Random Tree Shapes and the Future Loss of Phylogenetic Diversity

Amaury Lambert

MCEB 2016, June 15th

Outline

1. Introduction

- 2. Tree statistics
- 3. Lineage-Based Models
- 4. Individual-Based Models
- 5. Predict the Future ?

Why trees?

Phylogenetic tree = Most basic pattern generated by (macro)evolutionary history

Q1 : "Can we test the possibility that some aspects of the evolutionary record behave as stochastic variables ?" (Raup et al 1973)

Why trees?

Phylogenetic tree = Most basic pattern generated by (macro)evolutionary history

Q1 : "Can we test the possibility that some aspects of the evolutionary record behave as stochastic variables ?" (Raup et al 1973)

Reconstruct the past of biodiversity : What processes underpin the observed macro-evolutionary patterns ?

Q2 : "Are there mathematically simple or biologically plausible stochastic models for phylogenetic trees whose realizations mimic actual trees ?" (Aldous 2001)

Why trees?

Phylogenetic tree = Most basic pattern generated by (macro)evolutionary history

Q1 : "Can we test the possibility that some aspects of the evolutionary record behave as stochastic variables ?" (Raup et al 1973)

Reconstruct the past of biodiversity : What processes underpin the observed macro-evolutionary patterns ?

Q2 : "Are there mathematically simple or biologically plausible stochastic models for phylogenetic trees whose realizations mimic actual trees ?" (Aldous 2001)

Predict the future of biodiversity : 'Noah's Ark problem' (Faller et al 2008)

Q3 : "Can we predict how much evolutionary heritage will be lost in the face of current extinctions ?"

Difficulty of characterizing trees

- Comparing two trees : distance ? Robinson-Foulds, Gromov-Hausdorff...
- Characterizing one tree : distance to some reference tree ?
- A distribution of trees : average tree ?
- Real functions of trees = statistic, likelihood
- Requires stochastic models of trees
 - Compare statistic to its distribution under null model (Q1)
 - Fit a non-null model (Q2)

Outline

1. Introduction

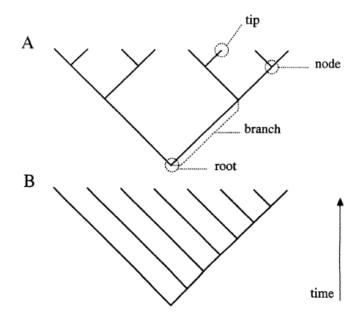
2. Tree statistics

3. Lineage-Based Models

4. Individual-Based Models

5. Predict the Future ?

Perfectly Balanced Tree (A) vs Caterpillar Tree (B)



Model-free statistics of trees I : Using topology only

See Shao & Sokal (1990), Kirkpatrick & Slatkin (1993), Mooers & Heard (1997)

Local statistics

- $c_i = \#$ nodes on the path from tip *i* to the root
- $s_{\min}(v) = \#$ tips in smallest daughter clade of node v
- Balance of node $v = s_{\min}(v)/s_{\max}(v)$

Global statistics

Sackin index (Sackin1972)

$$\frac{1}{n}\sum_{i}c_{i}$$

Colless index (Colless 1982)

$$\frac{2}{(n-1)(n-2)}\sum_{v}\left(s_{\max}(v)-s_{\min}(v)\right)$$

Model-free statistics of trees II : Using branch lengths also

Local statistics

- 'Distinctiveness' = length of external edge of tip i (Redding et al 2008)
- Local Branching Index (Luksza & Laessig 2014, Neher et al 2014)

$$= \int_{\text{tree}} e^{-d(x,y)/\delta} \, dy$$

Global statistics

- ► *Phylogenetic Diversity PD* = Total Length of Tree = $\sum_{k=2}^{n} kg_k$ with g_k = internode duration (Vane-Wright et al 1991, Faith 1992)
- Lineage-Through-Time plot
- Gamma (Cox & Lewis 1966, Pybus & Harvey 2000)

$$\gamma = \frac{\frac{1}{n-2} \sum_{i=2}^{n-1} \sum_{k=2}^{i} kg_k - \frac{PD}{2}}{PD/\sqrt{12(n-2)}}$$

1960's : Root imbalance = radiation undergone by the larger daughter subclade ?

