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Christian Retoré Mark Steedman
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ANR franco autrichienne FISP FIne Structure of Proofs.

An heteroclite domain

Logic, philosophy of language, linguistics, psycholinguistics, cognition, didac-
tics,...

There are quantifiers in natural language, some quantifiers have been studied
logically.



	
  

A Quantified logics



	
  

A.1. Quantified statements in ancient/medieval logic

• All students passed.

AP,Q = ∀x .(P(x)⇒ Q(x))

• No student passed.

EP,Q = ∀x .(P(x)⇒¬Q(x))

• Some student passed.

IP,Q = ∃x .(P(x)∧Q(x))

• Not all student passed. (original phrasing)

OP,Q = ∃x .(P(x)∧¬Q(x))

Some students did not pass.
(different focus, but less ambiguous)
not all is not lexicalised in all (?) languages.



	
  

A.2. Rules rather than models

Syllogisms (vowel= type of statement among A,E , I ,O)

Barbara:

All M are P,
All S are M,
Hence all S are P

Baroco :

All P are M,
Some S are not M,
Hence Some S are not P



	
  

A.3. Square of opposition

Under some conditions (e.g. ∃x .P(x) holds) the formulae A E I O
constitute a square of opposition:

i) A a` ¬O and E a` ¬I

ii) It is never the case that > ` A and > ` E

iii) It is never the case that I ` ⊥ and E ` ⊥

iv) A ` I and E ` O
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A.4. Algebraic Logic, Boole, De Morgan, Peirce,...

Regarding quantification Boole tried some rules for developping,
factorising, verifying formulas:

∀x(I (x)⇒ (F (x)∨M(x)))

≡
(∀x(I (x)⇒ F (x)))∨ (∀x(I (x)⇒M(x)))

I : individual F : female M : male

????



	
  

A.5. Frege: modern predicate calculus / quanti-
fied logic

The two mathematical quantifiers: ∀x or (x) and ∃x or Ex

Usual first order logic

Single sorted: contradicts ”A property is asserted of some individ-
ual as part of a class.”



	
  

A.6. Interpretation of a sentence in a model M

n-ary relation: part of Mn.

Free variables are assigned (A ) a value in M .

Connectives are interpreted naturally: & means ”and” etc.

∀x .P(x) for holds for A whenever P(x) holds for A ∪ x 7→m for
every assignment m in M to the free variable x in P(x)

∃x .P(x) for holds for A ∪x 7→m when P(x) holds for some assign-
ment m in M to the free variable x in P(x)



	
  

A.7. Proof systems

Frege’s system is complicated.

Hilbert axioms (requires substitution).

Gentzen LK (sequent calculus), NK (natural deduction).



	
  

A.8. Results, properties

Observe that numbers (which are quantifiers) can be defined: at
least n, at most n, exactly n,

Soundness: a provable formula is true in every model.

Completeness of pure logic: if a formula F is true in every model
then it is provable. Kurt Gödel Die Vollstândigkeit der Axiome
des logischen Funktionenkalküls Monatshefte für Mathematik und
Physik (1930)

Compactness if every subset of a possibly infinite collection of for-
mulas has a model so does the whole collection.

Löwenheim Skolem a set of formulas that admits an infinite mod-
els admits models of any infinite cardinality.



	
  

A.9. Open question for this classical/Fregean view
of FOL

The only quantifiers are ∀ and ∃ on individuals, and one a whole
single domain.

Restricted quantification on a subdomain can be defined:

(1) a. ∀x ∈M P(x) ≡ ∀x (M(x)⇒ P(x))

b. ∃x ∈M P(x) ≡ ∃x (M(x)&P(x))

This treatment does not apply to other quantifiers:

(2) a. for 1/3 of the x ∈M P(x) 6≡ for 1/3 of the x (M(x)⇒P(x))

b. for few x ∈M P(x) 6≡ for few x (M(x)&P(x))



	
  

A.10. Higher order?

(3) He believes everything he is said.

Probably what he is said are propositions and not individuals.

Beware that completeness fails from second order onwards be-
cause completeness entails compacity.

D: every two place predicate that defines an injective
function is surjective. The universe is finite.

Fn = there are more than n individuals.

There is a notion of model, for which one has completeness, but
than the above set of formulas has a model.



