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Glossary

Bayesian inference: Likelihood is the probability of the data given the model;

Bayesian inference instead deals with the probability of the model given the

data, also named ‘posterior probability’. This posterior probability of a model is

proportional to the product of the likelihood and of a ‘prior probability’. Such a

prior probability permits incorporation of exterior knowledge into an analysis;

for instance, one could assume that the prior probability over the transition/

transversion ratio in a particular dataset follows a uniform distribution on

[1,10]. Contrary to Maximum Likelihood inference, the common practice in

Bayesian inference is not to return parameter values of the highest posterior

probability; instead, whole distributions of parameter values are returned. To

obtain these distributions, MCMC techniques are often used.

Coalescence: The coalescence of two genes is their last common ancestor.

Heuristic: Contrary to an exact algorithm, a heuristic is an algorithm that has

not been proved to provide the exact result. A heuristic is often faster than an

exact algorithm.

Hidden Markov Model (HMM): Probabilistic model used to describe a

succession of states by associating hidden states with observed ones; a

Markov Model is used to describe transitions between these hidden states.

Such hidden states can be ‘intron’, ‘intergenic’ or ‘exon’ for models predicting

gene structure, ‘slow’ or ‘fast’ for models predicting evolutionary rate, or

different tree topologies for models predicting gene trees or recombination.

Incomplete lineage sorting: Observed discrepancy between a gene tree and the

organism tree, due to the conservation of ancestral polymorphisms in different

species (trans-specific polymorphisms).

Markov Chain Monte Carlo (MCMC): Algorithm used to sample from a

probability distribution, by building a Markov model whose equilibrium

distribution is the desired probability distribution. This means that when the

chain has been run for a sufficiently long time, each state is visited with a

frequency equal to its probability.

Maximum Likelihood inference (ML): For a given probabilistic model with

specific parameters and particular data, the Maximum Likelihood values of

these parameters correspond to the values under which it is most probable

that the model has generated the data.

Markov Model: Probabilistic model of a process in which the state at time t +1

only depends on state at time t, not at time t – 1. Models of substitution assume

the substitution process is Markovian: a substitution x! y does not depend on

the state preceding x.

Trans-specific polymorphisms (TSPs): The sharing among species of alleles

inherited from an ancestor. These alleles have diverged prior to speciation, so

that gene trees reconstructed using these genes can be different from the
Genomes conceal a vast intricate record of their carriers’
descent and evolution. To disclose this information,
biologists need phylogenetic models that integrate var-
ious levels of organization, ranging from nucleotide
sequences to ecological interactions. Rates of dupli-
cation and horizontal gene transfer, organism trees
and ancestral population sizes can all be inferred
through statistical models of gene family evolution
and population genetics. Similarly, phylogenomics com-
bined with other fields of natural sciences can reveal the
nature of ancient phenotypes and paleoenvironments.
These computationally intensive approaches now
benefit from progress in statistics and algorithmics. In
this article, we review the recent advances and discuss
possible developments towards a comprehensive recon-
struction of the history of life.

From sequences to life’s history
Since Zuckerkandl and Pauling established DNA as a
document of evolutionary history [1], many approaches
have been devised to transform the information enclosed
in genomes into knowledge of their history. Comparative
genomics and phylogenetics have emerged as the keys to
many biological questions, such as the identification of
functional sequences in complete genomes, the principles
of genome architecture, the reconstruction of life’s evol-
ution and the inference of ancestral phenotypes and popu-
lation characteristics. The traditional approach to
studying genomes, starting from raw sequences, goes
through largely independent steps: annotation and infer-
ence of sequence homology based on similarity, alignment
of homologous genes or genome segments, gene phylogeny
and deduction of the underlying phylogeny of organisms
(Figure 1). However, all these levels of analysis depend on
each other and the failure to model this dependence can
result in the accumulation of errors. For instance, gene
trees are inferred from sequence alignments, but an align-
ment is actually the result of a gene history, and is usually
built using a rough guide tree that can affect all subsequent
results. Hence, designing methods that couple high quality
alignment and phylogeny is necessary. Similarly, gene
histories are generally inferred independently from each
other, although for many biological reasons, some genes
are expected to have related histories. The development of
new statistical approaches, which couple inferences at
different levels of analysis, allows explicit modeling of
the influence of several evolutionary processes on the
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structure of data. In this article, we will specifically review
these recent breakthroughs, from the assignment of
sequence homology and the inference of organisms’ phylo-
genies to mechanisms of genome evolution and the influ-
ence of the environment. Furthermore, we will anticipate
and discuss further developments that are needed to
reconstruct a comprehensive history of life.