- 1960's : Root imbalance = radiation undergone by the larger daughter subclade ?
- The 'Woods Hole' group (Raup, Gould, Schopf, Simberloff) advocates for "a clearer separation of stochastic and deterministic elements in the evolutionary record" (Raup et al 1973)

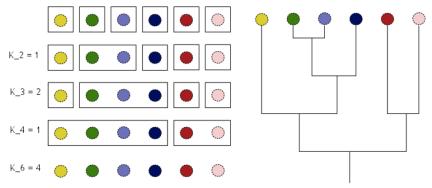
- 1960's : Root imbalance = radiation undergone by the larger daughter subclade ?
- The 'Woods Hole' group (Raup, Gould, Schopf, Simberloff) advocates for "a clearer separation of stochastic and deterministic elements in the evolutionary record" (Raup et al 1973)
- H₀: 'pattern is not distinguishable from that generated by a Yule pure birth process'... vs key adaptations, adaptive radiations, etc.

- 1960's : Root imbalance = radiation undergone by the larger daughter subclade ?
- The 'Woods Hole' group (Raup, Gould, Schopf, Simberloff) advocates for "a clearer separation of stochastic and deterministic elements in the evolutionary record" (Raup et al 1973)
- H₀: 'pattern is not distinguishable from that generated by a Yule pure birth process'... vs key adaptations, adaptive radiations, etc.
- Root balance under the Yule model is uniform !
 "How different, then, is the real world from the stochastic system ?
 The answer would seem to be 'not very' the outstanding feature of real and random clades is their basic similarity" (Gould et al 1977, Savage 1983)

- 1960's : Root imbalance = radiation undergone by the larger daughter subclade ?
- The 'Woods Hole' group (Raup, Gould, Schopf, Simberloff) advocates for "a clearer separation of stochastic and deterministic elements in the evolutionary record" (Raup et al 1973)
- ► H₀: 'pattern is not distinguishable from that generated by a Yule pure birth process'... vs key adaptations, adaptive radiations, etc.
- Root balance under the Yule model is uniform !
 "How different, then, is the real world from the stochastic system ?
 The answer would seem to be 'not very' the outstanding feature of real and random clades is their basic similarity" (Gould et al 1977, Savage 1983)
- ► Empirical root balance ≠ uniform (Slowinski 1990, Guyer & Slowinski 1991, 93)

Aldous' Markov branching model on binary tree shapes Aldous (1996, 2001)

- Assume we are given distributions q_n on $\{1, \ldots, n-1\}$, $n \ge 2$
- Recursively split each subset of *n* balls according to q_n (r.v.'s K_n below)



q_n uniform yields the same tree shape as a Yule tree

Sampling consistency

- A tree model is a family of probability distributions (P_n) on (exchangeably labelled) tree shapes with n tips
- Call T_n a random tree with law P_n
- ► Call T'_n the tree obtained by removing one tip from T_{n+1} (say the tip labelled n + 1)
- ► The model is said **sampling consistent** if *T_n* and *T'_n* have the same distribution.
- Example : Kingman coalescent.

Aldous' Markov branching model

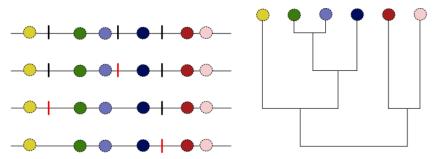
Theorem (Haas et al 2008, Lambert 2016)

A MB tree model is sampling-consistent iff it there is a function f s.t.

$$q_n(i) = a_n(f)^{-1} \binom{n}{i} \int_0^1 x^i (1-x)^{n-i} f(x) \, dx$$

Construction

- Color dots are uniformly distributed in the interval
- ▶ Intervals are fragmented by r.v. with density ~ *f*



The α -splitting model

Ford 2005 (unpublished)

- Define the α -splitting tree model recursively, $\alpha \in [0, 1]$.
- Conditional on a realization of the binary tree with *n* tips *T_n*: Give weight α to every external edge of *T_n* and weight 1 − α to every internal edge, including the root edge.
- ▶ Generate T_{n+1} by choosing an edge in proportion to its weight and plant a new external edge in the middle of the chosen edge.
- The α -model is sampling consistent.
- Imbalance increases with α

