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Signals of recent selection from sequences

2L and 3R (p-value\10!3) and Fay and Wu’s variation
is significant also in chromosome X (p-value¼ 2:10!3).
When significant, the values of all these statistics are
negative (see table SI-6 and section SI.12), which means
that in the ACO population highly differentiated win-
dows have lower nucleotide diversity with respect to
the control; moreover, they experience a reduction in
the number of intermediate-frequency alleles and an
increase in the number of rare alleles and in particular
of high-frequency alleles.

Taken together, these statistics suggest that selective
sweeps have occurred in some regions of chromosomes
2L and 3R (and possibly X). However, variability is not
swept out of these windows: the average loss of vari-
ability with respect to the control population in highly
differentiated windows is # 27% for chromosome 2L
and # 37% for chromosome 3R. Soft sweeps on stand-
ing genetic variation or incomplete selective sweeps are
plausible explanations (Innan & Kim 2004; Hermisson
& Pennings 2005; Prezeworski et al. 2005; Burke et al.

Fig. 6. Distributions of the relative variation in nucleotide diversity ðhWðACOÞ ! hWðCOÞÞ=hWðCOÞ (circles), the variation of Tajima’s
DðACOÞ !DðCOÞ (squares) and Fay and Wu’s HðACOÞ !HðCOÞ (diamonds) between ACO and CO population in chromosome 3R. In the
upper plots, variation of these statistics along the chromosome (position in Mb). In the lower plots, correlation between differentia-
tion (L10FET5%Q, vertical axis) and these statistics (horizontal axis).
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Example: experimental evolution for accelerated life cycle in Drosophila 
!
!
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!
Burke et al, Nature 2010    (analysis from Ferretti et al, Mol Ecol 2013) 
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Example: experimental evolution for accelerated life cycle in Drosophila

Partial selective sweeps?



Evolution of a neutral sequence

Mutations in a sample:
Frequency of the  
mutation in the population
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Evolution of a neutral sequence

Mutations in a sample:
Genealogy of the sample



Outer

Co-occurring
Inner

ComplementaryOuter

Enclosing
Inner

Co-occurring

no recombination: 2 types of pairs, nested or disjoint 
and 5 types of mutations relative to a focal mutation…  
!
!
!
!
!
!
!
!
!
nested = inner + cooccurring + enclosing 
disjoint = outer + complementary

How? Coalescent theory of 
pairs of mutations
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for neutral model (from Kingman's coalescent) 
!

2-SFS



From 2-SFS of pairs of mutations f,f0   

to SFS of mutations f linked to a focal one f0 
!
!

“joint” 2-SFS  :  “conditional” SFS of linked sites 
!

= 
  

joint probability p(f,f0)  :  conditional probability p(f|f0) 

2-SFS and spectrum of linked 
mutations



Frequency of linked mutations

with E[ξD(f, f0)] = 0 for f + f0 > 1.

Here, we denote δ(f − f0) the density of the Dirac distribution concentrated

in f0: δ(f − f0) = 0 for f �= f0, normalized such as
�
δ(f − f0)df = 1.

2.2.3 The sample conditional 1-SFS

The conditional 1-SFS for sites that are linked to a focal mutation of count

l is simply the sum of all its components, given by the following equations:

E[ξ(i)k|l ] =θL · lβn(k)− βn(k + 1)

2
for k < l

E[ξ(co)k|l ] =θL · lβn(k)δkl

E[ξ(e)k|l ] =θL · lβn(l)− βn(l + 1)

2
for k > l (13)

E[ξ(cm)
k|l ] =θL · l

�
an − ak
n− k

+
an − al
n− l

− βn(k) + βn(l)

2

�
δk,n−l

E[ξ(o)k|l ] =θL ·
�
1

k
− l

βn(k)− βn(k + 1) + βn(l)− βn(l + 1)

2

�
for k + l < n

and 0 otherwise.

2.2.4 The population conditional 1-SFS

For the whole population, this becomes:

E[ξ(i)(f |f0)] =θL · f0
(1− f)2

�
1 +

1

f
+

2 ln(f)

1− f

�
, f < f0

E[ξ(co)(f |f0)] =θL · δ(f − f0)
2f0

1− f0

�
− ln(f0)

1− f0
− 1

�

E[ξ(e)(f |f0)] =θL · f0
(1− f0)2

�
1 +

1

f0
+

2 ln(f0)

1− f0

�
, f > f0 (14)

E[ξ(cm)
(f |f0)] =θL · δ(f − 1 + f0)

�
1− f0
f0

log(1− f0) +

�
f0

1− f0

�2

log(f0) +
1

1− f0

�

E[ξ(o)(f |f0)] =θL ·
�
1

f
− f0

(1− f)2

�
1 +

1

f
+

2 ln(f)

1− f

�

− f0
(1− f0)2

�
1 +

1

f0
+

2 ln(f0)

1− f0

��
, f < 1− f0
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Frequency of linked mutations

enclosing
co−occurring
inner
complementary
outer
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Sudden environmental change! 
e.g. new viral strain

Mutations in a sample:
Frequency of the  
mutation in the population
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Sudden environmental change! 
e.g. new viral strain

Mutations in a sample:
Resistant mutation

Selection on standing variation!