Alignment and the hypothesis of homology
Comparative genomics has proved to be a very powerful
tool for genome annotation. The first step in any compari-
son of genomes is the identification of homologous
sequences, which relies on a search for sequence similarity.
Although this step and the subsequent definition of gene
organisms tree.
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Figure 1. Phylogenetic awareness: the two paths from sequences to an organism tree. In the ‘unaware’ path (the traditional way of inferring species phylogenies) each

stage of the phylogenetic inference is essentially independent from the steps upstream and downstream. In addition, sequence alignments have to pass different filters in

order to make gene trees readily understandable as organism trees (absence of duplicates, lateral gene transfer (LGT), etc.). In contrast, the ‘aware’ path models the

dependency and degree of complexity between each step using knowledge from different fields of biology (red ellipses, the list is not exhaustive). Alignments can be

statistically estimated simultaneously with gene trees using models of sequence evolution that incorporate insertion and deletion events; and models of gene family

evolution incorporating LGT, duplication and/or incomplete lineage sorting specify the dependency between gene trees and organism tree. Two-way arrows represent

these dependencies, and solid arrows represent gene tree and organism tree searches. The dependency between gene family annotation, alignment and phylogenetics has

not yet been explored, but could theoretically be modeled (see text for discussion). The schematic representation of the synchronous search for organism trees, gene trees,

gene alignments and others suggests an obvious architecture for parallelizing this search.
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families are not trivial (Box 1), one can usually find rela-
tively coherent sets of homologous sequences to align.
Alignment is the procedure by which the hypothesis of
homology, defined at the level of the whole sequence, is
refined to identify homologous sites by placing gaps at sites
where insertions or deletions have occurred since the last
common ancestor. This step is necessary both to identify
sites under particular constraints and to reconstruct gene
phylogenies. Usually, alignment is performed prior to
other analysis and never questioned afterwards. However,
the definition of homologous characters depends upon a
description of phylogenetic relationships among sequences
and because such a description is not available a priori,
alignment algorithms first use ‘quick-and-dirty’ methods to
obtain a low-quality phylogenetic tree. This tree influences
all subsequent steps of the genomic analyses. Most align-
ment programs use heuristics (see Glossary) to place gap
characters into sequences and the optimality of gap place-
ment is assessed with respect to an arbitrary score, which
differently penalizes gap insertions, gap extensions and
substitutions. In the end, the alignment is the best esti-
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mate of the true alignment, according to arbitrary penal-
ties that can be unrealistic for the data under study and to
particular heuristics (e.g. [2]), which even if the penalties
were perfectly tuned to the data, might not find the optimal
alignment. Still, even if the optimal alignment is found,
there is no guarantee that it is the true alignment.

These sobering considerations have long been known,
and the limitations inherent in relying on a single align-
ment to analyze genomes and genes are now well accepted
[3]. A statistically sound approach to this problem needs to:
first, use a probabilistic model of insertion and deletion
events combined with classical substitution matrices, so
that parameters can be finely tuned to the data under
study; and second, simultaneously estimate sequence
alignments and phylogenetic trees, so that homology
relationships are no longer based on a low-quality phylo-
genetic tree. A probabilistic model of pairwise alignment
[4] can be seen as relying on Hidden Markov Models
(HMMs) (or on the closely related transducers [5]), in which
the possible states are ‘match’, ‘insertion’, and ‘deletion’.
Associating pairwise alignments based on HMMs to each



Box 1. Recombination and homology

The inference of homology relationships is usually done after

genome annotation so that similar genes are grouped in the same

family. However, considering gene families as the unbreakable bricks

of phylogenetic reconstruction is incorrect. The shuffling of genetic

material, through the processes of recombination and gene fusion

frequently produces genes with mixed phylogenetic signals or even

heterologous parts. Homologous recombination, the replacement of

part of a sequence by a related sequence will result in gene

alignments with contradictory phylogenetic signals over their length.

Gene fusion will have a deeper impact, affecting the early steps of

inferred gene homology, as only portions of protein sequences can be

considered homologous. In any case, the reconstruction of a gene

family history based on its entire length can be at best, partial, or

worst, completely wrong. Although the only truly irreducible homo-

logous character is the nucleotide, these events can comprise

relatively long stretches of sequence, and the conflicting signals can

be identified.

