
Finding Optimal Phylogenetic Trees

Katherine St. John

City University of New York
American Museum of Natural History

23 June 2015



Outline

Charles Darwin, 1837

Treespaces and Landscapes

Metrics & Search

Preprocessing to Improve Search

Maximum Likelihood & Continuous Treespace

When Trees are Not Enough....

K. St. John (CUNY & AMNH) Finding Optimal Phylogenetic Trees 23 June 2015 2 / 84



Analogy: Find the Highest Point

polymaps.org
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Analogy: Find the Highest Point

Sampling:

Choose 1000 random points.

Find height at each point.

Output the sampled point with largest
height.

Will you reach the highest point?

Only if very lucky or a very dense sample.
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Analogy: Find the Highest Point

Hill Climbing:

Start at the harbor.

Can see 25 meters in all directions.

Walk upwards, repeat.

Will you reach the highest point?

Maybe, but maybe not.

I Could reach small peaks, but miss
the larger ones.

I Start in multiple places to see more.
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Analogy: Find the Highest Point

NASA Blue Marble

Sampling only on the island misses peaks elsewhere.
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Local Search Techniques

Goal: Find the point with the optimal score

Local search techniques prevail:

I Begin with a point
I Choose the next point from its neighbors (e.g. best scoring)
I Repeat

Many variations on the theme: branch-and-bound, MCMC, genetic
algorithms,...
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Goal: Find Optimal Evolutionary History

rBCL sequences

Hillis Lab

Input: Sequences of k Characters on n taxa

Output: Evolutionary History (Tree) on n leaves

Optimality
Criteria : Two popular ones, both NP-hard.

Underlying assumption: Evolution is tree-like.
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How Many Phylogenetic Trees?

Schröder, 1870 (see Semple & Steel, 2003):

# of trees = 1 · 3 · 5 · · · · · (2n − 5)

= (2n − 5)!!

∼ 1√
Π
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(For n ≥ 50, ∃ more possible tree topologies

than there are atoms in the universe.)
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How Many Trees?

(For n ≥ 50, ∃ more possible tree topologies than there are atoms in the universe.)

David Hillis, 2002

How many taxa?

classifying species: n ranges from dozens
to thousands (think beetles!)

building the “Tree of Life”: n ∼ million
species

designing the flu vaccine and other drugs:
n ∼ hundreds of isolates

determining the origins of HIV infection:
n ∼ thousands of strains
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Searching for Optimal Trees

Hillis, Heath, S, 2005

Goal: Find the tree with the optimal score

Local search techniques prevail:
I Begin with a tree
I Choose the next tree from its neighbor (e.g. best scoring)
I Repeat

Many variations on the theme: branch-and-bound, MCMC, genetic
algorithms,...
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Optimality Criteria

Given a set of organisms, which tree is optimal?

Two standard criteria for optimality:

I Maximum Parsimony: find tree with fewest
changes

I Maximum Likelihood: find most likely tree
(with respect to a model of evolution)
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Which Tree is Optimal?

Given a set of organisms, which tree is optimal?

Two standard criteria for optimality:

I Maximum Parsimony: find tree with fewest
changes. (NP-hard, Foulds & Graham, 1982).

I Maximum Likelihood: find most likely tree
(with respect to a model of evolution)
(NP-hard, Roch, 2008).
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Maximum Parsimony

Find the tree that can explain the observed sequences with a minimal

number of substitutions.

Given sequences for leaves and a tree, first measure “minimal number of

substitutions.”
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Maximum Parsimony

Given sequences for leaves and a tree, first measure “minimal number of

substitutions.”

Label the internal nodes with sequences that have minimal number of

changes. Then count changes.
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Maximum Parsimony

Given sequences for leaves and a tree, first measure “minimal number of

substitutions.”

Label the internal nodes with sequences that have minimal number of

changes. Then count changes.
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Maximum Parsimony

Given sequences for leaves and a tree, first measure “minimal number of

substitutions.”

