biologists have used
multiple pairwise comparisons—between the target system and
several known systems).
However, reconciling conflicting predictions becomes a difficult problem.

What we need is a model for integration: an evolutionary context.
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Schemata for Transfer of Knowledge

Target Source

Compare Transfer

single prediction
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Schemata for Transfer of Knowledge

Target Source

Source

Source

Source

Source

Source

Source

Target

Compare Transfer

single prediction many independent predictions
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Schemata for Transfer of Knowledge

Target Source

Source

Source

Source

Source

Source

Source

Target

Compare Transfer

how are the multiple predictions integrated?
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The Same Schemata in Context

Target

the evolutionary context: a phylogeny
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The Same Schemata in Context

Target Source

pairwise comparison: OK for closely related objects
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The Same Schemata in Context

SourceTarget

pairwise comparison: problematic for distantly related ones
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The Same Schemata in Context

Target SourcesSources

multiple pairwise comparisons: all sorts of problems here!
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Use the Phylogeny for Integration

mutiples targets multiples sources

phylogenetic transfer: the full context is in play
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Integration Offers Additional Benefits

every object is both source and target

target or source? it’s just a matter of confidence
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Phylogenetic Transfer of Knowledge (PTK)

⇒ USE EXISTING PHYLOGENETIC KNOWLEDGE

TO IMPROVE INFORMATIONAL TRANSFER ⇐

Use multiple sources of knowledge (well studied taxa) and multiple
transfer targets.

Design a graphical inference model that incorporates the known
phylogenetic relationships among taxa.

Adapt or enhance standard ML techniques to carry out the inference

on the graphical model.
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PTK Attributes

transfer learning
multiple sources of knowledge and multiple transfer targets

refinement
an object can be both source of knowledge and transfer target

integration
very different sources of knowledge in a single model

formal inference model
interplay of inferences defined by the tree,

not by ad hoc consensus or majority

accuracy
large improvement for transfer targets
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PTK Issues

designing good graphical models is a difficult art

tree must be known and be fairly accurate

may need to reconcile species tree and gene trees

need to infer ancestral data

inference can become very complex
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Application to Biological Networks

Direct determination (bench work) is slow and expensive.

Computational methods use high-throughput data
(microarrays, RNASeq, ChIPSeq, etc.) or pairwise transfer of
knowledge to infer the networks.

Error rates are high, esp. false positives.

All (but one) studies up to 2006 focussed on just one network.

We set out to demonstrate that PTK would significantly improve
the accuracy of networks.
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Regulatory Networks

Transcriptional regulatory networks represent regulatory connections
between genes, gene products, etc.
The simplest are given as directed graphs: an arc from A to B indicates
that gene A influences the rate of transcription of gene B.

Inference of such networks (from, e.g., microarray or RNAseq data)
is notoriously difficult:

including all putative regulatory connections gives poor specificity
including only experimentally verified connections gives very poor sensitivity
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Protein-Protein Interaction Networks

PPI networks are usually undirected graphs, where vertices correspond to
proteins and edges to interactions between two proteins.

Most PPI networks published in the literature include every connection that has been
observed, along with many that have been inferred, including some inferred from weak
evidence, such as frequent co-occurrence with other terms.
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Residue Contact Networks

Contact networks abstract the structure of a protein by representing each
aminoacid by a node and connecting nodes that correspond to aminoacids
close enough to each other to exert significant force upon each other.

The graph model highlights fundamental structural elements and can be used
for prediction and comparison.

Establishing the contact structure experimentally is expensive and time-consuming, especially
for protein complexes. We can use a computational approach based on the evolution of the
contact networks.
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A Probabilistic Phylogenetic Model

We designed ProPhyC, a probabilistic phylogenetic model with
confidence values, to take advantage of phylogenetic relationships.
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A Probabilistic Phylogenetic Model

We designed ProPhyC, a probabilistic phylogenetic model with
confidence values, to take advantage of phylogenetic relationships.
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ProPhyC Attributes

The probabilities P reflect evolutionary events,
while the probabilities Q reflect confidence in the data
and/or probabilities of error in the original inferences.

By assuming independence among the variables, we can use
dynamic programming to compute a maximum-likelihood
assignment of values to every network in the tree.