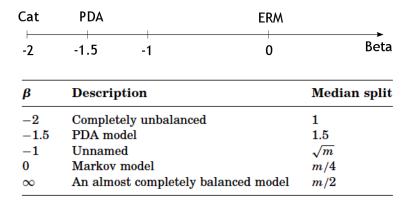
The α -splitting model

Ford 2005 (unpublished)

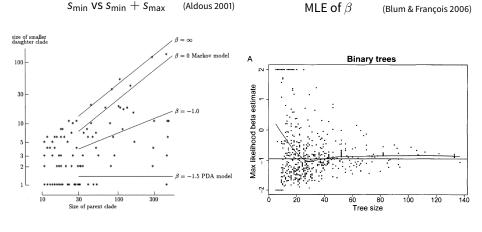
- Define the α -splitting tree model recursively, $\alpha \in [0, 1]$.
- Conditional on a realization of the binary tree with *n* tips *T_n*: Give weight α to every external edge of *T_n* and weight 1 − α to every internal edge, including the root edge.
- ▶ Generate T_{n+1} by choosing an edge in proportion to its weight and plant a new external edge in the middle of the chosen edge.
- The α -model is sampling consistent.
- Imbalance increases with α
- $\alpha = 0$: Yule ; $\alpha = 1$: caterpillar.

The β -splitting model

- The β -splitting model is for $\beta \in (-2, \infty)$: $f(x) = cx^{\beta}(1-x)^{\beta}$
- Imbalance decreases with β
- Q1 : distribution of MLE $\hat{\beta}$ under the Yule model ?



Estimating β



 $\implies \beta \approx -1$

Q2 : "Why $\beta \approx -1$?" or "Are there mathematically simple/biologically plausible stochastic models for phylogenetic trees whose realizations mimic actual trees ?" (Aldous 2001)

Outline

1. Introduction

- 2. Tree statistics
- 3. Lineage-Based Models
- 4. Individual-Based Models
- 5. Predict the Future ?

Birth-Death Model of Macroevolution (Nee 2006)

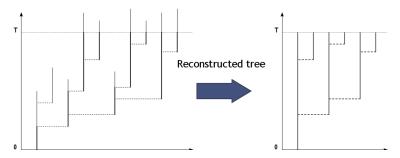
- Species seen as particles that can split (speciation) and die (extinction)
- ▶ Rates b(t, n, a, i) and d(t, n, a, i) may depend upon :

Yule model : b = constant, d = 0.

▶ time t

- number n of standing particles
- a non-heritable trait a (e.g., age)
- ► a heritable trait *i*
- Asymmetric birth = Mother keeps her trait
- Orientation = Daughter sprouts to the right

Reconstructed tree



- 'Reconstructed tree' or 'reduced tree' at height T = remove all lineages extinct by T (fixed time).
- ▶ Q2 : Are there universal conditions on the rates for which the reconstructed tree has $\beta \approx -1$?
- Q2': What is the law of the reconstructed tree under the model? Can we compute the likelihood of a given ultrametric (clock-like) phylogenetic tree under the model?

Characterizing lineage-based models

Lambert & Stadler "Birth–Death Models and Coalescent Point Processes : The Shape and Probability of Reconstructed Phylogenies" *TPB* (2013)

► A (partial) negative answer to Q2 :

Reconstructed trees always have the same topology in distribution as Yule trees ($\beta = 0$) IFF b = b(t, n) and d = d(t, n, a)

 \implies As soon as b = b(t, n) and d = d(t, n, a), estimate $\beta \approx \mathbf{0}$

► A (partial) positive answer to Q2':

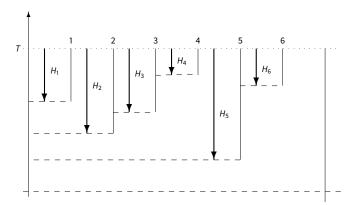
The likelihood of reconstructed trees always has an explicit product form IFF b = b(t) and d = d(t, a).

⇒ The reconstructed tree is a 'coalescent point process'...

