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‘ Difficult phylogenetic problem

Bushes in the tree of life.
A.Rokas, S.B. Carrol,
Plos Biol. (2006).




Difficult phylogenetic problem

Cyanobacteria Green algae Green algae Cyanobacteria
Non-PS bacteria Red algae Non-PS bacteria Red algae
From Huson and Bryant, Applications of phylogenetic tzicll;?:g”aetf:qﬂé 'w"i‘:;;’;g;‘?ﬁjh!q%zd tree
networks in evolutionary studies, MBE. 2006 .
Y eubacteria. MBE. 23, 2006

Suchard and Redelings, 2006 (Bioinformatics 22)

It's a jungle out there...

= Confounding processes

o (lineage sorting, alignment error, etc etc etc)
= Model misspecification
= Not enough data

= Non-identifiability




Models
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Difficult phylogenetic problem
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Let k = sequence length
required to resolve the
divergence under for

i.i.d. sites.
1 1
k o — ko« —
£ &
Finite-state Markov process Random cluster process

Steel, M., Szekely, L., 2002. SIAM J. Discrete Math 15(4) Mossel, E., Steel, M., 2004. Math. Biosci. 187, 189-203.

Markov models and tree r'tacons'rr'uc1'ion2
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Putting the two together! And for more general models




How many sites required to resolve this basic tree?

Saitou, N., Nei, M., 1986. J. Mol. Evol. 24, 189-204

The number of nucleotides required to determine the branching order of three species, with
special reference to the human-chimpanzee-gorilla divergence.

Churchill, 6., von Haeseler, A. Navidi, W., 1992. Mol. Biol. Evol. 9(4), 753-769.
Sample size for a phylogenetic inference.

Lecointre G, Philippe H, Van Le HL, Le Guyader H., 1994. Mol. Phyl. Evol. 3(4), 292-309.

How many nucleotides are required to resolve a phylogenetic problem? The use of a new
statistical method applicable to available sequences.

Time Yang, Z., 1998. Syst. Biol. 47(1), 125-133.
On the best evolutionary rate for phylogenetic analysis.

Wortley, A.H., Rudall, P.J., Harris, D.J., Scotland, R.W., 2005, How much data are needed to
resolve a difficult phylogeny? Case study in Lamiales. Syst. Biol. 54(5), 696—709.

Townsend, J., 2007. Profiling phylogenetic informativeness. Syst. Biol. 56(2), 222-231.

(Markov) tree space

What metric to use?

d, =J;<JZ—W

dH2=2(1—Z§\/ps'qs) :




Fundamental fact:

To correctly identify (w.p. >1-¢) each of two possible

competing hypotheses from k i.i.d. observations of

data (of anything, by any method) requires:
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d, = Hellinger distance between the probability distributions
(on a single observation) under the two hypotheses.

Application (for any Markov process on any state space)
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L op=PGIT) l
D, =P(s|T,N >0)=P(s|T",N > 0) u .
Theorem [F+S, 08]: For 'nice’ models™ l
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*Finite-state, stationary, time-reversible, irreducible 14




Extension to rates-across-sites models

D2
Recall d,(T,T') < 12'(2—5)

SES pS

For p=RAS mixture on T, "2 E 2,
p'= RAS mixture on T dy(p:p)" = 2 Ell
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Bounds independent of rates?
(fast-genes/slow genes)

Theorem [F+S, 08]: For 2-state symmetric model
1 3

k=—(1-2¢)p’

2( 5 €)p

Moreover, k =c- p> can be achieved with MP (x = Y4)
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Reconstructing large trees 10

Prob(X=root state) \
\
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Reconstructing: ,

| edge length

o Given seq. data find the ‘true’ treeT. # = Llog(2)
4

o k= c. log(n) can suffice for some models with ‘nice’ branch

lengths (in fixed interval [f,g] independent of n).

If tree evolves under a constant rate Yule speciation
process it is likely that sequence length required will
grow at rate at least n2.

Is 'testing’ a tree, easier than finding it?
(stochastic analogue of P=NP)

Reconstructing: Given data find free

Testing: Given data and tree, did the tree produce data?

[Mossell, Steel, Szekely 2008]

Theorem 1: For finite-state models, testing requires the same

order of data (log(n)) for testing as reconstructing.

Theorem 2: For the random-cluster model (homoplasy-free) it
|sdp055|ble to test with a fixed (I) number of characters,
independent of n (assuming t.<log(2)).

TEST: Given ¢y, C,,..,c, and T--- is each character
homoplasy-free on T?

If YES, T passes, if NO, T fails. Probability of error?




The end (almost)....

Further information: Sequence length bounds
for resolving a deep phylogenetic divergence.

M. Fischer, and M. Steel, 2008 (submitted)

available at arXiv:0806.2500
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