Many approaches have been devoted to identifying events of

homologous recombination in multiple gene alignments, and recent

models can simultaneously search for segment boundaries and

histories in an alignment (e.g. [60]). Although this step has not been

undertaken yet, an organism tree reconstruction model using multiple

genes could be devised which includes these models of gene

recombination.

Gene fusion and domain shuffling will probably be more compli-

cated to model as they have an impact on the primary hypothesis of

homology, i.e. the attribution of a protein to a family. Protein

homology is typically inferred from overall similarity and several

public databases propose automatically reconstructed gene families

based on this criterion. Although the clustering method used to group

proteins can vary, local similarities are usually dismissed, and protein

sequences sharing homologous segments can be typically placed in

different (heterologous) families. The high significance of this protein

modularity, which can be viewed as a ‘level of homology’ problem,

can be gauged from the fact that 19% of eukaryotic exons have

undergone recombination with a non-homologous portion of the

genome [61]. Interestingly, compared to entire proteins, domains

should provide information on deeper phylogenetic relationships. An

ideal way of dealing with this issue would be to couple the processes

of homology assignment, sequence alignment and phylogenetic

reconstruction into a model able to reconstruct and combine trees

at different levels of homology.
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branch of a phylogenetic tree permits easy computation of
the likelihood of a multiple alignment [6], but integrating
over the distribution of probable alignments and trees is
computationally very intensive. Several recent algorithms
address this issue by sampling both gene alignments and
gene trees through a Bayesian Markov Chain Monte Carlo
(MCMC) procedure (e.g. [7,8]). Alternatively, a maximum
likelihood (ML) approach has also been proposed, and
achieved both good accuracy and high speed [9] (for a list
of available software, see Table 1). However, this approach
considered gaps as missing data, and thus discarded the
information that insertion–deletion events can provide.
Using this algorithm jointly with the model of single site
insertion or deletion proposed by Rivas and Eddy [10]
might result in a program able to analyze hundreds of
sequences in a reasonable amount of time, and making
good use of the informational content of the sequences.

Bayesian joint estimations of sequence alignments and
phylogenetic trees offer the possibility to better character-
ize the process of sequence evolution, as probabilities of
insertions and deletions can be simultaneously estimated
and compared with substitution probabilities. In contrast
to most commonly used phylogenetic software, programs
that simultaneously estimate alignments and phylogenies
do not treat gaps as unknown characters, but can use
insertions and deletions as phylogenetically informative
events, which has been shown to improve phylogenetic
reconstruction in a group of viruses [11]. As the rate of
insertion and deletion is believed to be lower than substi-
tution rates, their incorporation into phylogenetic recon-
struction can also help resolve ancient divergences.
Moreover, as a deleted character cannot be reinserted
(otherwise it is not considered homologous), insertion–

deletion events can impose a direction on a phylogenetic
tree, and therefore point to its root, information otherwise
difficult to extract from sequences [12].

In addition to phylogenetic reconstruction, other
sequence-based inferences can benefit from averaging out
the alignment. For instance, the detection of sites under
positive selection has been shown to depend on alignment
methods [3], and the reliability of protein structure predic-
tion has been correlated to alignment quality [13]. Similar
conclusions have been drawn for phylogenetic footprinting
techniques that benefit from the comparison of several
genomes todetect putatively functional regions, i.e. portions
of sequences that are more conserved than expected and
therefore must be under purifying selection [14]. However,
relying on a single alignment affects the quality of infer-
ences: when two different alignment algorithms were used
to annotate transcription factor binding sites in 12 Droso-
phila genomes, less than 60% of the binding sites were
predicted by both [15]. Consequently, Satija et al. [16]
devised an algorithm to detect slowly evolving regions on
distributions of alignments, which significantly improved
binding site detection when compared to single alignments,
especially when binding sites were not perfectly conserved.

Integrating gene trees and organism tree reconstruction
If sequence alignments benefit from being considered the
result of sequence evolution along a gene phylogeny, the
reconstruction of gene histories can also benefit from being
considered the result of gene family evolution along an
organism’s phylogeny. Gene family evolution includes pro-
cesses acting at the population as well as molecular levels
(Box 2), such as trans-specific polymorphisms, gene dupli-
cation and loss, and lateral gene transfer (LGT). Models of
gene family evolution allow a joint reconstruction of organ-
ism and gene phylogenies, yielding a better organism tree,
better gene trees, in addition to estimates of ancestral
population sizes, duplication, loss and transfer rates,
and other insights [17,18].