	
  

B Linguistics



	
  

B.1. Quantifiers in natural language

Exists, for all Universal quantifiers are rare.

and many more:

Exactly, at most, at least n

2/3, 45%

few, many,

Subtle differences between model theoreticallly equivalent formu-
lations: tout/chaque.



	
  

B.2. Meaning and scope

In order to understand each other properly we need to determine
quantifier scope.

In a pizzeria:

The children will have a pizza.

Depending on the size of the the pizza, of the children and of their
hungriness.

(4) A circle is connected to each square.
(5) A guard stands in front of each museum door.



	
  

B.3. Generative/transformational grammar

Scope and such considered as a syntactic phenomenon.

Quantifier raising: quantifier undergo covert movement to encom-
pass a large part of the sentence.

Preferred quantifier scope is left right and other scopes ought to
be triggered by some feature.



	
  

B.4. Categorial grammar / Montague semantics

Interesting solution because it encompasses syntax.

Categorial grammar : a syntax that relies on the logical structure
of the sentence.

The syntactic structure, the parse tree is non canonical...

Meaning is computed for the meaning of its parts (Fregean com-
positionality) and the syntactic structure (Montague).

Meaning: logical formula interpreted thereafter or situations in
which the sentence is true?



	
  

B.5. Categorial grammar

(Syntactic category)∗ = Semantic type
S∗ = t a sentence is a proposition
np∗ = e a noun phrase is an en-

tity/individual
n∗ = e→ t a common noun is a property of

individuals
(A\B)∗ = (B/A)∗ = A→ B extends the translation to com-

plex categories



	
  

B.6. Constants for logical operators

Constant Type
∃ (e→ t)→ t
∀ (e→ t)→ t
∧ t→ (t→ t)
∨ t→ (t→ t)
⊃ t→ (t→ t)



	
  

B.7. From natural langue to a logical language

love λxλy (aime y) x x : e, y : e, love : e→ (e→ t)
<< love >> is a binary predicate

Garance λP (P Garance) P : e→ t, Garance : e
<< Garance >> is viewed as

the properties << Garance >> enjoys



	
  

B.8. Montague semantics — algorithm

1. syntactic analysis S

2. mapped to a lambda term of type t (bases types: e et t)

3. insertion of semantic lambda terms

4. beta reduction
→ term of type t

= logical formula
= sentence meaning (roughly speaking ;-)



	
  

B.9. Example of a semantic analysis:
les enfants prendront une pizza

word csyntactici category u
type sémantique u∗

semantics: λ -term of type u∗

xv means x (variable, constante) of type v

les (S/(np\S))/n (subject)
((S/np)\S)/n (object)
(e→ t)→ ((e→ t)→ t)

λPe→t λQe→t (∀(e→t)→t (λxe(⇒t→(t→t) (P x)(Q x))))

une ((S/np)\S)/n (object)
(S/(np\S))/n (subject)
(e→ t)→ ((e→ t)→ t)

λPe→t λQe→t (∃(e→t)→t (λxe(∧t→(t→t)(P x)(Q x))))

enfant(s) n
e→ t
λxe(enfante→t x)

pizza n
e→ t
λxe(pizzae→t x)

prendront (np\S)/np
e→ (e→ t)

λye λxe ((prendronte→(e→t) x)y)



	
  

B.10. Syntactic analysis ∃∀

There are two possible syntactic analysis. Here is one.

∃∀

(S/(np\S))/n n
/e

(S/(np\S))

(np\S)/np [np]1

/e
(np\S)

/e
S

/i (1)
S/np

((S/np)\S)/n n
\e

(S/np)\S
\e

S



	
  

B.11. Syntax→ semantic λ -term of the sentence

∃∀

les
(e→t)→(e→t)→t

enfants
(e→t)

→e
(e→t)→t

prendront
e→e→t

o
[e]1

→e
e→t

→e
t
→i (1)

e→t

une
(e→t)→(e→t)→t

pizza
(e→t)

→e
(e→t)→t

→e
t

The obtained λ -term is

∃∀= (une pizza)(λoe(les enfants)(prendront o))

One has to

1. insert lexical lambda terms

2. reduce/compute



	
  

B.12. Calculus, step by step 1/2

(une pizza)
= (λPe→t λQe→t (∃(e→t)→t (λxe(∧t→(t→t)(P x)(Q x)))))(λze(pizzae→t z))
= (λQe→t (∃(e→t)→t (λxe(∧t→(t→t)((λze(pizzae→t z)) x)(Q x)))))
= (λQe→t (∃(e→t)→t (λxe(∧t→(t→t)((pizzae→t x)))(Q x))))

