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Concept of the Tree of Life

• For: Kurland et al. 2003, Puigbò et al. 2009
• Moderate: Galtier et Daubin 2008
• Against: Bapteste et al. 2005; Koonin 2007
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Inferring a Tree of Life by retrieving signals from gene trees

Gene trees

Organism phylogeny
Reconciliation approach

Reconciliation

• Parsimony and probabilistic app. [LAGERGREN ET AL.; GORECKI ET AL.]

• Used to identify orthologous sequences (functional annotation)
• Similar concepts in Ecology and Biogeography [PAGE ET AL.]
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Reconciliation depicts coevolution

(Some) Macro Evolutionary Events

Speciation (S), Duplication (D), Transfer (T), and Loss (L)
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Gene tree Species tree
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3 spec.
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The Most Parsimonious Reconciliation problem

• Input: costs for each event (D, T, L, S) and gene / species trees
• Output: a reconciliation that has a Minimal cost and is Time consistent

(May be more than one optimal reconciliation)
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The Most Parsimonious Reconciliation problem

• Input: costs for each event (D, T, L, S) and gene / species trees
• Output: a reconciliation that has a Minimal cost and is Time consistent

(May be more than one optimal reconciliation)
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The Most Parsimonious Reconciliation problem

• Input: costs for each event (D, T, L, S) and gene / species trees
• Output: a reconciliation that has a Minimal cost and is Time consistent

(May be more than one optimal reconciliation)

EvolutionaryTime 

a c b d A B C D

Gene tree Species tree

A B C D

a b c d

Time Consistent

A B C D

a b c d

Time Inconsistent
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Previous approaches & models

Species Graph [Gorecki]

Locations of (possible) transfers are defined in advance in S.

Inconvenients of reconciliation models

• Don’t directly account for losses [HALLETT & LAGERGREN 04]

• Can lead to time inconsistent reconciliations
(Tarzan & Jane software) [MERKLE ET AL 05-10]

• Don’t guarante optimality!!!

Dated species tree S
Lagergren’s group 09-10, Lyubetsky et al 09, Merkle et al 05-10,Gorbunov et
al 09, Libeskind-Hadas 09
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Our contribution

An efficient model for MPR problem
• Considering a dated species tree S.
• Relying on 6 atomic events, each one being fast to investigate

A dynamic programming algorithm
• Based on a small subdivision S′ of S
• Fast: runs in time O(|S′| · |G|)
• Previous algorithms in O(|S|4 · |G|4) and O(|S′|3 · |G|)

Experimental results for the relevance of parsimony
Is parsimony relevant to infer the evolutionary scenario of a gene family?
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An Efficient Reconciliation Model

• Date species tree [ LARTILLOT ET AL. 2004, AKERBORG ET AL. 2008, ETC.].
• Discretize evolutionary time into slices.
• Allow transfers within the same time slice.
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An Efficient Reconciliation Model
A reconciliation between a gene tree G and a species tree S

• Maps each edge of G onto an ordered sequence of branches of S′.
• Induces S, D, T, and L events

A B C D
a b c d

a c b d

Gene tree

a b c d

Species tree

A reconciliation
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An Efficient Reconciliation Model
Six Atomic events, where losses are implicitly considered (Parsimony)

Speciation (S) Duplication (D) Transfer (T)

No event (∅) Speciation + Loss (SL) Transfer+Loss (TL)

Theorem

A Most Parsimonious Reconciliation is computed in time Θ(|G| · |S′|)
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Two Datasets DS1 and DS2
Details of the simulation process

• 10 species trees on 100 species (Birth and Death with a ratio = 1.25)
• Gene Tree + Real Reconciliation generated (with rates LR , TR and DR)
• Based on realistic loss rates [CSUROS AND MIKLOS]

• Gene trees have between 59 and 93 leaves

DS1: “Simulate” a relatively Large Time Scale (archaean or bacterial phylum)

• Fixed rate LR = 0.7 and tree height h = 1
• 11 values for TR and DR in [0.01, 0.35]
• 6, 050 G = (5 G)× (10 S)× (11× 11 rate pairs)

DS2: “Simulate” Different Time Scales and Vary the Importance of T vs. D
• Four different tree heights h ∈ [0.2, 0.4, 0.8, 1.6]

• Fixed ratio LR/(DR + TR + LR) = 0.7 [CSUROS AND MIKLOS]

• 11 values for TR ∈ [0, 0.3] and DR = 0.3− TR fixed.
• 8, 800 G = (20 G)× (10 S)× (4× 11 rate pairs)
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Efficiency of parsimony according to costs

DS1 (Large Time Scale) DS2 (Importance of T vs. D)
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Over cost of the real scenario w.r.t. MPR

• Small for all D and T rates (DS1)
• Increases with the height of the gene trees (DS2)
• Parsimony might be considered as a credible criterion Great!
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Accuracy of parsimony to retrieve D events

