Space of Gene/Species Trees Reconciliations and Probabilistic Models

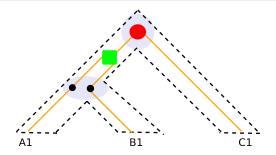
Jean-Philippe Doyon^{1,2} Cedric Chauve³ Sylvie Hamel²

 1- LIRMM, Université Montpellier 2 and CNRS
2- Département d'Informatique et de Recherche Opérationnelle, Université de Montréal
3- Department of Mathematics, Simon Fraser University

> Integrative Post-Genomics Lyon, November 2009

Reconciliation Space Exploration

Probabilistic framework


Experimental Results

Conclusion

Gene Family Evolution

The evolution of a genome is determined by

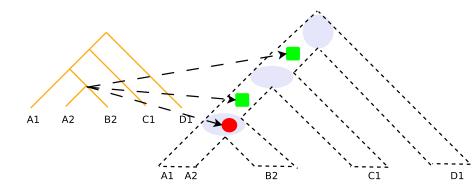
Speciation (\bullet) , Duplication (\bullet) , and Loss (\bullet) .

Why it is important to study the evolution of homologous genes?

- Orthologous and paralogous genes
- Gene content of ancestral genomes
- Phylogenomic

Reconciliation Space Exploration

Probabilistic framework


Experimental Results

Conclusion

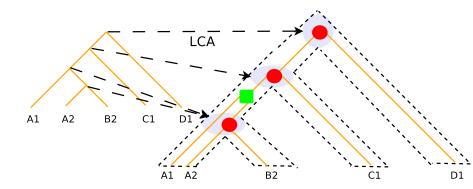
The Problem

The Main Question

Define the evolution of the **Gene Tree** according to **Species Tree** in term of speciation, duplication, and loss events.

Reconciliation Space Exploration

Probabilistic framework


Experimental Results

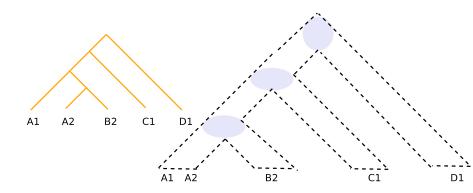
Conclusion

Definitions

The Most Parsimonious Reconciliation (α_{min})

maps a gene u (of G) the lowest possible in S

Reconciliation Space Exploration


Probabilistic framework

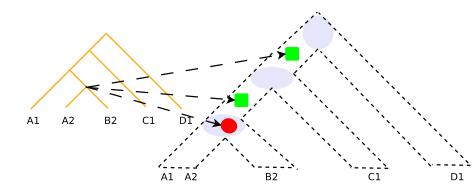
Experimental Results

Conclusion

A more General Definition

- Each internal node is mapped either on the LCA or on an edge above.
- Descendance Relationships.

Reconciliation Space Exploration


Probabilistic framework

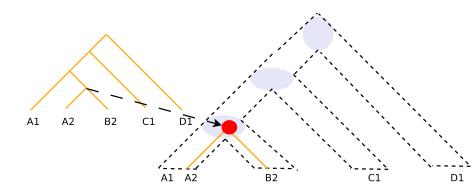
Experimental Results

Conclusion

A more General Definition

- Each internal node is mapped either on the LCA or on an edge above.
- Descendance Relationships.

Reconciliation Space Exploration


Probabilistic framework

Experimental Results

Conclusion

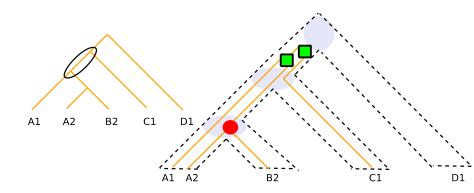
A more General Definition

- Each internal node is mapped either on the LCA or on an edge above.
- Descendance Relationships.

Reconciliation Space Exploration

Probabilistic framework

Experimental Results


Conclusion

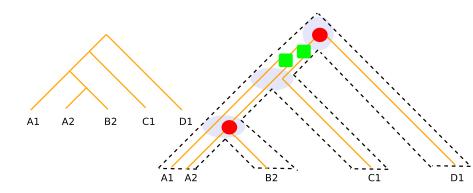
A more General Definition

A Reconciliation between G and S

• Each internal node is mapped either on the LCA or on an edge above.

• Descendance Relationships.

Reconciliation Space Exploration


Probabilistic framework

Experimental Results

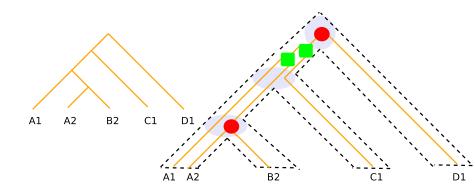
Conclusion

A more General Definition

- Each internal node is mapped either on the LCA or on an edge above.
- Descendance Relationships.

Reconciliation Space Exploration

Probabilistic framework


Experimental Results

Conclusion

A more General Definition

Properties

- Does not ONLY induce the LCA reconciliation.
- The number of reconciliations is finite, but can be exponential.

Reconciliation Space Exploration

Probabilistic framework

Experimental Results

Conclusion

Reconciliation Space Exploration

This simple definition allows

Count the number of reconciliations.

Generate randomly and uniformly a reconciliation.

• Define operators used to explore the whole space.

• Exhaustively explore the space.