Label the internal nodes with sequences that have minimal number of

changes. Then count changes.
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Maximum Parsimony

Given sequences for leaves and a tree, first measure “minimal number of
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Maximum Parsimony

Given sequences for leaves and a tree, first measure “minimal number of

substitutions.”

Label the internal nodes with sequences that have minimal number of

changes. Then count changes.
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Maximum Parsimony

Given sequences for leaves and a tree, first measure “minimal number of

substitutions.”

Label the internal nodes with sequences that have minimal number of

changes. Then count changes.
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Maximum Parsimony

Given sequences for leaves and a tree, first measure “minimal number of

substitutions.”

Label the internal nodes with sequences that have minimal number of

changes. Then count changes.
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Maximum Parsimony

Given sequences for leaves and a tree, first measure “minimal number of

substitutions.”
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Maximum Parsimony

Given sequences for leaves and a tree, first measure “minimal number of

substitutions.”

Label the internal nodes with sequences that have minimal number of

changes. Then count changes.
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Maximum Parsimony

Given sequences for leaves and a tree, first measure “minimal number of
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Maximum Parsimony

Given sequences for leaves and a tree, first measure “minimal number of

substitutions.”

Label the internal nodes with sequences that have minimal number of
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Maximum Parsimony

Given sequences for leaves and a tree, first measure “minimal number of

substitutions.”

Label the internal nodes with sequences that have minimal number of

changes. Then count changes.
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Maximum Parsimony

Given sequences for leaves and a tree, first measure “minimal number of

substitutions.”

Label the internal nodes with sequences that have minimal number of

changes. Then count changes.
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Maximum Parsimony

Given sequences for leaves and a tree, first measure “minimal number of

substitutions.”

Label the internal nodes with sequences that have minimal number of

changes. Then count changes.
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Maximum Parsimony

Given sequences for leaves and a tree, first measure “minimal number of

substitutions.”

Label the internal nodes with sequences that have minimal number of

changes. Then count changes.
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Maximum Parsimony

Given sequences for leaves and a tree, first measure “minimal number of

substitutions.”

Label the internal nodes with sequences that have minimal number of

changes. Then count changes.
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Total change, called the parsimony score is 7.
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Maximum Parsimony

Given sequences for leaves, find tree with minimal parsimony score:

ACCCT AACGA

GACGT AACGT GACGT GGCGA

(Can you find a tree with a score better than 7?)
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Analogy: Parsimony

NASA Blue Marble Bathymetry

Find the lowest point.
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Treespace

Treespace for n = 5 under NNI Treespace for n = 6

Bastert et al., 2002

For every n, treespace is the space of all phylogenetic trees on a n taxa,
under a fixed distance metric.
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Landscapes

Parsimony score for compatible characters for n = 7 (Urheim, Ford, & S, submitted)

A treespace with assigned scores is often called a landscape.
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Hillis’ Helicopter

wiki commons

David Hillis: Representing tree scores as height, he wanted a visualization
with a ‘helicopter’ to fly over the space of trees.
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What does the landscape look like?The phylogeny problem is that of finding those trees which optimise some function of the input data.

We may end up with several trees optimising some optimality criterion (say parsimony) and a completely different set of
trees optimising another criterion. There are hundreds of phylogenetic optimality criteria! This is a problem, but it's not the
one in which I'm interested today.

Mike Charleston, 1996
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What does the landscape look like?

Each landscape depends on the number of taxa and the score of each tree
(usually derived from the inputted character sequences).

(from wikipedia)

If very smooth, ‘hill climbing’ will work
well.

The phylogeny problem is that of finding those trees which optimise some function of the input data.

We may end up with several trees optimising some optimality criterion (say parsimony) and a completely different set of
trees optimising another criterion. There are hundreds of phylogenetic optimality criteria! This is a problem, but it's not the
one in which I'm interested today.