Selection for resistance

Mutations in a sample:

Selection on standing variation!

Frequency of the  
mutation in the population
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Selection for resistance: soft sweep

Mutations in a sample:

Detected by pattern of sequence diversity 

Frequency of the  
mutation in the population
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Selected allele changes frequency from f0 to fs 
!
Rescale frequencies according to the component of the spectrum 
and the change in frequency of the selected allele:

From neutral spectrum  
to fast sweep     

time to cause a relevant change in the frequencies between t = ts and t = 0
and selection behaves deterministically.

Both cases depending on which allele (ancestral or derived) is positively
selected. Both cases can be studied in this formalism: positive selection on
the derived allele will correspond to fs > f0 and positive selection on the
ancestral allele will correspond to fs < f0.

The mean frequency spectrum of the sequence before the sweep is de-
scribed by the neutral frequency spectrum of linked sites ξN(f |f0) presented
in [SpectrumLinkedSites]. There are several components in this spectrum
(nested, co-occurring, containing, complementary, exclusive), depending on
their linkage to the focal mutation (Figure XXX).

The effect of strong selection on the population spectrum is better un-
derstood by dividing the population in two subpopulation corresponding to
the two alleles of the focal mutation. The frequency of the alleles inside the
subpopulation remains constant during the sweep, while the relative size of
the two subpopulations change from f0 : 1− f0 to fs : 1− fs.

For example, a mutation of frequency f in the population that is “nested’
inside the focal mutation would have frequencies of f/f0 and 0/(1−f0) inside
the subpopulations; after the sweep, its final frequency in the population is
fs(f/f0) + (1− fs)(0/(1− f0)) = fsf/f0. A similar approach can be applied
to all the other components. We report the results for a linked mutation of
initial frequency f in the following table.

Component Freq. 1st subpop. Freq. 2nd subpop. Final frequency
nested f/f0 0 fsf/f0
co-occurring 1 0 fs
containing 1 (f − f0)/(1− f0) fs + (1− fs)(f − f0)/(1− f0)
complementary 0 1 1− fs
exclusive 0 f/(1− f0) (1− fs)f/(1− f0)

The final frequency fs in the population is usually unknown, but the
final frequency in the sample ks/n ∼ fs could be observed. Since a sample
is a random choice of alleles from the population, the average spectrum is a
convolution of the population spectrum and a binomial. The five components

5



Signatures of ongoing selection
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Perspectives

• Composite Likelihood-Ratio Test for partial 
sweeps 

!
• Maximum Composite Likelihood inference of the 

initial and final frequency of the sweep 

!
• Similar methods applied to balancing selection  

!
• Include recombination (approximate) and joint 

sweep finder with haplotype-based methods
19
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Applicable to selection on standing variation

Frequency spectrum linked to a  
soft selective sweep

for the selected subpopulation, and

Ne(t) =

�
0 t < −ts
Ne(1− fF (t)) −ts < t < 0

(16)

for the other subpopulation. The mean and variance of these spectra can be
obtained analytically by the formulae in [GriffithsTavare] and [ZivkovicWiehe].

[ADD FORMULAE MEAN SPECTRUM.]

2.4 The frequency spectrum for soft sweeps

When the selected allele is close to fixation or has reached it, the selective
sweep is usually called a soft sweep. Soft sweeps from standing variation show
distinctive signals even after or around fixation, due to the initial variants
linked to the selected allele.

The population spectrum of soft sweeps can be easily obtained analyt-
ically in the case of strong selection. In fact, in this approximation, when
the focal mutation reaches a frequency fs � 1, only nested mutations are
retained in the population and get rescaled by a factor 1/f0. The population
spectrum is

ξsoft(f) � f0 · ξ(n)(ff0|f0) � θL · f 2
0

(1− ff0)2

�
1 +

1

ff0
+

2 ln(ff0)

1− ff0

�
(17)

ξsoft(f |f0) = θL · f 2
0

(1− ff0)2

�
1 +

1

ff0
+

2 ln(ff0)

1− ff0

�
(18)

[ADD CONTRIBUTION OF NEW MUTATIONS!!! BUT NO NEW MU-
TATIONS HERE, NO TIME FOR THEM...] and the sample spectrum is
[COMPLETE].

On the other hand, if selection acts on the ancestral allele, when the
final frequency is fs � 0, only the components of containing and external
mutations linked to the ancestral allele are retained and get rescaled by a
factor 1/(1− f0). The population spectrum is

ξsoft(f) � (1− f0) ·
�
ξ(c)(f(1− f0) + f0|f0) + ξ(e)(f(1− f0)|f0)

�
� ... (19)

and the sample spectrum is [COMPLETE].
For mild selective pressures, the spectrum depends on the length of the

selection period ts. In the deterministic approximation, the time ts is a simple
function of the final frequency fs (and of the initial one f0) that depends
weakly (logarithmically) on fs. Therefore ts is known, the formulae for mild
partial sweeps can be used. However, if 1 − fs is smaller than 1/2Nes, the
formulae could not work properly and require an adjustment of the trajectory
conditioning on fixation [ ]...
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