This joint reconstruction can be achieved through a
hierarchical structure, on top of which an organism tree
is inferred from gene trees through models of gene family
evolution. The gene trees themselves are inferred from
sequence alignments throughmodels of sequence evolution
(Figure 1). The relationship between an organism tree and
gene trees is bi-directional: given an organism tree some
gene trees are more likely than others, while gene trees
also inform the organism tree.
3



Table 1. Soft-aware

Software name Description Web link Ref.

Alignment and phylogeny

BAli-Phy (Bayesian

Alignment and Phylogeny

estimation)

Bayesian program to reconstruct alignments

and phylogenetic trees.

http://www.biomath.ucla.

edu/msuchard/bali-phy/index.php

[9]

StatAlign Bayesian program to reconstruct alignments

and phylogenetic trees.

http://phylogeny-cafe.elte.hu/StatAlign/ [69]

SimulFold Bayesian program to reconstruct RNA structural

alignment as well as phylogenetic trees.

http://www.cs.ubc.ca/ irmtraud/simulfold/ [70]

SAPF (Statistical Aligner,

Phylogenetic Footprinter)

Bayesian program that samples alignments of

non-coding sequences given a phylogenetic

tree and predicts functional regions, i.e. regions

that are particularly well conserved.

http://www.stats.ox.ac.uk/ satija/SAPF/ [16]

Dart (DNA, Amino

and RNA Tests)

Software package to build and analyze

alignments and phylogenetic trees

through transducers notably, for sequences

as well as RNA secondary structures.

http://biowiki.org/DART [5]

Prank (Probabilistic

Alignment Kit)

Phylogenetic-aware tool permitting the

alignment of multiple sequences given

a phylogenetic tree. Contrary to classical

heuristics, it distinguishes insertions from

deletions and thus has shown higher

alignment accuracy.

http://www.ebi.ac.uk/goldman-srv/prank/prank/

SATé (simultaneous

alignment and tree

estimation)

An automated method to quickly and

accurately estimate both DNA

alignments and trees with the maximum

likelihood criterion [9].

http://www.cs.utexas.edu/�kliu/public/sate_

journal.html

[2]

Species and gene trees

Best (Bayesian

Estimation of

Species Tree):

Bayesian program to reconstruct species

trees from gene alignments

accounting for trans-specific

polymorphisms.

http://www.stat.osu.edu/ dkp/BEST/ [22]

Bucky (Bayesian

Untangling

of Concordance Knots)

Bayesian program permitting analysis of

several gene families simultaneously,

accounting for some correlations between

gene histories through gene-to-trees maps.

http://www.stat.wisc.edu/�larget/bucky.html [39]

Prime Set of software applications that can

be used to analyze gene families in the

presence of duplications and losses given

a known species tree.

http://prime.sbc.su.se/ [25]

Inversions and phylogeny

Badger (Bayesian

Analysis to Describe

Genomic Evolution

by Rearrangement)

Badger is a Bayesian program to analyze

genomic evolution through inversions.

http://badger.duq.edu/ [41]

Character evolution

Sifter (Statistical Inference

of Function Through

Evolutionary Relationships)

Sifter predicts the function of genes in a gene

family based on a model of function evolution

and a phylogenetic tree of the gene family.

http://sifter.berkeley.edu/ [26]

BayesTraits Bayesian program allowing one to analyze the

evolution of discrete or continuous characters

on a distribution of phylogenies.

http://www.evolution.reading.ac.uk/BayesTraits.html [57]

Ape (Analysis of

Phylogenetics

and Evolution):

Package of functions to use in the R statistical

software. Ape notably permits analyzing the

evolution of discrete or continuous characters

on a phylogeny, or studying shapes of phylogenies.

http://ape.mpl.ird.fr/ [71]
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Several proposed models of gene family evolution focus
on trans-specific polymorphisms, gene duplication and
loss, or gene transfers (see Table 1). The relevance of these
models depends on the organisms under study (e.g. closely
related vs. distant organisms; high vs. low probability of
LGT, etc.) but they can all be used for the joint reconstruc-
tion of gene and organism phylogeny as discussed below.

