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Why trees ?

I Phylogenetic tree = Most basic pattern generated by
(macro)evolutionary history

Q1 : "Can we test the possibility that some aspects of the
evolutionary record behave as stochastic variables ?" (Raup et al 1973)

I Reconstruct the past of biodiversity : What processes underpin the
observed macro-evolutionary patterns ?

Q2 : "Are there mathematically simple or biologically plausible
stochastic models for phylogenetic trees whose realizations mimic
actual trees ?" (Aldous 2001)

I Predict the future of biodiversity : ‘Noah’s Ark problem’ (Faller et al 2008)

Q3 : "Can we predict howmuch evolutionary heritage will be lost in
the face of current extinctions ?"
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Di�iculty of characterizing trees

I Comparing two trees : distance ? Robinson-Foulds,
Gromov-Hausdor�...

I Characterizing one tree : distance to some reference tree ?

I A distribution of trees : average tree ?

I Real functions of trees = statistic, likelihood

I Requires stochastic models of trees

I Compare statistic to its distribution under null model (Q1)

I Fit a non-null model (Q2)
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Perfectly Balanced Tree (A) vs Caterpillar Tree (B)
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Model-free statistics of trees I : Using topology only

See Shao & Sokal (1990), Kirkpatrick & Slatkin (1993), Mooers & Heard (1997)

Local statistics
I ci = # nodes on the path from tip i to the root

I smin(v) = # tips in smallest daughter clade of node v

I Balance of node v = smin(v)/smax(v)

Global statistics
I Sackin index (Sackin1972)

1
n

∑
i

ci

I Colless index (Colless 1982)

2
(n− 1)(n− 2)

∑
v

(
smax(v)− smin(v)

)
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Model-free statistics of trees II : Using branch lengths also

Local statistics
I ‘Distinctiveness’= length of external edge of tip i (Redding et al 2008)

I Local Branching Index (Luksza & Laessig 2014, Neher et al 2014)

=

∫
tree

e−d(x,y)/δ dy

Global statistics
I Phylogenetic Diversity PD= Total Length of Tree=

∑n
k=2 kgk

with gk = internode duration (Vane-Wright et al 1991, Faith 1992)

I Lineage-Through-Time plot

I Gamma (Cox & Lewis 1966, Pybus & Harvey 2000)

γ =
1

n−2
∑n−1

i=2
∑i

k=2 kgk −
PD
2

PD/
√
12(n− 2)
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Understanding the origin of patterns

I 1960’s : Root imbalance = radiation undergone by the larger daughter
subclade ?

I The ‘Woods Hole’ group (Raup, Gould, Schopf, Simberlo�) advocates
for "a clearer separation of stochastic and deterministic elements in
the evolutionary record" (Raup et al 1973)

I H0 : ‘pattern is not distinguishable from that generated by a Yule pure
birth process’... vs key adaptations, adaptive radiations, etc.

I Root balance under the Yule model is uniform !
"How di�erent, then, is the real world from the stochastic system ?
The answer would seem to be ‘not very’ — the outstanding feature of
real and random clades is their basic similarity" (Gould et al 1977, Savage 1983)

I Empirical root balance 6= uniform (Slowinski 1990, Guyer & Slowinski 1991, 93)
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Aldous’ Markov branching model on binary tree shapes
Aldous (1996, 2001)

I Assume we are given distributions qn on {1, . . . , n− 1}, n ≥ 2

I Recursively split each subset of n balls according to qn (r.v.’s Kn below)

I qn uniform yields the same tree shape as a Yule tree
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Sampling consistency

I A tree model is a family of probability distributions (Pn) on
(exchangeably labelled) tree shapes with n tips

I Call Tn a random tree with law Pn

I Call T′n the tree obtained by removing one tip from Tn+1 (say the tip
labelled n + 1)

I Themodel is said sampling consistent if Tn and T′n have the same
distribution.

I Example : Kingman coalescent.
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Aldous’ Markov branching model
Theorem (Haas et al 2008, Lambert 2016)
A MB tree model is sampling-consistent i� it there is a function f s.t.

qn(i) = an(f)−1
(
n
i

)∫ 1

0
xi(1− x)n−if(x) dx

Construction
I Color dots are uniformly distributed in the interval

I Intervals are fragmented by r.v. with density∼ f
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The α-splitting model
Ford 2005 (unpublished)

I Define the α-splitting tree model recursively, α ∈ [0, 1].

