A new phylo-HMM paradigm to search for sequences

Jean-Baka DOMELEVO ENTFELLNER & Olivier GASCUEL

LIRMM (CNRS - UM2), Montpellier

June 10th, 2008

What is at stake?

Goal

Search a databank for sequences homologous to a query protein family.

Existing approaches

1 Blast: poor results when identity rate is too low (\lesssim 30%) **2** Profile HMMs:

- allow lower percentage of identity between query & target
- but make no use of the phylogeny

Proposed solution

Design a model which takes advantage of:

- the possible presence in the family of a sequence close to the target
- 2 the global information (e.g. hydrophilic/phobic columns) conveyed by the alignment

Profile HMMs

Each match and insertion state generates a single a.a.

phylo-HMMs

Seminal works: Goldman et al. 1996, Siepel & Haussler 2003

- each node is populated by a phylogeny which defines a probability distribution over a column of the alignment
- typical use: prediction of the conservation or secondary structure of the sites

How we use phylo-HMMs

Knowing the phylogeny, we fill in each match state with the distribution of posterior probas of a.a. for the target, given the corresponding column of the alignment.

 \rightarrow Felsenstein's pruning algorithm

Experimenting

- test data: 690 protein families from the Treefam database (Vertebrates + Insects + 1 Tunicate, 4 worms, 2 yeasts and 2 plants).
- phylogeny is assumed (calculated with PhyML, matches NCBI consensus).
- Experimental setup:
 - 1 take those 690 complete families from Treefam
 - 2 gradually prune to remove all Vertebrates, Insects, ...
 - 3 realign the remaining sequences
 - 4 build the profile HMM with hmmbuild
 - S phylogenise it to scan for human proteins
 - scan the human proteome with resulting phylo-HMM to find the original protein

Pruned trees (1/3)

	# of true positives	sensitivity
standard profile HMM	1345	0.88
Blast	1434	0.94
phylo-HMM	1435	0.94
# expected detections	1526	

Pruned trees (2/3)

	# of true positives	sensitivity
standard profile HMM	1280	0.86
Blast	1293	0.87
phylo-HMM	1348	0.91
# expected detections	1489	

Pruned trees (3/3)

	# of true positives	sensitivity
Blast	25	0.38
standard profile HMM	38	0.58
phylo-HMM	52	0.80
# expected detections	65	

Conclusion

Our model uses phylogenetic information to *contextualize* a profile HMM.

- first results look promising
- good combination of Blast and profile HMMs paradigms, robust to remote phylogenetic relations