The CPP distribution

Rannala (1997), Popovic (2004), Aldous & Popovic (2005)

CPP = Coalescent Point Process = Oriented tree whose node depths H_1, H_2, \ldots , form a sequence of **iid random variables** killed at its first value larger than *T*.



b = b(t) and d = d(t, a) always produce CPP

Assume that b = b(t) and d = d(t, a).

Set g(t, s) the density at time s of the extinction time of a species born at time t.

Theorem (Lambert & Stadler 2013)

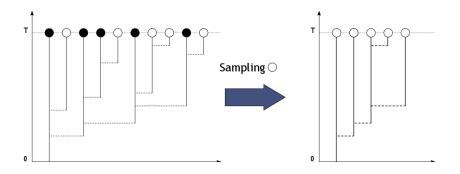
The **reconstructed (oriented) tree is a CPP** with typical node depth H, where the function $F = 1/P(H > \cdot)$ is the unique solution to the following linear integro-differential equation

$$F'(t) = b(t) \left(F(t) - \int_{T-t}^{T} ds F(s) g(t,s)\right) \qquad t \geq 0,$$

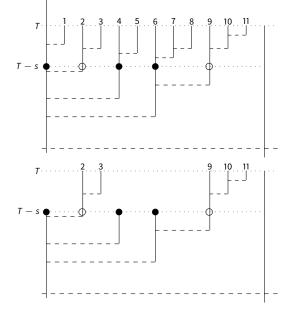
with initial condition F(0) = 1.

The result still holds with missing species/mass extinction events : each species is removed independently with the same probability *p*.

Missing species



Mass extinction event



Special cases

• If b = b(t) and d = d(t) (Kendall 1948, Nee et al 1994)

$$F(t) = 1 + \int_{T-t}^{T} ds \, b(s) \, e^{\int_{s}^{T} du \, (b-d)(u)}$$

► If *b* is constant and d = d(a), then g(s, t) = g(t - s) [if *a* the age $g(a) = d(a) e^{-\int_0^a ds d(s)}$] (Lambert 2010)

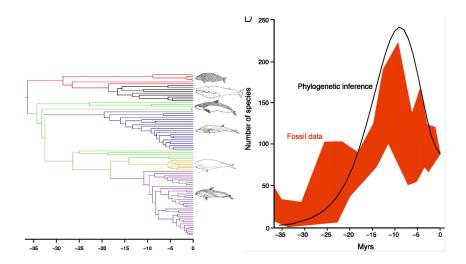
$$F'=b\left(F-F\star g\right),$$

• Mass extinction event with survival probability p at time T - s

$$F_{p}(t) = \begin{cases} F(t) & \text{if } 0 \leq t \leq s \\ (1-p)F(s) + pF(t) & \text{if } s \leq t \leq T, \end{cases}$$

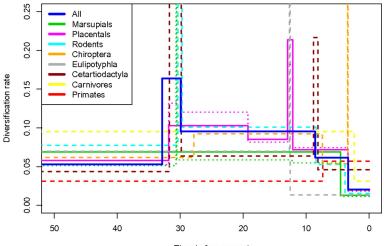
Appl.1 Diversification of Cetaceans

Morlon, Parsons & Plotkin "Reconciling Molecular Phylogenies with the Fossil Record" PNAS (2011)



Appl.2 Diversification of Mammals

Stadler "Mammalian Phylogeny Reveals Recent Diversification Rate Shifts" PNAS (2011)



Time before present

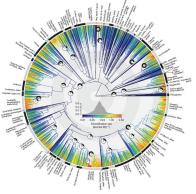
Appl.3 Do species age?

Alexander, Lambert & Stadler "Quantifying Age-dependent Extinction from Species Phylogenies" Systematic Biology (2015)

Gamma distributed lifetime (k, s > 0), with mean m := ks

$$g(a) = \Gamma(k)^{-1} s^{-k} a^{k-1} e^{-a/s}$$

- Test on simulations : accurate MLEs of b and m
- MLE on Aves phylogeny = 9993 extant bird sp (Jetz et al 2012)
- Exponential model rejected (p = 10⁻¹⁵)
- Shape parameter k ≫ 1: extinction rate increases with age
- Average lifetime m = 15.26 My
- Speciation rate b = 0.108 My⁻¹

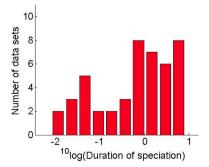


Appl.4 How long does speciation take?