If very rugged, need more sophisticated
searches that use the underlying struc-
ture of the space.
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Analogy: Adjusting Search Space

isoscope

Different metrics yield different neighbors: places you can reach in 10
minutes from Grand Central Station walking versus transit
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Adjusting Search Space

SPR metric NNI metric

Parsimony score for compatible characters for n = 7 (Urheim, Ford, & S, submitted)

The same data, organized by different tree metrics.
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Attraction Basins

resalliance.org
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Compatible Characters

A character is compatible with a tree if each state induces a connected
subtree:

�
���

��

H
HHH

HH
�

�
�

��

Q
Q
Q
QQ

ACCCT AACGT

�
�

�
��

Q
Q
Q
QQ

�
�
�

@
@
@

GACGT AACGT GACGA GGCGA

�
�

�

@
@
@

A sequence of characters is compatible if there is at least one tree that all
are compatible.
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Adjusting Search Space

SPR metric NNI metric

Parsimony score for compatible characters for n = 7 (Urheim, Ford, & S, submitted)

Simplest Case: for compatible character sequences (‘perfect data’):

Under SPR, there is a single attraction basin.

Under NNI, multiple attraction basins occur even for perfect data.
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Outline

Charles Darwin, 1837

Treespaces and Landscapes

Metrics & Search

Preprocessing to Improve Search

Maximum Likelihood & Continuous Treespace

When Trees are Not Enough....
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Popular Tree Metrics

Nicotiana
Campanula
Scaevola
Stokesia
Dimorphotheca
Senecio
Gerbera
Gazania
Echinops
Felicia
Tagetes
Chromolaena
Blennosperma
Coreopsis
Vernonia
Cacosmia
Cichorium
Achillea
Carthamnus
Flaveria
Piptocarpa
Helianthus
Tragopogon
Chrysanthemum
Eupatorium
Lactuca
Barnadesia
Dasyphyllum

Nicotiana
Campanula
Scaevola
Stokesia
Dimorphotheca
Senecio
Gazania
Gerbera
Echinops
Felicia
Tagetes
Chromolaena
Blennosperma
Coreopsis
Vernonia
Cacosmia
Cichorium
Achillea
Carthamnus
Flaveria
Piptocarpa
Helianthus
Tragopogon
Chrysanthemum
Eupatorium
Lactuca
Barnadesia
Dasyphyllum

Those based on tree rearrangements:

Subtree Prune and Regraft (SPR)

Tree Bisection and Reconnection (TBR)

Nearest Neighbor Interchange (NNI)

Used for Searching for Optimal Trees, NP-hard

Those based on comparing tree vectors:

Robinson-Foulds (RF)

Rooted Triples (RT)

Quartet Distance

Billera-Holmes-Vogtmann (BHV or geodesic))

Used for comparing trees, poly time
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SPR Distance
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SPR distance is the minimal number of moves that transforms one
tree into the other.

SPR for rooted trees is NP-hard (Bordewich & Semple ‘05).

SPR for unrooted trees is NP-hard (Hickey et al. ‘08).

SAT-based heuristic (Bonet & S ‘09).
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Fixed Parameter Tractability for SPR
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Rooted: (Borderwich & Semple ‘05) Developed an agreement forest
for SPR on rooted trees. Agreement forest gives NP-hardness and is
used to show FPT.

Unrooted: (Bonet & S ‘07) Used a variant of the reduction rules to
get FPT.
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Side Note: Phylogeny Problems

Steel’s $100 Problems: “A choice of NZ$100 plus bottle

of NZ wine, OR US$100, OR free registration and accommo-

dation grant at the annual New Zealand phylogenetics meet-

ing (value NZ$300 - flights not included!) for the first correct

solution to any of these problems.”

Penny Ante Problems: “A prize of your choice between

$100 or a bottle of single malt whisky (for medicinal purposes

only) . . . announced by the end of the NZ phylogenetics con-

ference.”