Gene family evolution and population genetics
Processes acting at the population level influence gene
phylogenies through trans-specific polymorphisms (TSP)
4

(Box 2). Recent theoretical and simulation studies using
the coalescent model have shown that, in some conditions
of population size and divergence time, most gene trees
differ from the organism tree under which they were
generated, and that simply using these as an estimate of
the organism’s tree is misleading [19]. More precisely, if
the number of generations separating two speciations is
not very large compared to the size of the populations
between these two speciation events, it becomes likely that
the coalescence of genes present in two species is more
ancient than the previous speciations, which results in a

http://www.biomath.ucla.edu/msuchard/bali-phy/index.php
http://www.biomath.ucla.edu/msuchard/bali-phy/index.php
http://phylogeny-cafe.elte.hu/StatAlign/
http://www.cs.ubc.ca/%20irmtraud/simulfold/
http://www.stats.ox.ac.uk/%20satija/SAPF/
http://biowiki.org/DART
http://www.ebi.ac.uk/goldman-srv/prank/prank/
http://www.cs.utexas.edu/~kliu/public/sate_journal.html
http://www.cs.utexas.edu/~kliu/public/sate_journal.html
http://www.cs.utexas.edu/~kliu/public/sate_journal.html
http://www.stat.osu.edu/%20dkp/BEST/
http://www.stat.wisc.edu/~larget/bucky.html
http://www.stat.wisc.edu/~larget/bucky.html
http://prime.sbc.su.se/
http://badger.duq.edu/
http://sifter.berkeley.edu/
http://www.evolution.reading.ac.uk/BayesTraits.html
http://ape.mpl.ird.fr/


Box 2. The myth of ‘orthologous gene families’

Coined by Walter Fitch [62], the term ‘ortholog’ designates genes that

are related through speciation events, as opposed to ‘paralogs’, which

are the result of duplications. Therefore, to reconstruct a phylogeny of

species, one could use orthologous genes. However, the identifica-

tion of orthologous genes is not always unequivocal (Figure I). First,

phylogeneticists usually rely on the absence of duplicated copies in

the datasets under study, but duplications could have occurred during

the history of a gene family without leaving obvious traces. This is

particularly dramatic in the event of reciprocal losses, when two

species lose different copies of an ancestrally duplicated gene. The

impact of this phenomenon, known as a hidden paralogy, is difficult

to estimate on a large scale, but reciprocal losses have been shown to

be frequent after whole genome duplications in yeasts and fish [63].

Second, lateral gene transfer (LGT) has been shown to be pervasive

throughout the history of life. Therefore, it is unsafe to assume a priori

that the history of a gene is devoid of such events, whatever its

function. Third, even genes that would be considered genuine

orthologs might not retrace the history of species; the persistence

of different allelic forms of a gene during long periods of time relative to

the lapse between speciation events, a phenomenon known as trans-

specific polymorphisms (TSP) [20], can result in differences among

gene trees (incomplete lineage sorting) even in the absence of paralogy

or LGT. The assemblage of these processes makes it difficult to expect

that a single gene history would faithfully mirror a tree of species

throughout several billion years of evolution. In addition to these

biological problems, even the most advanced phylogenetic methods

are often unable to accurately model the evolution of biological

sequences, which can result in the inference of erroneous trees. There

is no, and will never be, a perfect dataset, devoid of lateral gene

transfer, incomplete lineage sorting, hidden or apparent paralogies,

convergent gene losses or systematically biased or accelerated

evolutionary rates. As the impact of most of these processes is only

expected to increase with more data, it is necessary to exploit the

evolutionary significance of these events rather than discard them.

Figure I. Various processes can generate discordance between organism and gene trees. (a) A tree depicting the relationships of eight species. Ringo and George, Paul

and John are on one side of the root, and Mick and Keith, Bill and Charlie on the other. The history of a gene family is depicted within the bounds of this organism tree,

and processes acting at the genome level (duplication, loss, gene transfer) as well as population level (polymorphism) are shown. (b) The gene tree reconstructed from

this gene family shows a topology that conflicts with the organism tree. Following a duplication and losses, George and Paul are grouped together, a gene transfer

groups John and Mick, and trans-specific polymorphism leads to Keith being clustered with Bill and Charlie. Processes from population genetics and from genome

dynamics both affect gene histories; models of gene family evolution could help reconstruct gene phylogenies, organism history and genome evolution.
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gene tree different from the organism tree. Models of gene
family evolution have been developed that use the amount
and types of gene tree and organism tree incongruence to
infer divergence times and ancestral population sizes; in
some cases, they might be the only way to get a correct
organism tree [19,20].
The first models incorporating TSP assumed a known
species phylogeny and used gene trees to estimate diver-
gence times and ancestral population sizes [21]. More
recent models can also estimate the species phylogeny
[22,23], with better results than classical methods such
as gene concatenation. For a detailed discussion of these
5
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issues, we direct the reader to a recently published review
in TREE [20].