(les enfants)
= (λPe→t λQe→t (∀(e→t)→t (λxe(⇒t→(t→t) (P x)(Q x)))))(λue(enfante→t u))
= (λQe→t (∀(e→t)→t (λxe(⇒t→(t→t) ((λue(enfante→t u)) x)(Q x)))))
= (λQe→t (∀(e→t)→t (λxe(⇒t→(t→t) (enfante→t x)(Q x)))))

(les enfants)(prendront o) =
(λQe→t (∀(e→t)→t (λw e(⇒t→(t→t) (enfante→t w)(Q w)))))((λy e λxe ((prendronte→(e→t) x) y)) o)
= (λQe→t (∀(e→t)→t (λw e(⇒t→(t→t) (enfante→t w)(Q w)))))(λxe ((prendronte→(e→t) x) o))
= ∀(e→t)→t (λw e(⇒t→(t→t) (enfante→t w)((λxe ((prendronte→(e→t) x) o)) w)))
= ∀(e→t)→t (λw e(⇒t→(t→t) (enfante→t w)(((prendronte→(e→t) w) o))))



	
  

B.13. Calculus, step by step 2/2

(une pizza)(λo (les enfants)(prendront o))
= (λQe→t (∃(e→t)→t (λxe(∧t→(t→t)((pizzae→t x)))(Q x))))

(λo∀(e→t)→t (λw e(⇒t→(t→t) (enfante→t w)(((prendronte→(e→t) w) o)))))
= (∃(e→t)→t (λxe(∧t→(t→t)((pizzae→t x)))

((λo∀(e→t)→t (λw e(⇒t→(t→t) (enfante→t w)(((prendronte→(e→t) w) o))))) x)))
= (∃(e→t)→t (λxe(∧t→(t→t)((pizzae→t x)))

(∀(e→t)→t (λw e(⇒t→(t→t) (enfante→t w)((prendronte→(e→t) w) x))))))

One usually write the above term like this:

∃x . pizza(x)∧∀w . (enfant(w)⇒ prendront(w ,x))



	
  

B.14. There is another syntactic analysis ...

∀∃

(S/(np\S))/n n
/e

(S/(np\S))

[np]1

(np\S)/np [np]2

/e
(np\S)

\e
S

/i (2)
S/np

((S/np)\S)/n n
\e

(S/np)\S
\e

S
\i (1)

np\S
/e

S

Which yields the following semantic structure:

∀∃



	
  

les
(e→t)→(e→t)→t

enfants
(e→t)

→e
(e→t)→t

s
[ e]1

prendront
e→e→t

o
[e]2

→e
e→t

→e
t
→i (2)

e→t

une
(e→t)→(e→t)→t

pizza
(e→t)

→e
(e→t)→t

→e
t
→i (1)

e→t
→e

t

λ -term of the sentence:

∀∃= (les enfants)(λ s. (une pizza)(λo ((prendront o) s)))

we intert the lexical λ -terms and compute:

((une pizza) et (les enfants) déjà faits)



	
  

B.15. Calculus (bis repetita placent)

(une pizza)(λo ((prendront o) s))
= (λQe→t (∃(e→t)→t (λxe(∧t→(t→t)((pizzae→t x)))(Q x))))
(λo (((λye λxe ((prendronte→(e→t) x) y)) o) s)))
= (λQe→t (∃(e→t)→t (λxe(∧t→(t→t)((pizzae→t x)))(Q x))))
(λo ((prendronte→(e→t) s) o))
= (∃(e→t)→t (λxe(∧t→(t→t)((pizzae→t x)))((λo ((prendronte→(e→t) s) o)) x)))
= (∃(e→t)→t (λxe(∧t→(t→t)((pizzae→t x)))((prendronte→(e→t) s) x)))

∀∃= (les enfants)(λ s. (une pizza)(λo ((prendront o) s)))
= (λQe→t (∀(e→t)→t (λue(⇒t→(t→t) (enfantse→t u)(Q u)))))
(λ s. (∃(e→t)→t (λxe(∧t→(t→t)((pizzae→t x)))((prendronte→(e→t) s) x))))
= (∀(e→t)→t (λue(⇒t→(t→t) (enfantse→t u)
((λ s. (∃(e→t)→t (λxe(∧t→(t→t)((pizzae→t x)))((prendronte→(e→t) s) x)))) u)))))

= (∀(e→t)→t (λue(⇒t→(t→t) (enfantse→t u)
(∃(e→t)→t (λxe . (∧t→(t→t)((pizzae→t x)))((prendronte→(e→t) u) x))))))

This is usually written as:

∀u. enfants(u)⇒∃.x pizza(x)∧prendront(u,x)



	
  

B.16. Other quantifiers

Also have scope issues:

Put eight drops in three spoon of water.