Isaac Newton Institute Challenges: A bottle of wine for

those solved by the end of the 2007 INI program.
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SPR Challenge

. . . mm!1m!2321 → a cb

($100): Does shrinking common subchains in trees preserve SPR
distance?
(Implies fixed parameter tractability.)

Bordewich & Semple ‘05: Yes, for rooted trees.

Open for unrooted trees
(uSPR is known to be FPT by other means, Bonet & S ‘09).
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How little can two trees agree?

Steel & Székely, 2009

(INI): Given two unrooted binary phylogenetic trees T , T ′, an agreement
set for T , T ′ is a subset Y of X for which T |Y = T ′|Y .
Is there a constant c , so that for any two trees T , T ′ have an agreement
subtree of size c log n ?

Steel & Székely ‘09: The agreement subtree is of size Ω(log(log n)).

Martin & Thatte ‘12: The agreement subtree is of size Ω(
√

log n).
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TBR Distance
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TBR distance is the minimal number of moves that transforms one
tree into the other.

TBR is NP-hard and FPT. (Allen & Steel ‘01)

TBR has a linear time 5-approximation and a polynomial time
3-approximation (Amenta, Bonet, Mahindru, & S ‘06;

Bordewich, McCartin, & Semple ‘08)
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NNI Metric
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The NNI distance between two trees is the minimal number of moves
needed to transform one to the other (NP-hard, DasGupta et al. ‘97).
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Bryant’s Challenge: Walking Through Trees

David Bryant

An NNI-walk is a sequence T1,T2, . . . ,Tk of un-
rooted binary phylogenetic trees where each consec-
utive pair of trees differ by a single NNI.

1 What is the shortest NNI walk that passes
through all binary trees on n leaves?

2 Suppose we are given a tree T. What is the
shortest NNI walk that passes through all the
trees that lie at most one SPR (subtree prune
and regraft) move from T?

NZ Penny Ante: $100 NZ or a bottle of fine whisky
(Also appeared on the Isaac Newton Institute
Phylogenetic Challenges, 2007)
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Bryant’s Challenges: Walking Through Trees

Penny Ante: An NNI-walk is a sequence
T1,T2, . . . ,Tk of unrooted binary phylogenetic
trees where each consecutive pair of trees differ
by a single NNI.

1 What is the shortest NNI-walk that passes
through all binary trees on n leaves?
Gordon, Ford, & S ‘13:
For all n, there exists a Hamiltonian path.

2 Suppose we are given a tree T. What is
the shortest NNI-walk that passes through
all the trees that lie at most one SPR
(subtree prune and regraft) move from T?
Caceres, Castillo, Lee, & S ‘13:
For all n, it’s t + Θ(n2).
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Treespace

Treespace for n = 5 under NNI

Bastert et al., 2002

For every n, treespace is the space of
all phylogenetic trees on a n taxa,
under a fixed metric.

The diameter of neighborhoods varies
by metric:

General n = 5
NNI Θ(n log n) 4
SPR n −Θ(

√
n) 2

TBR n −Θ(
√
n) 2

NNI: Li, Tromp & Zhang ‘96

SPR & TBR: Atkins & McDiarmid ‘15
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Treespace

Treespace for n = 5 under NNI

Bastert et al. ‘02

For every n, treespace is the space of
all phylogenetic trees on a n taxa,
under a fixed metric.

The size of neighborhoods varies by
metric (Allen & Steel ‘01):

General n = 5
NNI 2n − 6 4
SPR 2(n − 3)(2n − 7) 12
TBR < (2n − 3)(n − 3)2 12
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Outline

Charles Darwin, 1837

Treespaces and Landscapes

Metrics & Search

Preprocessing to Improve Search

Maximum Likelihood & Continuous Treespace

When Trees are Not Enough....
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Preprocessing the Data: Finding Easy Instances

Identical
Sequences

A GTTAGAAGGCGGCCAGCGAC. . .
B GTTAGAAGGCGGCCAGCGAC. . .
C GTTAGAAGGCGGCCAGCGAC. . .
D GTTAGAAGGCGGCCAGCGAC. . .
E GTTAGAAGGCGGCCAGCGAC. . .
F GTTAGAAGGCGGCCAGCGAC. . .