Etienne, Morlon, Lambert "Estimating the Duration of Speciation from Phylogenies" Evolution (2014)

Model of Protracted Speciation (Rosindell et al 2010, Etienne & Rosindell 2012)

- Species are ensembles of populations, each population gradually diverges from mother species
- Newborn populations are incipient, become good after some random time = new species
- Speciation stage = non-heritable trait



- Duration of speciation = Time before a good sp appears in the pop genealogy
- Test on simulations : efficient inference of duration of speciation
- Left : duration of speciation inferred in 46 bird clades (in My)

Other lineage-based models of macro-evolution

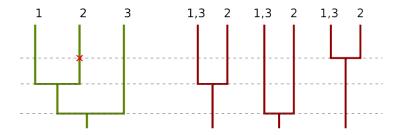
- Diversity-dependent diversification (Etienne et al Proc B 2012)
- Trait-dependent diversification : BiSSE, QuaSSE, GeoSSE... (Maddison et al Syst Biol 2007, FitzJohn MEE 2012...)

But see also Rabosky & Goldberg Syst Biol 2015...

- Reviews...
 - Ricklefs TREE (2007)
 - Pyron & Burbrink TREE (2013)
 - Stadler JEB (2013)
 - Morlon Eco Lett (2014)

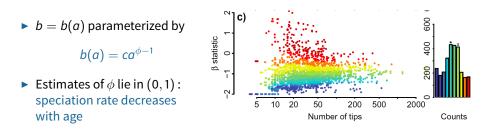
A positive answer to Q2?

- Phylogenetic method artifact ? (Huelsenbeck & Kirkpatrick Evolution 1996)
- Protracted speciation ? (Rosindell et al Eco Lett 2010)
- ▶ Neutral Biodiversity Theory ? (Jabot & Chave Eco Lett 2009, Davies et al Evolution 2012)
- Age-dependent speciation ? (Hagen et al Syst Biol 2015)



A positive answer to Q2?

Hagen, Hartmann, Steel, Stadler "Age-Dependent Speciation Can Explain the Shape of Empirical Phylogenies" *Systematic Biology (2015)*

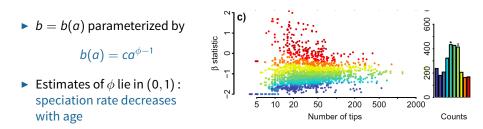


For $\phi =$ 0.6, the reconstructed tree has $\beta \approx -$ 1.

Q2 : "Why $\beta \approx -1$?"

A positive answer to Q2?

Hagen, Hartmann, Steel, Stadler "Age-Dependent Speciation Can Explain the Shape of Empirical Phylogenies" *Systematic Biology (2015)*



For $\phi=$ 0.6, the reconstructed tree has $\beta\approx-$ 1.

Q2 : "Why $\beta \approx -1$?"

- "Because $\phi \approx 0.6$ ";-)

Outline

1. Introduction

- 2. Tree statistics
- 3. Lineage-Based Models
- 4. Individual-Based Models
- 5. Predict the Future ?

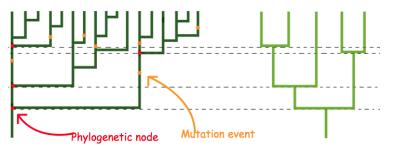
Speciation by Genetic Differentiation (1)

Manceau, Lambert, Morlon "Phylogenies Support Out-of-Equilibrium Models of Biodiversity" *Ecology Letters* (2015)

- Start with a birth-death process (individual-based, constant rates b and d)
- Superimpose mutations at constant rate θ , infinite-allele model
- Species = minimal monophyletic taxon such that any 2 tips with the same allele belong to the same species
- SGD = Speciation by genetic differentiation = individual-based version of protracted speciation

Speciation by Genetic Differentiation (2)

Manceau, Lambert, Morlon "Phylogenies Support Out-of-Equilibrium Models of Biodiversity" *Ecology Letters* (2015)