DS1 (Large Time Scale) DS2 (Importance of T vs. D)
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False Negatives / Positives: Node of G + Branche in S′

• Reasonnably few forgotten duplications (homoplasy and several MPRs?)
• *Very* few False Positives Not bad!
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Accuracy of parsimony to retrieve T events

DS1 (Large Time Scale) DS2 (Importance of T vs. D)
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Large number of D leads to non-trivial errors in T prediction Huh huh... :(
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Transfers among archaeal genomes

Input data

• Dated species tree: 14 archaeal (53 ribosomal proteins)
3 dates for (Ferroplasma A., Thermoplasma A.) clade. [TIMETREE]

• Gene tree: ribosomal proteins
2 roots. [MATTE ET AL. 2002; TOFIGH ET AL. 2010])

• 6 cases

Our approach vs. Tofigh et al. (May propose Time Inconsistent transfer)

• Our approach: 5 transfers + 3 losses
• Tofigh et al.: 5 transfers / duplications (Losses = “a posteriori”)

What is the relevancy of these transfers?
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From Crenarchaeota to the plasma

Pyrobaculum_aerophilum

Aeropyrum_pernix

Sulfolobus_solfataricus

Pyrococcus_furiosus

Pyrococcus_horikoshii

Pyrococcus_abyssi

Methanococcus_jannaschii

Methanobacterium_thermo.

Ferroplasma_acidarinanus

Thermoplasma_acidophilum

Archaeoglobus_fulgidus

Methanosarcina_barkeri

Haloarcula_marismortui

Halobacterium_halobium

Apparently correct (both roots of G, 6= direction)

• Other transfers proposed in the same dir. and with different methods
• Same ecological niche
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Conclusion
Our Most Parsimonious Reconciliation algorithm

• Proposes Time-Consistent transfers;
• Directly account for losses (discriminate among different scenarios).
• Much faster (cpu / complexity) than previous ones [GORBUNOV ET AL. 09].
• Program available: www.lirmm.fr/phylariane/

Experimental conclusions

• Parsimony cost fits nicely with real one.
• Few duplications not recovered and almost no incorrect ones predicted.
• Transfers less correctly predicted (≈ 20− 30% errors).

What next?

• Enumerating and counting MPRs. [DOYON ET AL. 2009]

• Links between MPR and ML reconciliations
• Polytomous trees (low supported clades) [VERNOT ET AL. 2008]
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Phyl-ARIANE project

SylvX - reconciliation viewer/editor

• Automatic computation and manual modifications of reconciliations
• Graphical operators & analyses: re-rooting, zooming, filtering events
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Phyl-ARIANE project

Reconciliation bank browser (gamma and beta proteobacteria)

Query a databank for
• evolutionary events (duplications, losses, and transfers);
• reconciliation patterns.
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From Pyrococcus furiosus to Pyrococcus horikoshii

Pyrobaculum_aerophilum
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Thermoplasma_acidophilum

Archaeoglobus_fulgidus

Methanosarcina_barkeri

Haloarcula_marismortui

Halobacterium_halobium

Seem to be correct (both roots of G)

• High bootstrap values in species and gene trees.
• But small sequences and branch lengths (gene tree).
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From Sulfolobus solfataricus to Pyrobaculum aerophilum
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Seem to be correct (both roots of G)

• High bootstrap values in species and gene trees.
• More studies to do.
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Reconciling trees with lack of resolution
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Artifactual transfers (probably)

• Low bootstrap values in species and gene trees.
• Collapsing unsupported nodes erases discrepancies between trees.
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Running times

Comparison with an implementation of [Gorbunov et al 09]:
from dozens minutes to less than 2 sec (between 1.09s and 1.38s)

nb of leaves in G
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Relationship between the MP and ML criteria

cost of MP reconciliation
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Two roots for the (rpl12e) ribosomal proteins
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Dynamic Programming Algorithm

Properties

• SL is an optimal scenario where one gene goes extinct after an S event
(Idem for TL and T)

• Any TL event is (possibly) followed by a different event.
• The model allows to progress either in S′ (its time) or in G.
• The best landing place is independent of the donor branch.

Maximum Likelihood approach

Similar algorithm applies to ML [SZÖLLÖZI ET AL IN PREP.]
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Vertebrates: Whole Genome Duplications

Episode Clustering Problem (without transfer)

Given S and {G1, . . . , Gn}, minimize the number of locations in S where all
duplications can be placed.

53 gene trees form 16 vertebrates [GUIGO ET AL. 1996]

# Dup # Spots of S # WGD MPR wrt. Guigo
Guigo et al. 46 4 5
MPR (DC , LC ≥ 1) 46 6 9 80%
MPR (DC = 1, LC = 0) 46 6 9 95%

Episode Clustering Problem

On this dataset, Whole-Genome-Duplications can be retrieved and located
solely with Most-Parsimonious-Reconciliation classical approaches.
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Whole Genome Duplications
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