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➤ How big/small are adaptive steps?

➤ What is the role of selection vs. genetic drift?

➤ What are the proportions of beneficial, neutral, and 
deleterious mutations?

➤ How do mutational effects change dependent on the 
environment?

➤ How do mutational effects change dependent on the genetic 
background? (I.e., what is the role of epistasis?)

➤ What is the shape of the fitness landscape?
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The roles of mutation, 
inbreeding, 

crossbreeding, and 
selection in evolution

➤ fitness landscapes yield information on the 
predictability and repeatability of evolution

➤ it becomes increasingly simple to measure 
empirical fitness landscapes

➤ accumulating data on gene networks and 
pathways

But:

➤ very high complexity

➤ unclear whether there is predictive 
potential when combining theory and data

E.g.: Can we predict costs of anti-
microbial resistance across environments?



THE EMPIRIC APPROACH

➤ Systematic high-throughout sampling of hundreds of chosen 
mutations (including those that are strongly deleterious) 

➤ Bulk competitions ensure identical conditions for all mutants 

➤ Genetic background is precisely controlled (minimized 
potential for secondary mutations)

Hietpas, Jensen & Bolon, PNAS, 2011
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Guide to experimental design of deep mutational 
scanning studies    Matuszewski*, Hildebrandt* et al., 2016, Genetics

Complete fitness landscape of 640 combinations of 
mutations                              Bank*, Matuszewski* et al., BioRxiv

Engineered mutations from a 9 aa region from Hsp90 
(aa positions 582-590) in Saccharomyces cerevisiae
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high salinity environment 
13 single-aa mutations 
2 replicates 
all possible combinations of aa's 
≈1600 nt mutations

➤ relatively “unbiased" selection of 
mutations 

➤ multi-allelic fitness landscape
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3 QUESTIONS

➤ Do single step mutations predict the way to the global 
optimum?

➤ Will adaptation take the population to the global optimum?

➤ Can we infer an unknown part of the fitness landscape?



A PICTURE OF THE WHOLE LANDSCAPE
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TO THE GLOBAL 
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LANDSCAPE STATISTICS INDEPENDENT OF REFERENCE
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Mutation-specific epistatic hotspot 
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à la Feretti et al., JTB, 2016
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On average, our intragenic fitness 
landscape looks rugged and negative 
epistasis is common. 

The global peak is accessible and 
reached via a highly synergistic 
combination of four mutations. 

However, when evolving from 
parental type, adaptation may stall at 
a local peak.
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On average, our intragenic fitness 
landscape looks rugged and negative 
epistasis is common. 

The global peak is accessible and 
reached via a highly synergistic 
combination of four mutations. 

However, when evolving from 
parental type, adaptation may stall at 
a local peak.

SUMMARY/CONCLUSION

So far, limited predictive 
potential, but lots of ideas for 
the future…
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