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Conservation biology and comparative genomics

Quantative methods based on biodiversity are
used for determining which collection of EUs
to save or sequence.

Two criteria:
I. Maximizing Phylogenetic Diversity (PD) For a set S of EUs and a

phylogeny T, PD(S) is the sum of the edges of T spanned by S.
• Find a k-element subset of EUs that maximizes PD.

b1

0.1

a

b2

c

0.1

10
10

1

0.05



Conservation biology and comparative genomics

Quantative methods based on biodiversity are
used for determining which collection of EUs
to save or sequence.

Two criteria:
I. Maximizing Phylogenetic Diversity (PD) For a set S of EUs and a

phylogeny T, PD(S) is the sum of the edges of T spanned by S.
• Find a k-element subset of EUs that maximizes PD.

II. Maximizing Minimum Distance (MD) For a distance d on EUs and
a subset S of EUs, MD(S) is the minimum distance between any
pair of EUs in S.
• Find a k-element subset of EUs that maximizes MD(S).
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Iconic example: Woese’s (1987) small-subunit ribosomal RNA
tree

Task: Select 3 EUs for
sequencing.

One bacterium, one archaeon, one
eukaryote seems an intuitively
good selection.
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Iconic example: Woese’s (1987) small-subunit ribosomal RNA
tree
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What’s going on?

PD measures the expected number of different features shown by the
selected EUs.

Assumptions:

I. the length of an edge represents the number of different
features arising along that edge;

II. once a feature arises, it persists forever and is present in all
descendant EUs.

Why two eukaryotes?

MaxPD chooses an additional eukaryote since an EU connected near
the root by a short edge is assumed to contain almost
exclusively features shared by every other EU.



What’s going on?

Instead, the measure is the expected # of different features shown
by the selected EUs under the following model of evolution.

Assumptions:

I. the length of an edge represents the number of different
features arising along that edge;

II. once a feature arises, it persists forever and is present in all
descendant EUs.

III. features have a constant probability of disappearing on any
evolutionary path in which they are present.

It turns out, by choosing a set of EUs that maximize MD, one can
obtain a reasonable solution to maximizing this measure.



The model of diversity for which MaxMD is a justifiable
heuristic

Assumptions:
I. Features disappear according to an exponential distribution

with rate  independently on any edge.
(Once present, a feature has a constant and memory-less

probability e-  of surviving in each time step.)

II.  on an infinitely long edge connected to first branching point.
(Full set of features available at the beginning.)

For a subset A of EUs, the # of features present is a random variable
FA.

For a single EU a,

(Sum over all points on the path from  to a of the probability that the feature
arising at that moment is still present at a.)

    
E (F{a }) = e x

0
dx =

1



The model of diversity for which MaxMD is a justifiable
heuristic

For two EUs a and b,

Using the principle of inclusion/exclusion to any size subset of EUs, we
can extend the above calculation.

E (F{a ,b}) = e x

0

da

dx + e x

0

d b

dx + e x

0
(e da + e db e (da +d b ))dx
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The model of diversity for which MaxMD is a justifiable
heuristic

For three EUs a, b, and c,

 very small: e- m  (1- m) for all 0  m « 1/ . So

As   0, E(F{a,b,c}) PD({a, b, c}).
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E (F{a ,b,c }) =
1
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The model of diversity for which MaxMD is a justifiable
heuristic

For three EUs a, b, and c,

 very big: Features die out quickly and e- m terms become very small.

If  ``is so large that all features which arise are lost within one unit
step, then all species are of equal status (species richness) as
there is no predictable redundancy among them, …’’

Faith (1994)
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The model of diversity for which MaxMD is a justifiable
heuristic

Before reaching species richness:

For a k-element subset S of EUs,

As  gets big, k/  and e- d’/  dominate (d’=distance between closest
pair in S).

Thus, if  big, then to maximize E(FS) select a set S that optimizes
MaxMD.
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Example: Selecting a 3-element subset

Selected a & c, do we choose b1 or b2 for the third EU?

Which is bigger E(F{a,c,b1}) or E(F{a,c,b2}) ?
(MaxPD selects b1, MaxMD selects b2.)

If =0.4, then E(F{a,c,b1})=5.19 but E(F{a,c,b2})=7.43 (43% gain).

    
E (F{a ,b,c }) =

1
(3 e (da +d b ) e (da +dab +d c ) e (d b +dab +d c )

+ e (da +d b +dab +d c ))



Example: Selecting a 3-element subset

1. How small does  have to be so that PD will select the EU
that maximizes the expected # of features?
To select b1,  < 0.00047.

2.  large enough, choosing any 3 EUs is good enough.
For S* an optimal set of 3 EUs and S any set of EUs,

E(FS*
 ) -E(FS) within 5%  > 9.72

E(FS*
 ) -E(FS) within 1%  > 17.6

The range for  in which MaxMD is a better criterion than MaxPD or
an arbitrary selection is large---features disappearing between
10 times faster than they arise and 2000 times slower.



Selecting a set under MaxMD.

MaxMD only depends on the closest pair of EUs.

Selecting a set of size 4.

Two possible choices:
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Selecting a set under MaxMD.

MaxMD only depends on the closest pair of EUs.

Selecting a set of size 4.

Two possible choices:

MaxMD is well motivated. It’s applicable to an arbitrary distance
matrix (no need for a tree).

GreedyMMD selects EUs that are spread out and it has the property
of stability.



GreedyMMD

Selecting a subset of EUs under MaxMD using a greedy approach.

GreedyMMD (d,k):

I. Select the two most distant EUs.

II. Sequentially add EUs that maximize MD until the resulting
set is of size k.

If d satisfies the triangle inequality, then GreedyMMD is a 2-
approximation to the optimal solution (Tamir, 1991; Ravi et al.,
1994).

This approximation is sharp even if d is a tree metric (Bordewich,
Rodrigo, S 2008).



GreedyMMD

Selecting a subset of EUs under MaxMD using a greedy approach.

GreedyMMD (d,k):

I. Select the two most distant EUs.

II. Sequentially add EUs that maximize MD until the resulting
set is of size k.

If d is an ultrametric, then GreedyMMD returns an optimal set of EUs
under MMD and, moreover, this set also maximizes PD.

 (Bordewich, Rodrigo, S 2008)