A node on the genealogy is phylogenetic (= appears on the phylogeny) if

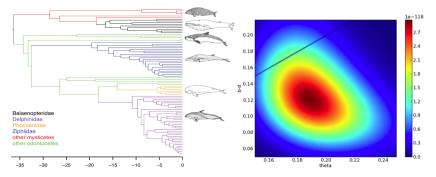
- (i) The previous node is phylogenetic
- (ii) All tips separated by this node carry different alleles

The first node is phylogenetic if it satisfies (ii)

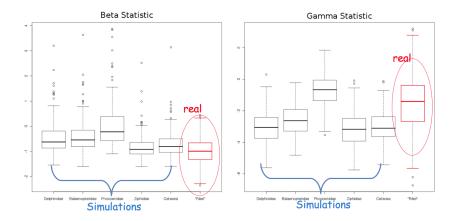
Speciation by Genetic Differentiation (3)

Manceau, Lambert, Morlon "Phylogenies Support Out-of-Equilibrium Models of Biodiversity" *Ecology Letters* (2015)

- Multitype branching tree representation : fast simulation
- Likelihood computation by peeling algorithm, including the case of missing species
- Tests by simulations : accurate ML estimates of θ and b d
- Inference from Cetaceans generates realistic values of β, γ



Speciation by genetic differentiation (4)



An Individual-Based Model of Radiation (1)

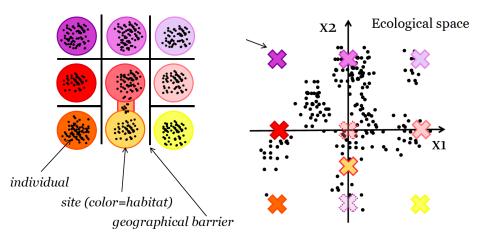
Aguilée, Claessen, Lambert "Adaptive Radiation Driven by the Interplay of Eco-Evolutionary and Landscape Dynamics" *Evolution* (2013)

- Individuals explicitly located in geographical/genotype space
- Ecological traits and choosiness trait are determined by *L* loci
- Assortative mating based on similarity in ecological traits and choosiness of parents
- Density- and phenotype-dependent competition for resources
- Selection can turn disruptive at ecological optimum
- Stabilizing selection + environmental stochasticity + character displacement

 \Longrightarrow Rapid diversification

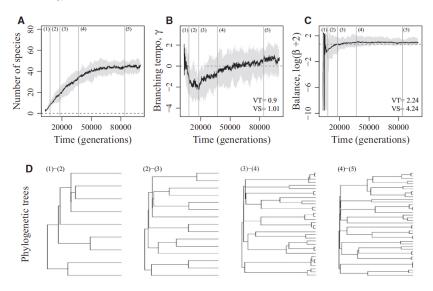
An Individual-Based Model of Radiation (2)

Gascuel, Ferrière, Aguilée, Lambert "How Ecology and Landscape Dynamics Shape Phylogenetic Trees" Systematic Biology (2015)



An Individual-Based Model of Radiation (3)

Gascuel, Ferrière, Aguilée, Lambert "How Ecology and Landscape Dynamics Shape Phylogenetic Trees" Systematic Biology (2015)



An Individual-Based Model of Radiation (4)

Gascuel, Ferrière, Aguilée, Lambert "How Ecology and Landscape Dynamics Shape Phylogenetic Trees" Systematic Biology (2015)

- Phylogenies can be unbalanced for small phylogenies
 - In the initial phase of diversification
 - Under intense interspecific competition
- Ecological heterogeneity does not necessarily cause phylogenies to be unbalanced
- Contingency of landscape dynamics and resource distribution can cause wide variation in tree balance

Outline

1. Introduction

- 2. Tree statistics
- 3. Lineage-Based Models
- 4. Individual-Based Models
- 5. Predict the Future ?

The Loss of Phylogenetic Diversity

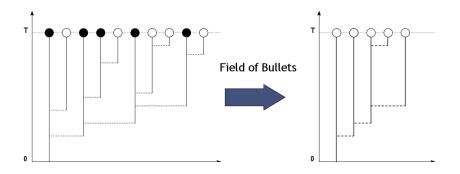
Q3 : "If a random, say 10% of species from some given clade were to disappear in the next 100 years due to current high rates of extinction, how much evolutionary heritage will be lost ?"