945 Rooted Trees on 6 Leaves

Easy Instance: all trees have same score.
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Bounds on Parsimony Score

(from wikipedia.org)

If all characters were constant (i.e. all ‘G’), than parsimony score is
the same for all trees.

Best (non-trivial) case: like taxa are ‘grouped’ together on the tree
minimizing the number of changes to the r − 1 where r = number

of states.

Worst case: like taxa are scattered across the tree and many changes
occur across the edges.
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Compatible Characters

Theoretical
Min

Current Min
New Min

Pa
rs

im
on

y s
co

re

2-dimensional mapping of 
distance between trees

a) b)

Theoretical
Min

Current Min
New Min

Pa
rs

im
on

y s
co

re

2-dimensional mapping of 
distance between trees

a) b)

Ford, S, & Wheeler ‘14

Simple observation: when the characters are compatible:

The minimal scoring tree is the ‘perfect phylogeny.’

The score grows by at least i for each i “steps” taken
(where steps are a relaxed Robinson-Foulds distance).

The sum of the bounds on compatible subsets of characters bounds
the score across all the characters.
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Metasiro

Metasiro americanus, Clouse & Wheeler ‘14

M. americanus (‘harvestmen’) live in US south west.

Metasiro have poor dispersal and existed an exceptionally long time.
Used to test historical landmass movement hypothesis in
phylogeography.
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Results on Limiting the Search Space
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Clouse & Wheeler ‘14 Ford, S, & Wheeler ‘14

Evaluated a metasiro data set from Clouse & Wheeler ‘14:

Still an NP-hard problem but can reduce search space significantly

769 bp fragment of the mitochondrial gene cytochrome c oxidase
subunit I (COI) sequenced.

62 taxa and 36 (out of 460) informative characters.

Reduced to 57 unresolved trees, searched exhaustively.
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Results on Limiting the Search Space

CI
number of 

taxa
actual size of 

tree space PSt0 - Mt

number of 
anchor trees 

found

size of 
reduced 

search space log reduction
0.97 14 7.91E+12 6 2 1.57E+06 -6.70
0.96 10 34459425 2 3 405 -4.93
0.95 18 6.33E+18 1 2 3.04E+04 -14.32
0.95 6 945 5 2 n/a n/a
0.95 32 1.78E+42 2 2 4.98E+15 -26.55
0.93 39 1.31E+55 4 4 2.25E+39 -15.77
0.93 40 1.01E+57 18 2
0.92 11 6.55E+08 24 2 n/a n/a
0.92 16 6.19E+15 9 2 1.39E+13 -2.65
0.91 15 2.13E+14 16 2 1.28E+35 20.78
0.91 41 7.98E+58 6 2 7.42E+05 -53.03
0.89 13 3.16E+11 3 2 n/a n/a
0.88 29 8.69E+36 60 2 n/a n/a
0.88 15 2.13E+14 20 2 n/a n/a
0.87 25 1.19E+30 3 3 9.36E+15 -14.11
0.87 19 2.22E+20 17 2 5.31E+17 -2.62
0.87 19 2.22E+20 8 2 4.57E+10 -9.69
0.86 20 8.20E+21 17 2 n/a n/a
0.86 55 3.19E+86 28 2

0.86 41 7.98E+58 8 2 9.99E+43 -14.90

Ford, S, & Wheeler ‘14

Evaluated 600 datasets from
TreeBase.

Still an NP-hard problem but can
reduce search space significantly

Reduction highly dependent on
number of anchor trees.

High consistency index (CI)
empirically has the best reduction.
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Maximum Likelihood Trees

Philippe et al., ‘05

Branch weights are part of the model.