Gene family evolution, duplication and loss
The combined action of gene duplication and gene loss
considerably complicates gene trees. Even a gene family
with only one representative per species can harbor events
of duplication and loss, yielding a gene tree different from
the organism tree (Box 2). Models of gene family evolution
taking into account duplications and losses have been
proposed by Lagergren’s group [24,25]. The evolution of
a gene family is modeled by a birth–death process running
along an organism tree: ‘birth’ corresponds to gene dupli-
cation, and ‘death’ to gene loss. In addition, a model of
sequence evolution is used, so that given an organism tree
and gene alignments, likelihoods of gene trees can be
computed. This combined model has been implemented
in a program that can estimate gene trees given an organ-
ism tree, through Bayesian MCMC integration, resulting
in gene trees that are more biologically meaningful than if
they had been inferred based on sequence alignments
alone (see Table 1). This model also provides posterior
probabilities of orthology and paralogy for each pair of
genes, which could further aid functional prediction, as
it is often assumed that function is better conserved be-
tween orthologs than between paralogs [26]. However, to
date, these models use a single duplication rate and a
single loss rate for all branches of an organism tree, even
though it is known that different lineages undergo differ-
ent rates of duplication and loss. Future models should
cope with this heterogeneity of the evolutionary process to
properly depict gene family evolution.Moreover, relying on
a known organism tree for building accurate gene trees is
certainly optimistic in several cases: just as the program of
Akerborg et al. [25] integrates over scenarios of dupli-
cations and losses with respect to a given organism tree,
a better statistical estimation of gene trees might be
obtained by integrating over the distribution of organism
trees. Such a model would provide an organism tree built
Box 3. Computational challenges and numbers of parameters

It can be unreasonable to devise a model accounting for all the

processes that contribute to the evolution of genomes all at once.

First, the computational task would be immense and second, only a

limited quantity of parameters can be estimated from a finite amount

of data [64]. However, today’s better algorithms and powerful

statistical methods provide means for tackling integrative models.

For instance, up to now, the only described model that inferred an

organism tree and multiple gene trees at the same time, only did so

for a very modest number of species [30], as the computational task is

enormous. Searching for a gene tree based on an alignment is already

an intimidating task; searching for both an organism tree and several

gene trees is even more difficult because for each organism tree, one

needs to estimate and sample corresponding gene trees. There is

however an obvious way to parallelize computations through

architecture based on a server and several clients (Figure 1): a server

node would search for an organism tree, while client nodes would

search corresponding gene trees for each organism tree. Such

parallelization would be necessary to compute trees based on whole

genomes and could require hundreds or thousands of computers

running for several days.

In addition to multiplying processors, it is also possible to

make a better use of the resources available in the average

6

using more than the genes that happen to be single-copies
in most genomes, helping to resolve some difficult phylo-
genies, and at the same time clarifying the dynamics of
genome expansion or shrinking over the entire tree.

Gene family evolution and lateral gene transfer
When modeling lineage sorting and duplication, it seems
reasonable to consider that there exists an underlying
organism tree, i.e. a tree depicting the history of vertical
inheritance in the genome. However, the ability of prokar-
yotes to acquire genes by LGT has led to questioning
whether the concept of an organism tree applies in such
organisms [27–29]. Indeed, most, if not all, gene families
have had time, during their history, to be transferred even
among distant organisms, so that gene trees are different
from the organism tree. However, at a given time, a gene
can be inherited vertically along the organism tree, or
laterally through LGT. Integrative models that account
for both an organism tree and LGT would probably help to
quantify the relative contributions of both vertical descent
and lateral transfer to genome evolution.

