Incomplete lineage sorting in mammalian phylogenomics

Céline Scornavacca, Nicolas Galtier

Institute of Evolutionary Sciences CNRS – University Montpellier

Phylogenetic conflict

Incomplete lineage sorting and the probability of gene trees

Incomplete lineage sorting and the probability of gene trees

Incomplete lineage sorting and the probability of gene trees

Incomplete lineage sorting and the probability of gene trees: the anomaly zone

a c b d

a d c b

bdac

c d b a

a d b c

Incomplete lineage sorting and the probability of gene trees: the anomaly zone

a c b d

a d c b

bdac

c d b a

a d b c

- Standard phylogenetic methods can be inconsistent under ILS

- New methods have been developed to cope for this bias, and often applied to gene trees estimated from protein coding sequences

A hot topic:

Gatesy & Springer 2013 Gatesy & Springer 2014 Springer & Gatesy 2014 Springer & Gatesy 2016

Wu, Song, Liu & Edwards 2013 Liu, Xi, Wu, Davis, Edwards 2015 Edwards et al. 2016 - Standard phylogenetic methods can be inconsistent under ILS

2. Is this problematic?

- New methods have been developed to cope for this bias, and often applied to gene trees estimated from protein coding sequences

1. Is this justified?

A hot topic:

Gatesy & Springer 2013 Gatesy & Springer 2014 Springer & Gatesy 2014 Springer & Gatesy 2016

Wu, Song, Liu & Edwards 2013 Liu, Xi, Wu, Davis, Edwards 2015 Edwards et al. 2016

Data set: OrthoMaM v9

CDS-based, **ILS-aware gene tree analysis**

Implicit assumption: the distinct exons of a gene share a common genealogy

CDS-based, **ILS-aware gene tree analysis**

Implicit assumption: the distinct exons of a gene share a common genealogy

Co-genic exons do not yield gene trees more similar than exons from distinct genes

Reference mammalian phylogeny, focal nodes

alignment exon e

Score of exon *e* at node *d*:
$$q(e,d) = \frac{n_T - n_M}{n_T + n_M}$$

Node I O=Eulipotyphla; X=Chiroptera; Y=Carnivora; Z=Cetartiodactyla

co-genic exons

gene effect

Node I O=Eulipotyphla; X=Chiroptera; Y=Carnivora; Z=Cetartiodactyla

half-exons

Exons, not CDS, are plausible phylogenomic units in mammals

- Standard phylogenetic methods can be inconsistent under ILS

2. Is this problematic?

- New methods have been developed to cope for this bias, and often applied to gene trees estimated from protein coding sequences

1. Is this justified? NO

A hot topic:

Gatesy & Springer 2013 Gatesy & Springer 2014 Springer & Gatesy 2014 Springer & Gatesy 2016

Wu, Song, Liu & Edwards 2013 Liu, Xi, Wu, Davis, Edwards 2015 Edwards et al. 2016

Maximal prevalence of ILS-induced conflicts = $4N_e\mu/3 = \theta/3$

Estimated θ in extant mammalian exomes: 0.0003 - 0.0035

Most of the phylogenetic conflict in mammals results from processes other than ILS

Most of the phylogenetic conflict in mammals results from processes other than ILS

Applied to a data set of 5299 exon trees in 43 species of mammals, ILS-aware **ASTRAL** and ILS-unaware **SuperTriplets** yielded the **exact same trees**.

Conclusions

- Exons, not CDS, are plausible phylogenomic units in mammals
- Phylogenetic conflict in OrthoMaM v9 mainly results from multiple substitutions, not ILS
- ILS-aware, gene tree-based methods are not obviously superior to more classical supertree methods

Thanks to:

Most of the phylogenetic conflict in mammals results from processes other than ILS