Indicated by length of edges in drawing.
Two classic trees with same underlying topology.
The metrics and search spaces above treat them as identical.
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Popular Tree Metrics
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Those based on tree rearrangements:

Subtree Prune and Regraft (SPR)

Tree Bisection and Reconnection (TBR)

Nearest Neighbor Interchange (NNI)

Used for Searching for Optimal Trees, NP-hard

Those based on comparing tree vectors:

Robinson-Foulds (RF)

Rooted Triples (RT)

Quartet Distance

Billera-Holmes-Vogtmann (BHV or geodesic))

Used for comparing trees, poly time
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Robinson-Foulds Distance

The # of branches that occur in only one tree, or

The size of the symmetric difference of the splits, or

The sum of the “false positives” and “false negatives.”
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Robinson-Foulds Distance

Very popular

Calculated in linear time, using Day’s Algorithm (‘85)
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Applications
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Randomized O(nt) for majority rule consensus
(Amenta, Clarke, & S, WABI ‘03).

Linear time processing of tree reduction rules
(Bonet, S, Amenta, & Mahindru ‘06).
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BHV Distance

Billera, Holmes, Vogtmann ‘01

Billera, Holmes, and Vogtmann ‘01
have a continuous metric space of
trees.

View each split in a tree as a
coordinate in the space.

Identify edges of orthants to form
space
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Tree Vectors
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T0 = (1, 2, 3, 4, 5) 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
T1 = ((1, 2), (3, (4, 5)) 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1
T2 = ((1, 2), (4, (3, 5)) 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0

dRF (T0,T1) = 2

dBHV (T0,T1) =
√

2
dRF (T1,T2) = 2
dBHV (T1,T2) = 2
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Identify Edges of Orthants

(All images from Billera, Holmes, Vogtmann ‘01)
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Geodesic Distance

Billera, Holmes, Vogtmann ‘01

The geodesic is a shortest path on the
surface between two points.

Deep mathematics used to show the
geodesic is a distance. (this negatively
curved space is CAT(0)).

Polynomial time (O(n4)) to compute
(Owen & Provon, 2011).

Linear time approximation (Amenta,
Godwin, Postarnakevich, and S ‘07).

Averages computed via Freéchet means
(Miller, Owen, & Proven ‘12, Bacák ‘12)
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Outline

Charles Darwin, 1837

Treespaces and Landscapes

Metrics & Search

Preprocessing to Improve Search

Maximum Likelihood & Continuous Treespace

When Trees are Not Enough....
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When Trees Are Not Enough

Huson, Rupp, Scornavacca ‘10

Underlying assumption above:
Evolution is tree-like.

In many cases, evolution produces a
more tangled structure.

Networks (leaf-labeled, directed
acyclic graphs) are used to model
reticulate evolution.
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Can’t see the trees for the . . . network

Leo van Iersel, 2013

Nakhleh’s Enumeration Challenge I: Given a
phylogenetic X–network N

(rooted binary
DAG leaf labeled bijectively by set X ),
how many unique trees are displayed by N?

Linz, S, Semple, 2013: It’s #P-complete.

Nakhleh’s Enumeration Challenge II: Counting
nets (up to isomorphism or other equivalence).
What is the number of unique (up to digraph
isomorphism) rooted phylogenetic networks on
n taxa and with h reticulation nodes?

McDiarmid, Semple, Welsh, 2015:
2γnlogn+O(n), where γ is 3

2 for general networks,
and 5

4 for tree-child & normal networks.
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Summary

Haeckel’s Tree of Life, 1879

Interesting challenges in searching, comparing,
analyzing, & visualizing sets of trees.

Explosion of data overwhelms search
techniques: Sampling 10 million trees is
insignificant when 10200 trees.

Optimality criteria’s NP-hardness comes from
seemingly random data.

But biology is not random. The processes
create identifiable patterns and easy instances.

Better understanding of the underlying
structure of treespace can improve the search
for optima.
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