Suchard [30] reached a first stage in the elaboration of a
procedure that simultaneously searches for an organism
tree and hundreds of gene trees under an LGT model. In
his approach, gene trees can be produced from an organism
tree through topological rearrangements mimicking LGT.
These gene trees are then evaluated with respect to pre-
computed gene alignments and thus inform on the like-
lihood of the organism tree. The whole model was imple-
mented in the Bayesian framework with MCMC sampling.
This model converged on a unique organisms tree and
confirmed previously reported results that informational
genes, involved in the processing of genetic information,
tend to undergo relatively low rates of transfer. However,
the dimension of the topological space that can be reached
through LGT simulation from a single organisms tree
limited the applicability of themethod to six species. Other
approaches using fast algorithms for reconciling gene and
organisms trees under a LGT model could help tackle this
personal computer: Suchard and Rambaut [65] recently developed

new algorithms to use graphical cards when building

phylogenetic trees. Thanks to the highly-parallel structure of the

graphical processing units, they achieved up to 90-fold speed

increases.

Bayesian MCMC (Markov Chain Monte Carlo) techniques can

tolerate larger numbers of parameters than Maximum Likelihood

(ML) approaches as MCMC integrates over the distributions of

parameters when ML only uses point estimates: in this latter case,

any small error over the value of a variable can snowball to

drastically affect the accuracy of other estimates. However, different

models will most likely have to be used depending on the question

under scrutiny, where only the most relevant parameters are

included: when there are too few parameters then estimates are

biased, whereas too many parameters with large variances prohibit

any conclusion. In this respect, issues of model selection will be

particularly pressing. Recently, several works estimated the values of

parameters, but also their numbers, through techniques such as

Dirichlet Process priors [66], reversible jump MCMC methods [67], or

Poisson processes [68]. Such techniques that auto-regulate their

number of parameters will be necessary to use complex models with

large amounts of data.



Figure 2. Models of genome evolution: from raw genome sequences to

ecosystems. Organisms can be described at different levels of organization, and

for each level different models of evolution can be devised. Using these models of

evolution in combination can benefit the reconstruction of characteristics of

ancient organisms. The environment in which organisms live operates a direct

selective pressure on the organism (continuous arrow), which has repercussions

on each organization level (dashed arrows). Genomes can adapt to the

environment by shifting the composition of their genes, gene networks through

the loss or acquisition of new genes and new interactions between genes, and

ecological networks by the appearance or disappearance of new connections

between organisms or altogether new organisms. Thus, there is a relation between

the way organisms function and their environment, which can be input into

models of evolution for more accuracy.
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problem [31,32]. The research on LGT would strongly
benefit from such a statistical framework, which does
not take gene trees as error-less data, but as statistical
estimates from gene sequences themselves. In addition,
gene transfer events constitute informative characters for
phylogenetic reconstruction [33], and provide relative
dates for nodes of an organism tree: if a descendant from
node A gives a gene to an ancestor of node B, this means
that node B is more recent than node A. Considering the
immense difficulty of dating nodes in the prokaryotic tree
of life where fossils are scant and at best difficult to relate
to extant species, a relative dating would certainly be
highly valuable. Lastly, accurately reconstructing gene
trees would also offer new possibilities to study the evol-
ution of genome contents: up to now, ancestral genome
content was obtained through comparisons of numbers of
related genes in extant genomes [34,35], discarding all
sequence information relative to gene histories. Using gene
trees instead would probably greatly improve inferences.

A model of gene family evolution incorporating trans-
specific polymorphisms, LGT, duplication and loss with an
appropriate number of parameters (Box 3) could still be
refined to account for dependencies between genes. For
instance, two neighboring genes, from a bacterial operon or
from a eukaryotic chromosome, as well as genes that
interact functionally are more likely to share a similar
history than genes from different regions of the genome
[36,37]. Accounting for effects of spatial proximity on gene
histories can be achieved through HMMs, as recently used
by Hobolth et al. [38] to infer recombination hotspots,
ancestral population sizes and divergence times. Another
more general approach to model coevolution could use
gene-to-tree maps [39]. Gene-to-tree maps are objects that
associate genes with distributions of trees: two genes that
have coevolved for a part of their historywill show partially
similar tree topologies. The degree of topological similarity
will depend on the type of coevolution, which can be
inserted into a statistical model through prior probabil-
ities; for instance, two interacting genes are a priori more
likely to share tree topologies than genes that are part of
two separate pathways.