I Conditional on a realization of the binary tree with n tips Tn :
Give weight α to every external edge of Tn and weight 1− α to every
internal edge, including the root edge.

I Generate Tn+1 by choosing an edge in proportion to its weight and
plant a new external edge in the middle of the chosen edge.

I The α-model is sampling consistent.

I Imbalance increases with α

I α = 0 : Yule ; α = 1 : caterpillar.
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The β-splitting model

I The β-splitting model is for β ∈ (−2,∞) : f(x) = cxβ(1− x)β

I Imbalance decreases with β

I Q1 : distribution of MLE β̂ under the Yule model ?
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Estimating β
smin vs smin + smax (Aldous 2001) MLE of β (Blum & François 2006)

=⇒ β ≈ −1

Q2 : "Why β ≈ −1 ?" or "Are there mathematically simple/biologically
plausible stochastic models for phylogenetic trees whose realizations
mimic actual trees ?" (Aldous 2001)
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Birth-Death Model of Macroevolution (Nee 2006)

I Species seen as particles that can split (speciation) and die
(extinction)

I Rates b(t, n, a, i) and d(t, n, a, i)may depend upon :

6t
I time t
I number n of standing particles
I a non-heritable trait a (e.g., age)
I a heritable trait i
I Asymmetric birth =
Mother keeps her trait

I Orientation =
Daughter sprouts to the right

Yule model : b = constant, d = 0.
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Reconstructed tree

I ‘Reconstructed tree’ or ‘reduced tree’ at height T
= remove all lineages extinct by T (fixed time).

I Q2 : Are there universal conditions on the rates for which the
reconstructed tree has β ≈ −1 ?

I Q2’ : What is the law of the reconstructed tree under the model ?
Can we compute the likelihood of a given ultrametric (clock-like)
phylogenetic tree under the model ?
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Characterizing lineage-based models
Lambert & Stadler "Birth–Death Models and Coalescent Point Processes : The Shape and Probability of
Reconstructed Phylogenies" TPB (2013)

I A (partial) negative answer to Q2 :

Reconstructed trees always have the same topology in distribution
as Yule trees (β = 0) IFF b = b(t, n) and d = d(t, n, a)

=⇒ As soon as b = b(t, n) and d = d(t, n, a), estimate β ≈ 0

I A (partial) positive answer to Q2’ :

The likelihood of reconstructed trees always has an explicit product
form IFF b = b(t) and d = d(t, a).

=⇒ The reconstructed tree is a ‘coalescent point process’...
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The CPP distribution
Rannala (1997), Popovic (2004), Aldous & Popovic (2005)

CPP = Coalescent Point Process = Oriented tree whose node depths
H1,H2, . . . , form a sequence of iid random variables killed at its first
value larger than T.

6
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b = b(t) and d = d(t, a) always produce CPP

Assume that b = b(t) and d = d(t, a).
Set g(t, s) the density at time s of the extinction time of a species born at
time t.

Theorem (Lambert & Stadler 2013)
The reconstructed (oriented) tree is a CPPwith typical node depth H,
where the function F = 1/P(H > ·) is the unique solution to the following
linear integro-di�erential equation

F′(t) = b(t)
(
F(t)−

∫ T

T−t
ds F(s) g(t, s)

)
t ≥ 0,

with initial condition F(0) = 1.

The result still holds with missing species/mass extinction events : each
species is removed independently with the same probability p.
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Missing species
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Mass extinction event
6

T

T

t

t

t

t

t

t

d

d

d

d
1

2

2

3

3 4 5 6 7 8

9

9

10

10

11

11

T − s

T − s

FIGURE : A coalescent point process with a bottleneck at time s1 from present time.
All lineages crossing this time are independently deleted with probability 1− ε1.
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Special cases

I If b = b(t) and d = d(t) (Kendall 1948, Nee et al 1994)

F(t) = 1+

∫ T

T−t
ds b(s) e

∫ T
s du (b−d)(u)

I If b is constant and d = d(a), then g(s, t) = g(t − s) [if a the age
g(a) = d(a) e−

∫ a
0 ds d(s)] (Lambert 2010)

F′ = b (F − F ? g) ,

I Mass extinction event with survival probability p at time T − s

Fp(t) =

{
F(t) if 0 ≤ t ≤ s
(1− p)F(s) + pF(t) if s ≤ t ≤ T,
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Appl.1 Diversification of Cetaceans
Morlon, Parsons & Plotkin "Reconciling Molecular Phylogenies with the Fossil Record" PNAS (2011)