- Field of Bullets model : each species is removed independently, kept with probability p
- Remaining PD S(p) = Total Length of Tree spanned by surviving sp
- For a given tree, $\mathbb{E}S(p)$ is increasing and concave (Faller, Pardi, Steel 2008)

$$\mathbb{E}S(p) = \sum_{e} \ell(e) \left(1 - (1-p)^{n(e)}\right)$$

where $\ell(e) =$ length of edge e, n(e) = # tips descending from e

Field of Bullets



Loss of PD in Random Trees

Remaining PD is...

- ► High for the Kingman coalescent (Nee & May Science 1997) Rule of thumb : $S_n(1) \sim \log(n)$ so $S_n(p)/S_n(1) \approx 1$
- Lower in imbalanced trees : more 'distinctive' sp
- ► Low for the Yule tree (Mooers, Gascuel, Stadler, Li, Steel Syst Biol 2011) Rule of thumb : $S_n(1) \sim cn$ (recall CPP) so $S_n(p)/S_n(1) < 1$

$$\frac{\mathbb{E}S(p)}{\mathbb{E}S(1)} = \text{ Ratio of expected remaining PD-to-Old PD } \approx -\frac{p \log p}{1-p}$$

Remaining PD for general Birth-Death Trees (1)

Lambert & Steel "Predicting the Loss of Phylogenetic Diversity under Non-Stationary Diversification Models" *JTB* 2013

- ▶ As in a Coalescent Point Process, assume node depths *H_i* are i.i.d.
- ▶ Then conditional on *n* tips **before** FoB and *K_n* tips **after** FoB,

With probability 1:
$$\lim_{n} \frac{S_{n}(p)}{S_{n}(1)} = p \frac{\mathbb{E}(B)}{\mathbb{E}(H)}$$

where

$$B:=\max_{i=1,\ldots,G}H_i,$$

and G is a geometric r.v. with success probability p.

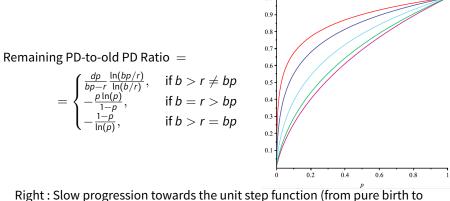
Simple argument :

- ► After FoB, the phylogenetic tree is a CPP with node depth B
- By the SLLN, $S_n(1) \sim n\mathbb{E}(H)$ and $S_n(p) \sim K_n\mathbb{E}(B)$
- Conclude with $K_n/n \rightarrow p$

Remaining PD for general Birth-Death Trees (2)

Lambert & Steel "Predicting the Loss of Phylogenetic Diversity under Non-Stationary Diversification Models" *JTB* 2013

For a Birth-Death tree with sp rate *b*, ext rate *d*, div rate r := b - d

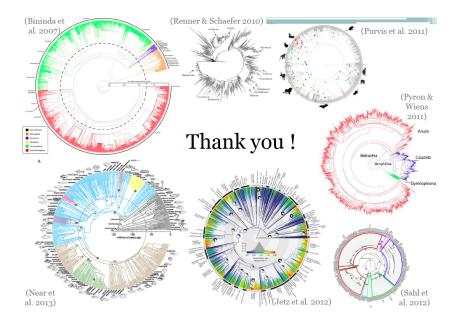


1.0

Right : Slow progression towards the unit step function (from pure birth to critical) : d/b = 0 (the lowest curve) and then d/b = 0.5, 0.9, 0.99, 0.999.

Remaining questions

- What if poorer clades are older?
- What if older clades carry more extinct-prone species ?
- ▶ If you're interested, listen to Odile Maliet's talk this afternoon ;-)



Collaborators

Helen Alexander (Oxford)

Rampal Etienne (U Groningen).....

Tanja Stadler (ETHZ)

Mike Steel (U Canterbury)

David Claessen (ENS Paris) & Robin Aguilée (Toulouse) .

Régis Ferrière (ENS Paris) & Fanny Gascuel (PhD)

Hélène Morlon (ENS Paris) & Marc Manceau (PhD)

SMILE : an interdisciplinary group in Paris

SMILE = Stochastic Models for the Inference of Life Evolution