Limited dependencies can be modelled with extra variables.

Computations can be biased to improve sensitivity or specificity.

More complex inferences can use EM techniques.
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Inference with ProPhyC

Dynamic programming runs in time linear in the size of the tree,
but requires

independence among events

unified network representation

Steps:

1. Infer gene duplication and loss for each gene family.

2. Devise a unified representation for all networks
so as to reduce the problem to single-site inference.
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Step 1: Duploss History

For each family, build the gene tree and reconcile it to the phylogeny.

phylogeny and networks the phylogeny of the “red” gene family
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Step 2: Unified Representation

Use a special character to represent absence of a node (gene).
For simple graph representations, this gives alphabet {0, 1, x}.

Use probability parameters

pd and pl: gene getting duplicated or lost

p00, p01, p10, and p11: edge gain or loss (or no change)

π0 and π1: ground probabilities

Now set
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Regulatory Networks: Drosophila

Regulatory modules for 12 species of Drosophila:

sensitivity specificity

improve both 59.9% → 66.3% 80.0% → 86.5%

focus on sensitivity 59.5% → 69.2% 69.3% → 72.7%

focus on specificity 57.7% → 58.5% 70.1% → 80.0%
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Regulatory Networks: Simulations

True duplication-loss history.
DBI is a standard Bayesian tool for network inference and matches the simulation model.
ProPhyC uses a uniform noise model (middle curve) while ProPhyCC uses confidence values
derived from the conditional probability tables (top curve).
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Regulatory Networks: Simulations

Duplication-loss history of genes is inferred by Notung and so not very accurate.
DBI is a standard Bayesian tool for network inference and matches the simulation model.
ProPhyC uses a uniform noise model (middle curve) while ProPhyCC uses confidence values
derived from the conditional probability tables (top curve).
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Testing the Graphical Model
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The two clouds of points represent results on the same dataset from ProPhyC and from an
earlier approach that does not use the noisy observation layer, under a large variety of
parameters. ProPhyC clearly dominates.
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Confounding Factors

Averaging accounts for some of the improvement. Because it is
nearly independent of the labelling of the leaves, we can
assess it by randomizing the assignment of networks to
leaves.

Averaging accounted for under one-half of the improvement.

Duploss history is hard to infer accurately. Its effect can be
evaluated under simulation, comparing to results that used the
true history.

Inferring duploss history caused a 5–10% loss in accuracy.
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RelatedWork

Bourque and Sankoff (2004) proposed a tree-guided inference procedure
to recover regulatory networks from gene-expression levels.

Pinney et al. (2007) and Dutkowski and Tiuryn (2009) applied variants of
PTK to PPI networks.

Gaudet et al. (2011) used a form of PTK to propagate annotations for
genes and proteins.

Roy et al. (2013) developed the Arboretum software, which uses
phylogenetic information to infer regulatory modules from
gene-expression data.

Patro and Kingsford (2013) used a form of PTK to infer PPI networks by
inferring their evolutionary history.
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Pure Transfer of Knowledge: Simulations

What is a minimum proportion of “good” leaves to “poor” leaves?

We ran extensive simulations on a variety of smaller trees (up to 20 leaves),
with various evolutionary models, letting the number of good leaves (high
specificity and sensitivity) vary from almost none to almost all, using a
matching model for PTK.

PTK sharply increased specificity and sensitivity in the bad leaves for a
relatively small decrease of the same measures in the good leaves.
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Pure Transfer of Knowledge: Results

Using varying numbers of “good” leaves (80% specificity and sensitivity) and
“bad” leaves (40% specificity and 60% sensitivity) on a tree of 19 leaves:
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Conclusions

Phylogenetic inference—or simply an evolutionary approach—is used for
an increasingly diverse collection of problems, but this collection remains
a small fraction of what can be addressed productively.

PTK, an “evolutionary” extension of transfer learning, effectively leverages
information about evolutionary relationships to structure and balance the
transfer of knowledge among extant systems.

Many hard problems remain (such as dealing with interdependencies),
requiring advances in theory.
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Details on PTK

Xiuwei Zhang
EBI, Hinxton, and Cambridge U., UK
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