Genome dynamics
Reconstructing the evolution of genomes is not merely
reconstructing the history of their genes. Events such as
inversions, tandem duplications and chromosome fission
and fusion also affect genomes, and therefore need to be
modeled to properly depict genome evolution. However,
their inclusion poses considerable computational chal-
lenges, and consequently no complete probabilistic model
has been proposed so far. Using only inversions as possible
rearrangements, Larget et al. [40] devised a Bayesian
program able to estimate both organism phylogeny and
ancestral genome arrangements on datasets containing 87
mitochondrial genomes, or eight genomes of closely related
bacterial strains [41]. In a parsimony setting, Ma et al.
[42,43] found an efficient and exact algorithm to reveal the
most parsimonious scenario depicting genome evolution
along an organism tree using events of speciation, deletion,
insertion, duplication and a special type of rearrangement.
However, this efficient algorithm can only be applied under
the hypothesis that genomes contain an infinite number of
sites; when applied to real finite data, approximations
must be made, and only heuristics are available to find
the most parsimonious scenario.

Devising a probabilistic model of genome evolution
taking into account inversions, duplications, losses, and
chromosome fission and fusion would likely offer tremen-
dous insight into genome evolution, but seems very diffi-
cult; further incorporating substitutions, insertions and
deletions would build a model able to align whole genomes
in a statistical framework (Figure 1), and should result in
an improved understanding of genome dynamics, as it is
known that the genomic environment influences the sub-
stitution pattern [44]. If issues of algorithmic complexity
and potential overparametrization (Box 3) can be solved,
this can help test theories of speciation by chromosomal
rearrangements [45], help detect and characterize whole
genome duplications [37], pave the way for the reconstruc-
tion and study of ancestral genomes [46,47], and help test
whether genome complexity originates in small effective
population sizes [48]. Additionally, it could provide a useful
platform for genome annotation; if averaging out sequence
alignments improves robustness and accuracy for a range
of estimates [3,13,16], one can expect that averaging out
genome alignment will improve annotation accuracy, as
annotation is already known to benefit from a comparative
approach [26,49].

Ancestral phenotypes and ecosystems
Beyond information onmolecular evolution and phylogeny,
genomes conceal the footprints of ancient functions,
7
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environmental constraints, and selection pressures. Such
footprints permit reconstructing ancient ecosystems and
the encoded phenotype of ancestral organisms based on the
analysis of the genomes of extant individuals. It is possible
to infer parts of an ancient organism phenotype by recon-
structing and characterizing one of its genes (e.g. [50]) by
statistically predicting gene functions with a model of
function evolution [26], or by analyzing relevant genome
characteristics such as structural RNA or protein content
[51]. Such approaches could be combined and extrapolated
to the entire gene repertoire, thus improving previous
approaches that inferred ancestral phenotype based on
gene content [35]. In addition to reconstructing ancestral
states, which may be misleading because genomes are
never at equilibrium with their environments, molecular
evolution models can capture tendencies through the esti-
mation of equilibrium values (e.g. [52]).

To reconstruct the inner workings of million-year-old
cells, one would have to infer signaling pathways and
metabolic cycles from genomic data (Figure 2). The re-
construction of regulation and metabolic networks has
been shown to greatly benefit from an explicit evolutionary
model [53–55]. Superimposed on models of genome evol-
ution, such models of network evolution would offer oppor-
tunities to better infer ancestral metabolism and thus
ancient ecologies [56]. Obviously, issues of overparametri-
zation would again be a concern (Box 3).

Such genome-based inferences can be compared to
results from other natural science disciplines through
statistical models; for instance, a model could be built that
infers ancient phenotypes as explained above, and simul-
taneously assesses the correlation with environmental
temperature or atmospheric oxygen as inferred from
geology. This would thus permit identifying lineages under
the influence of the prevailing conditions at the surface of
the Earth at a given time, and which lineages escaped
these conditions. Similarly, models of continuous or dis-
crete character evolution [57] or models of phylogeography
[58] can be coupled to models of genome and network
evolution to better analyze genotype–phenotype coevolu-
tion. Such integrative approaches should enable statistical
tests of the significance of correlations between environ-
mental conditions and biological phenomena, and will
enlighten how the Earth and its biosphere shaped each
other during billions of years of coexistence.

Conclusion
‘The past is never dead. It’s not even past’ [59] – the
chronicles of life resonate in extant genomes and we have
only started to exploit the historical potential of macro-
molecules. New integrative statistical models of evolution,
that fully exploit substitutions, gene duplication, loss and
transfer, insertion–deletions and rearrangements can not
only yield a better resolved history of life, but also a
thorough representation of the whole process. Further-
more, through correlations between genomic properties
and non-genomic variables, genomes document the history
of interactions of organisms with each other and their
environment. We can now envision the reconstruction of
the history of genomes as well as metabolic and signaling
networks, phenotypes and environments.
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