25



Appl.2 Diversification of Mammals
Stadler "Mammalian Phylogeny Reveals Recent Diversification Rate Shi�s" PNAS (2011)
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Appl.3 Do species age ?
Alexander, Lambert & Stadler "Quantifying Age-dependent Extinction from Species Phylogenies"
Systematic Biology (2015)

Gamma distributed lifetime (k, s > 0), with meanm := ks

g(a) = Γ(k)−1 s−k ak−1 e−a/s

I Test on simulations : accurate MLEs of b andm
I MLE on Aves phylogeny = 9993 extant bird sp

(Jetz et al 2012)

I Exponential model rejected (p = 10−15)
I Shape parameter k� 1 : extinction rate
increases with age

I Average lifetimem = 15.26My
I Speciation rate b = 0.108My−1
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Appl.4 How long does speciation take ?
Etienne, Morlon, Lambert "Estimating the Duration of Speciation from Phylogenies" Evolution (2014)

Model of Protracted Speciation (Rosindell et al 2010, Etienne & Rosindell 2012)

I Species are ensembles of populations, each population gradually
diverges frommother species

I Newborn populations are incipient, become good a�er some random
time = new species

I Speciation stage = non-heritable trait

I Duration of speciation = Time before a
good sp appears in the pop genealogy

I Test on simulations : e�icient inference of
duration of speciation

I Le� : duration of speciation inferred in 46
bird clades (in My)
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Other lineage-based models of macro-evolution

I Diversity-dependent diversification (Etienne et al Proc B 2012)

I Trait-dependent diversification : BiSSE, QuaSSE, GeoSSE... (Maddison et
al Syst Biol 2007, FitzJohnMEE 2012...)

But see also Rabosky & Goldberg Syst Biol 2015...

I Reviews...
I Ricklefs TREE (2007)
I Pyron & Burbrink TREE (2013)
I Stadler JEB (2013)
I Morlon Eco Lett (2014)

29



A positive answer to Q2 ?

I Phylogenetic method artifact ? (Huelsenbeck & Kirkpatrick Evolution 1996)

I Protracted speciation ? (Rosindell et al Eco Lett 2010)

I Neutral Biodiversity Theory ? (Jabot & Chave Eco Lett 2009, Davies et al Evolution 2012)

I Age-dependent speciation ? (Hagen et al Syst Biol 2015)
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A positive answer to Q2 ?
Hagen, Hartmann, Steel, Stadler "Age-Dependent Speciation Can Explain the Shape of Empirical
Phylogenies" Systematic Biology (2015)

I b = b(a) parameterized by

b(a) = caφ−1

I Estimates of φ lie in (0, 1) :
speciation rate decreases
with age

For φ = 0.6, the reconstructed tree has β ≈ −1.

Q2 : "Why β ≈ −1 ?"

— "Because φ ≈ 0.6" ;-)
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Speciation by Genetic Di�erentiation (1)
Manceau, Lambert, Morlon "Phylogenies Support Out-of-EquilibriumModels of Biodiversity" Ecology
Letters (2015)

I Start with a birth–death process (individual-based, constant rates b
and d)

I Superimpose mutations at constant rate θ, infinite-allele model

I Species = minimal monophyletic taxon such that any 2 tips with
the same allele belong to the same species

I SGD = Speciation by genetic di�erentiation = individual-based
version of protracted speciation
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Speciation by Genetic Di�erentiation (2)
Manceau, Lambert, Morlon "Phylogenies Support Out-of-EquilibriumModels of Biodiversity" Ecology
Letters (2015)

I A node on the genealogy is phylogenetic (= appears on the
phylogeny) if

(i) The previous node is phylogenetic
(ii) All tips separated by this node carry di�erent alleles

I The first node is phylogenetic if it satisfies (ii)
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Speciation by Genetic Di�erentiation (3)
Manceau, Lambert, Morlon "Phylogenies Support Out-of-EquilibriumModels of Biodiversity" Ecology
Letters (2015)

I Multitype branching tree representation : fast simulation

I Likelihood computation by peeling algorithm, including the case of
missing species

I Tests by simulations : accurate ML estimates of θ and b− d
I Inference from Cetaceans generates realistic values of β, γ
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Speciation by genetic di�erentiation (4)
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An Individual-Based Model of Radiation (1)
Aguilée, Claessen, Lambert "Adaptive Radiation Driven by the Interplay of Eco-Evolutionary and
Landscape Dynamics" Evolution (2013)

