
The dynamics of fitness under selection, and 
context-dependent mutation 

Guillaume Martin & Lionel Roques 



Models describing the rate of adaptation 

Typical adaptation data: saturation 

Fong 2005 

Lenski & Travisano 1994 

Fragata (2015) 

Typical adaptation models: stable regime assumptions   =>   𝜕𝑡𝐸(𝑚 ) = constant 

fitness: substitutions (Gerrish & Lenski 1998), Travelling waves (Desai & Fisher 2007) 

traits: Quantitative genetics (Lande 1979) etc. 



Models describing the rate of adaptation 

• Erosion of initial variance 

• Epistasis 

Typical adaptation data: saturation 

Fong 2005 

Lenski & Travisano 1994 

Fragata (2015) 

Typical adaptation models: stable regime assumptions   =>   𝜕𝑡𝐸(𝑚 ) = constant 

fitness: substitutions (Gerrish & Lenski 1998), Travelling waves (Desai & Fisher 2007) 

traits: Quantitative genetics (Lande 1979) etc. 



Fitness distribution dynamics with epistasis + standing variance 
generating function of the fitness distribution 

Generating functions can prove handy: 
R. Bürger (1991) : trait mutation 
Johnson (1999),Desai & Fisher (2011) : deleterious mutation 
Gerrish & Sniegowski (2012): mutation + short term 
Rattray & Shapiro (2001): biallelic locus + mutation + drift 
Good & Desai (2013): fitness-based , deleterious mutation + drift 

Fitness trajectories with epistasis: 
Kryazhimskiy (2009) Dwyer (2012), Good & Desai (2015) 
Analytic progress = away from clonal interference regime 

Often: Infinite set of moment equations (but see Johnson 1999) 
No epistasis 



Definitions / Assumptions 

Asexuals, multitype wright fisher diffusion (continuous time approx) 

𝑚𝑖: malthusian fitness of genotype 𝑖 (no frequency/density dependence) 

Mutation : poisson process at rate 𝑈 per unit time per capita 

Distribution of Fitness Effects (DFE): 𝑓(𝑠|𝑚𝑖) in background 𝑚𝑖 

 

Cumulant Generating Function (CGF) : 

𝐶𝑡 𝑧 = log ∑𝑝𝑖 𝑡 𝑒
𝑧 𝑚𝑖      at time  𝑡   (z ∈ ℝ+ if 𝑚 < 0) 

Derivatives in z =>  cumulants moments: 𝐶𝑡
′ 0 = 𝑚 𝑡 : mean fitness 

Dynamics of 𝑪𝒕 ? 



Selection + drift 

 𝒞𝑡(𝑧) = 𝐶𝑡 𝑧 : expected CGF over stochastic process:  

𝐩(𝑡) = {𝑝𝑖 𝑡 }𝑖∈ 1,𝐾 ∈ 0,1 𝐾    ~ 𝐾 −type Wright-Fisher diffusion 

e.g. apply Feynman-Kac Theorem: 

𝜕𝑡𝒞𝑡 𝑧    =         𝒞𝑡
′ 𝑧  − 𝒞𝑡

′ 0              −           
1 − 𝑒𝐶𝑡 2𝑧 −2𝐶𝑡(𝑧)

2𝑁𝑒
 

Selection (clonal interference) drift 

See also Rattray & Shapiro (2001) Good & Desai (2013) 



When can we neglect drift here ? 

𝜕𝑡𝒞𝑡 𝑧    =         𝒞𝑡
′ 𝑧  − 𝒞𝑡

′ 0                  −       
1 − 𝑒𝐶𝑡 2𝑧 −2𝐶𝑡(𝑧)

2𝑁𝑒
 

Selection Drift effect 𝜹 

• Var(within) >> Var(between) 

 

𝑝𝑚𝑎𝑥: frequency of the fittest class 

 

OK in models where the fittest class remains or quickly becomes substantial (𝑝𝑚𝑎𝑥 ≫ 1/𝑁) 

= fitness upper bound (optimum, purely deleterious before ratchet) 

 

Not OK on unbounded fitness sets (travelling waves) or with Muller’s ratchet (late effect) 

0 ≤ |𝜹| ≤
1

2𝑁𝑒
1 − 𝑝𝑚𝑎𝑥

−1   



Background-dependent Mutation 

Assume: linear context-dependence:  𝐶𝑠 𝑧,𝑚 ≈ 𝜔 𝑧 𝑚 + 𝐶∗ 𝑧  

𝐶∗ 𝑧 : CGF of DFE in background 𝑚 = 0 (e.g. optimum) 