Reconciliation Space Exploration

Probabilistic framework

Experimental Results

Conclusion

Counting and Randomization algorithms

Counting the Number of Reconciliations

• Dynamic programming algorithm in O(|G||S|) time and space.

Randomly Generate a reconciliation

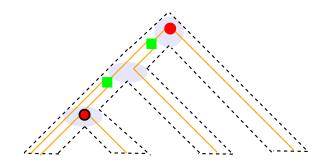
- Algorithm in O(|G||S|) time and space.
- Uniform distribution over all reconciliations.

Reconciliation Space Exploration

Probabilistic framework

Experimental Results

Conclusion


Nearest Mapping Change

Upward NMC

- Changes a speciation into a duplication.
- Moves a duplication upward.

Downward NMC

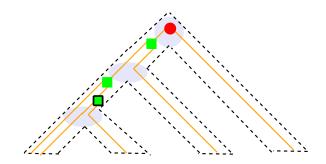
- Changes a duplication into a speciation.
- Moves a duplication downward.

Reconciliation Space Exploration

Probabilistic framework

Experimental Results

Conclusion


Nearest Mapping Change

Upward NMC

- Changes a speciation into a duplication.
- Moves a duplication upward.

Downward NMC

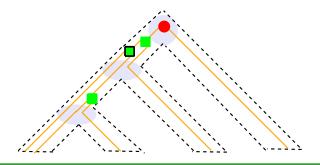
- Changes a duplication into a speciation.
- Moves a duplication downward.

Reconciliation Space Exploration

Probabilistic framework

Experimental Results

Conclusion


Nearest Mapping Change

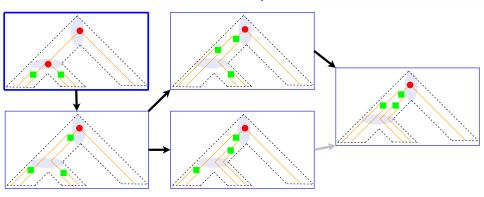
Upward NMC

- Changes a speciation into a duplication.
- Moves a duplication upward.

Downward NMC

- Changes a duplication into a speciation.
- Moves a duplication downward.

Sufficient to explore the whole space of reconciliations.


Reconciliation Space Exploration

Probabilistic framework

Experimental Results

Conclusion

Exhaustive Exploration

- Architecture rooted at α_{min} ;
- Exploration of the whole space of reconciliations in time $\Theta(\# rec)$.

Reconciliation Space Exploration

Probabilistic framework

Experimental Results

Conclusion

Probabilistic framework

Input data

- A gene tree G and a species tree S.
- Branch lengths (in time) and duplication/loss rates along S.

Posterior Probability $P(\alpha|G)$

 $P(G, \alpha)$ is the probability that the evolution of a gene along S generates

- the Gene Tree G;
- and the Reconciliation α .

$$P(\alpha|G) = \frac{P(G, \alpha)}{P(G)}$$
$$= \frac{P(G, \alpha)}{\sum_{\alpha' \in \mathcal{T}} P(G, \alpha')}$$

Reconciliation Space Exploration

Probabilistic framework

Experimental Results

Conclusion

Experimental Results

Two expected observations....

Whole Probability Mass

is technically covered by a small set of reconciliations located close to α_{min} .

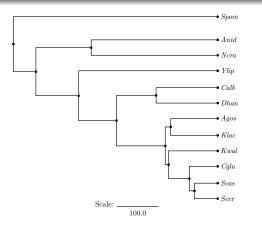
Approximation of the Most Probable Reconciliations

can easily and efficiently be computed.

Intr	od	luc	tio	on
OC	00	С		

Reconciliation Space Exploration

Probabilistic framework


Experimental Results

Conclusion

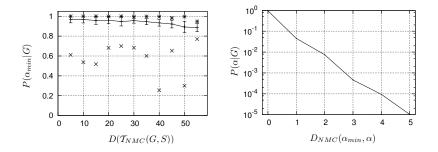
Experimental Results

Input Data

- 12 fungal genomes and 1278 gene family trees.
- · Branch lengths computed by a Bayesian Framework.
- Branch rates estimated by an Expectation Maximization approach.

Reconciliation Space Exploration

Probabilistic framework

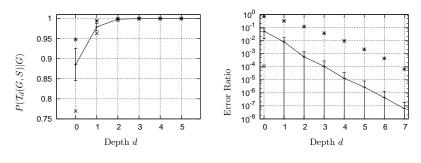

Experimental Results

Conclusion

Experimental Results

1278 Fungal gene trees

- In 1276 cases, α_{min} is the Most Probable Reconciliation.
- α_{min} covers most of the Probability Mass.
- The more a reconciliation is located close to α_{min} , the more it is probable.


Reconciliation Space Exploration

Probabilistic framework

Experimental Results

Conclusion

Experimental Results

Error Ratio = $1 - \frac{approx}{exact}$

Intr	od	lu	ct	i	on	
00	0	С				

Reconciliation Space Exploration

Probabilistic framework

xperimental Results

Conclusion

Conclusion

Main Observations

- 1. Small # of reconciliations are needed to approximate probabilities.
- 2. The neighborhood of α_{\min} "covers" the probability mass.
- 3. Similar results for synthetic gene trees generated with higher rates.

Future Work

- 1. Higher rates along S.
- 2. Reconciliation spaces where α_{\min} is located far from α^* ?
- 3. Reconciliation spaces with more than one peaks?
- 4. Similar Bayesian Framework for dup./loss rates probabilistic analysis.