I Individuals explicitly located in geographical/genotype space

I Ecological traits and choosiness trait are determined by L loci

I Assortative mating based on similarity in ecological traits and
choosiness of parents

I Density- and phenotype-dependent competition for resources

I Selection can turn disruptive at ecological optimum

I Stabilizing selection + environmental stochasticity + character
displacement

=⇒ Rapid diversification
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An Individual-Based Model of Radiation (2)
Gascuel, Ferrière, Aguilée, Lambert "How Ecology and Landscape Dynamics Shape Phylogenetic Trees"
Systematic Biology (2015)
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An Individual-Based Model of Radiation (3)
Gascuel, Ferrière, Aguilée, Lambert "How Ecology and Landscape Dynamics Shape Phylogenetic Trees"
Systematic Biology (2015)
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An Individual-Based Model of Radiation (4)
Gascuel, Ferrière, Aguilée, Lambert "How Ecology and Landscape Dynamics Shape Phylogenetic Trees"
Systematic Biology (2015)

I Phylogenies can be unbalanced for small phylogenies
I In the initial phase of diversification

I Under intense interspecific competition

I Ecological heterogeneity does not necessarily cause phylogenies to
be unbalanced

I Contingency of landscape dynamics and resource distribution can
cause wide variation in tree balance
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The Loss of Phylogenetic Diversity

Q3 : "If a random, say 10% of species from some given clade were to
disappear in the next 100 years due to current high rates of extinction,
howmuch evolutionary heritage will be lost ?"

I Field of Bullets model : each species is removed independently, kept
with probability p

I Remaining PD S(p) = Total Length of Tree spanned by surviving sp

I For a given tree, ES(p) is increasing and concave (Faller, Pardi, Steel 2008)

ES(p) =
∑
e

`(e)
(
1− (1− p)n(e))

where `(e) = length of edge e, n(e) = # tips descending from e
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Field of Bullets
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Loss of PD in Random Trees

Remaining PD is...

I High for the Kingman coalescent (Nee & May Science 1997)
Rule of thumb : Sn(1) ∼ log(n) so Sn(p)/Sn(1) ≈ 1

I Lower in imbalanced trees : more ‘distinctive’ sp

I Low for the Yule tree (Mooers, Gascuel, Stadler, Li, Steel Syst Biol 2011)
Rule of thumb : Sn(1) ∼ cn (recall CPP) so Sn(p)/Sn(1) < 1

ES(p)

ES(1)
= Ratio of expected remaining PD-to-Old PD ≈ −p log p

1− p
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Remaining PD for general Birth-Death Trees (1)
Lambert & Steel "Predicting the Loss of Phylogenetic Diversity under Non-Stationary Diversification
Models" JTB 2013

I As in a Coalescent Point Process, assume node depths Hi are i.i.d.

I Then conditional on n tips before FoB and Kn tips a�er FoB,

With probability 1 : lim
n

Sn(p)

Sn(1)
= p

E(B)

E(H)

where
B := max

i=1,...,G
Hi,

and G is a geometric r.v. with success probability p.

I Simple argument :

I A�er FoB, the phylogenetic tree is a CPP with node depth B

I By the SLLN, Sn(1) ∼ nE(H) and Sn(p) ∼ KnE(B)

I Conclude with Kn/n→ p

45



Remaining PD for general Birth-Death Trees (2)
Lambert & Steel "Predicting the Loss of Phylogenetic Diversity under Non-Stationary Diversification
Models" JTB 2013

For a Birth-Death tree with sp rate b, ext rate d, div rate r := b− d

Remaining PD-to-old PD Ratio =

=


dp

bp−r
ln(bp/r)
ln(b/r) , if b > r 6= bp

− p ln(p)
1−p , if b = r > bp

− 1−p
ln(p) , if b > r = bp

Right : Slow progression towards the unit step function (from pure birth to
critical) : d/b = 0 (the lowest curve) and then d/b = 0.5, 0.9, 0.99, 0.999.
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Remaining questions

I What if poorer clades are older ?

I What if older clades carry more extinct-prone species ?

I If you’re interested, listen to Odile Maliet’s talk this a�ernoon ;-)
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SMILE : an interdisciplinary group in Paris

SMILE = Stochastic Models for the Inference of Life Evolution
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