𝜔 𝑧 = 𝜕𝑚𝐶𝑠 𝑧,𝑚 |𝑚=0: « context-dependence function » 

Mutation effects CGF: 𝐶𝑠 𝑧,𝑚 = log  𝑒𝑠 𝑧𝑓 𝑠 𝑚 𝑑𝑠  



Background-dependent Mutation 

Small 𝑚 approx when nearing a maximum fitness set at 𝑚 = 0 : 

=> mutation – selection balance with diminishing returns epistasis 

 

Exact at all times in some particular models: 

• 𝜔 𝑧 = 0: any non-epistatic model (finite moments) 

• 𝜔 𝑧 = −𝑧: House Of Cards model (absolute effect independent of 𝑚) 

• Fisher’s geometrical model (quadratic trait- fitness function), see next 

Assume: linear context-dependence:  𝐶𝑠 𝑧,𝑚 ≈ 𝜔 𝑧 𝑚 + 𝐶∗ 𝑧  

𝐶∗ 𝑧 : CGF of DFE in background 𝑚 = 0 (e.g. optimum) 

𝜔 𝑧 = 𝜕𝑚𝐶𝑠 𝑧,𝑚 |𝑚=0: « context-dependence function » 

Mutation effects CGF: 𝐶𝑠 𝑧,𝑚 = log  𝑒𝑠 𝑧𝑓 𝑠 𝑚 𝑑𝑠  



Closed approximate dynamics 

𝜕𝑡𝒞𝑡 𝑧 ≈   𝒞𝑡
′ 𝑧  − 𝒞𝑡

′ 0   +   𝑈 exp 𝐶∗ 𝑧 + 𝒞𝑡 𝑧 + 𝜔 𝑧 − 𝒞𝑡 𝑧 − 1  

selection Background-dependent mutation 

Nonlinear nonlocal PDE  
can be solved (at least numerically) for given 𝐶∗ 𝑧 ,𝜔 𝑧 , 𝐶0(𝑧) 

𝒞0 𝑧 : initial condition (standing fitness variance) 



Example : Fisher’s model 

fitness 𝑒𝑚(𝐱) 

phenotype x 

Mutant cloud around background 𝐱 
• variance 𝜆 per trait (isotropy) 
• dimension 𝑛 
• Normally distributed 𝐝𝐱 ~𝑁(𝟎, 𝜆 𝐈𝑛) (relaxed in some cases) 

𝐶𝑠 𝑧,𝑚 = 𝜔 𝑧  𝑚 + 𝐶∗ 𝑧   

𝐶∗ 𝑧 = −𝑛/2 log 1 + 𝜆 𝑧 : neg. gamma DFE at optimum 

𝜔 𝑧 = −𝜆 𝑧2/(1 + 𝜆 𝑧): epistasis 

Martin (2014) 



• Strong Selection Weak Mutation SSWM (𝑈 ≪ 𝑠) 

• Weak selection strong mutation WSSM (𝑈 ≫ 𝑠)  
Leading order in 𝜆 => analytic solution to linearized PDE => 𝑚 𝑡 = 𝒞𝑡

′(0) 

𝜕𝑡 𝑚 𝑡 = 𝑈 𝑒  𝑚 𝑡  𝜔 𝑡 𝑚 𝑡  𝑀∗ 𝑡 𝜔′ 𝑡 + 𝑀∗
′ 𝑡  

𝑚 𝑡 −𝑚0 = −𝑚0 tanh 𝜇 𝑡 2 − 𝑛/2 𝜇 tanh (𝜇 𝑡) 

𝜇 = 𝑈 𝜆 

Valid when 𝑈 ≫ 𝑈𝑐 = 𝑛2𝜆/4 

𝑚 0 = 𝑚0 

Example: at 𝑡 =  0 : a clone with fitness 𝑚0  
=> expected mean fitness trajectory: 𝒞𝑡

′ 0 = 𝑚 𝑡  

Example : Fisher’s model 
fitness 𝑒𝑚(𝐱) 

phenotype x 

: ODE easy to solve, fit etc. 



