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» What is the shape of the fitness landscape?
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Local fitness landscape of the green
fluorescent protein

Comprehensive experimental fitness landscape
and evolutionary network for small RNA

Genotype to Phenotype Mapping and the Fitness
Landscape of the E. coli lac Promoter

Biophysical principles predict fitness landscapes of
drug resistance

Mutational and fitness landscapes of an RNA virus
revealed through population sequencing

In-vivo mutation rates and fithess landscape of HIV-1

The fitness landscape of a tRNA gene
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inbreeding, potential when combining theory and data
crossbreeding, and
selection in evolution  E-g8.: Can we predict costs of anti-

Wright, 1932 microbial resistance across environments?



THE EMPIRIC APPROACH

» Systematic high-throughout sampling of hundreds of chosen
mutations (including those that are strongly deleterious)

» Bulk competitions ensure identical conditions for all mutants

» Genetic background is precisely controlled (minimized
potential for secondary mutations)

Yeast '_\—;\ \v
Point-mutant

library Analyze mutant abundance
by deep sequencing

Hietpas, Jensen & Bolon, PNAS, 2011
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> relatively “unbiased" selection of
mutations

» multi-allelic fitness landscape
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3 QUESTIONS

» Do single step mutations predict the way to the global
optimum?

» Will adaptation take the population to the global optimum?

» Can we infer an unknown part of the fitness landscape?
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A PICTURE OF THE WHOLE LANDSCAPE
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BENEFICIAL PART OF THE
LANDSCAPE
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Evolution from parental type may stall at local optimum



LANDSCAPE STATISTICS INDEPENDENT OF REFERENCE
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(2016) Measuring epistasis in fitness landscapes: The correlation of fitness effects of
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HOW CAN WE MEASURE FITNESS LANDSCAPES AND
WHAT CAN WE LEARN FROM THIS EXERCISE?
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HOW CAN WE MEASURE FITNESS LANDSCAPES AND
WHAT CAN WE LEARN FROM THIS EXERCISE?
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SUMMARY/CONCLUSION

On average, our intragenic fitness
landscape looks rugged and negative
epistasis 1s common.

The global peak is accessible and
reached via a highly synergistic
combination of four mutations.

However, when evolving from
parental type, adaptation may stall at
a local peak.




SUMMARY/CONCLUSION

On average, our intragenic fitness
landscape looks rugged and negative
epistasis 1s common.

The global peak is accessible and
reached via a highly synergistic
combination of four mutations.

However, when evolving from
parental type, adaptation may stall at
a local peak.

So far, limited predictive
potential, but lots of ideas for
the future...
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FITNESS LANDSCAPES & ANTIBIOTIC RESISTANCE

» Costs of resistance, yet often no elimination of
resistant types upon drug withdrawal

» What is the fitness landscape across
environments? Are there refugia for resistant
bacteria? How easily can resistant types invade
novel environments?

> Is the architecture of resistance dependent on the
bacterial strain? Can we predict resistance across
genetic backgrounds?

> Are costs/routes to compensatory evolution
predictable across genetic backgrounds and Isabel Gordo
environments?

Rees Kassen
Thomas Bataillon



FITNESS LANDSCAPES & ANTIBIOTIC RESISTANCE
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