Fisher’s Geometrical Model 
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𝑛 = 5, 𝜆 = 0.001, 𝑁 = 105 

High 𝑼 = 𝟎. 𝟐 = 𝟑𝟐 𝑼𝒄 
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Time (generations) 

Time (generations) 

Low 𝑼 = 𝟎. 𝟎𝟏𝟓 = 𝟎. 𝟓 𝑼𝒄 



Strategies for empirical testing 

𝑚 𝑡 = 𝑓(𝑈, 𝑛, 𝜆,𝑚0, 𝑡)  

1. Fit trajectories of 𝑚 𝑡 

2. Compare fitted parameters to direct estimates (𝑈, 𝑛, 𝜆) 

challenge: precision/stability of estimates across environments/labs etc. 

PDE + analytical approximations  
Fisher’s model and House of cards 

Heursitic test: Use WSSM approx trajectory 

Obvious quantitative test: high power to reject/compare models 

 𝑚 𝑡 −𝑚0 = −𝑚0 tanh 𝜇 𝑡 2 − 𝑛/2 𝜇 tanh (𝜇 𝑡) 

Expected cumulated improvement    ∝   initial fitness 
 
1/ check linearity  
2/ predict regression coefficients (depend on time + mutational parameters) 
 
NB: Linearity with 𝑚0 seems to hold outside the WSSM approx (formal proof ?) 



Yeast  in YPD 30°C: 
Founders with various 𝑚0 
Mean fitness after 𝑡 = 250 or 500 generation 

𝑚𝑟𝑒𝑓: fitness of reference strain for 

competitions 

1/ Good linearity (𝑹𝟐 ≥ 𝟔𝟎%): 

2/ Observed regression coefs at 𝒕 = 𝟐𝟓𝟎 

coef. predicted observed 

𝛽500 -0.87 -0.67 

𝛼500 7.86 7.88 

Kryazhimskiy et al. Science, 2014 

NB: rejects context indep. model (slope = 0) and unique optimum reached (slope = -1) 

𝜇 = 0.0034 ,𝑚 𝑟𝑒𝑓 = 0.09 

~ predicts regression coefs at 𝒕 = 𝟓𝟎𝟎 



Perfeito et al. Evolution (2013): already tested FGM by ABC 
Dynamics of fitness recovery in LB  after 240 generations, same conditions 
Against ancestor (𝑚𝑟𝑒𝑓 = 0) 

E.coli in LB, fitness in competition 

1/ Good linearity (𝑅2 = 0.63) 

coef. predicted observed 

𝛽240  - 0.87 -0.77 

𝛼240 - 0.019 - 0.02 

2/ ~ Predicts regresison coefficients 

Mutation Accumulation data  
 
Trindade et al. 2010  
Perfeito et al. Evolution (2013) 

𝜇𝑝𝑟𝑒𝑑 ~ 0.007 



Conclusions 

• Heuristic test uses WSSM which is not optimal here a priori (just orders) 

• Accounting for drift sensitive regimes (bias + enveloppe around expectations) 

some predictable patterns overlooked in experimental evolution (e.g. standing variance) 

Extensions: e.g. coupling with rescue dynamics, Yoann Anciaux, poster 1 

Null models for experimental evolution 
+  
Classic methods to parameterize them from independent data 

quantitatively test 
population genetics 

Drift need not be modelled sometimes, even in asexuals and with clonal interf. 
=> Prediction robust to drift parameters (birth death rates, in each geno etc.) 

sequences data / coalescent: fitness distribution with predictable 

shape/scale/variance over time. Implement into MMC Coalescents ? 
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𝐶∗(𝑧): arbitrary 

(here gamma DFE) 

𝜔 𝑧 = −𝑧 

House of Cards Model 



Wloch et al 2001, random single mutations in yeast 
𝑠 = 𝛿𝑚 per division in (haploid effect in YPD) 

𝑈 = 0.66 × 10−3 (𝑑𝑖𝑣−1) 
𝑠 = 0.086 𝑑𝑖𝑣−1  

𝑛 = 1/𝐶𝑉2 



𝑁 = 104, 𝑈 = 500𝜆, 𝜃 = 4, 𝑠0 = 𝜆, 𝜆 = 0.005 

DFE 



𝑁 = 105, 𝑈 = 200𝜆, 𝜃 = 4, 𝑠0 = 2.5𝜆, 𝜆 = 0.005 

DFE 



𝑁 = 105, 𝑈 = 200𝜆, 𝜃 = 4, 𝑠0 = 3𝜆, 𝜆 = 0.01 

DFE 