	
  

B.17. Preferences?

We clearly have preferences for readings sentences with multiple quantifiers,
some being syntactical (left right order) other being triggered by world knowl-
edge and common sense reasoning.

Regarding syntactic preferences Davide Catta and Mehdi Mirzapour (PhDs)
proposed a combination of Morrill syntactic measure and penalties for swapping
quantifiers in the preferred reading.



	
  

B.18. Quantifier: critics of the standard solution
1/3

Syntactical structure of the sentence 6= logical form→ lack of compositionality.

Associated problem: several syntactic categories depending on the place of the
determine/quantifier in the syntactic tree.

(6) Orlando di Lasso composed some motets.

(7) syntax (Orlando di Lasso (composed (some (motets))))

(8) semantics: (some (motets)) (λx . OdL composed x)

The underlined predicate is not a proper phrase.



	
  

B.19. Quantifier: critics of the standard solution
2/3

Asymmetry class / predicate

(9) a. Some politicians are crooks.
b. ?? Some crooks are politicians.

(10) a. Some students are employees.
b. Some employees are students.

The different focus makes a big difference.



	
  

B.20. Quantifier: critics of the standard solution
3/3

There can be a reference before the utterance of the main predicate (if any):

(11) Cars, cars, cars,... (Blog)

(12) Premier voyage, New-York. (B. Cendrars)

(13) What a thrill — My thumb instead of an onion. (S. Plath)

(14) Lundi, mercredi et vendredi, une machine de couleurs, mardi et jeudi,
une machine de blanc, le samedi, les draps, le dimanche, les serviettes.
(Blog)

Even when there is a main predicate, I do think that we interpret the quantified
NP as soon as we hear it.



	
  

C CCG, Skolem terms, and scope
issues (cf. other slide series)



	
  

D Generics, universals and
quantification



	
  

D.1. Ancient and medieval philosophical ideas

A long debated question in logic and metaphysics (from Plato,
Aristotle, Porphyre, scholastics...)

Universal ”dog” vs. the set of individuals ”dogs”

What is a concept of a dog?

a substance, that exists independently of the individuals falling un-
der this concept

a name without reality, i.e. an abbreviation a word for the class of
all individuals falling under the concept

a concept that is a mental construction related to the empirical
relation to the set of individuals

A good question (Abélard/Roscelin debate) :

If an illness causes the extinction of all tall dogs, would your con-
cept of dog be altered.



	
  

D.2. Ancient and new mathematics

Now let speak about proofs and reasoning on a collection of indi-
viduals:

∀x ∈ C F (x)≡&x∈C F (x)≡ P(c1)&P(c2)&P(c3)&P(c4)& · · ·

How can we prove and refute such a formula? TWO ways:

• We can prove P(c1) then P(c2) then P(c3) then P(c4)... Once
we did so for all elements in C we can perform the conjunction
of all these formulae.

• Let x be any element of C ...(reasoning) ... P(x) holds. As x
does not possess anything special apart from being in C , the
property holds for any element in C .

As far as the collection under consideration is finite no difference.



	
  

D.3. The dual nature of universal quantification

(15) a. Un chien a quatre pattes.
b. Tout chien a quatre pattes.
c. Le chien a quatre pattes.
d. Les chiens ont quatre pattes.
e. Tous les chiens ont quatre pattes.
f. Chaque chien a quatre pattes.

(16) a. Each dog has four legs.
b. Dogs have four legs.
c. A dog has four legs.



	
  

D.4. Distributive readings and individuals

Collection of individuals: cannot accept exceptions, coincidence
of properties that can be conjuncted.

• Domain may be complicated:
”Every one sitting at the table with the uncle of the bride had
white shirts.”

• Proof by reasoning.

• Refutation: a sentence involving a distributive quantifier on
domain D can only be refuted by an individual and not by a
class unless it is clear that this class intersects the domain D.

(17) a. Each bird with both black and white feathers flies.
b. Not this wound bird.(perfect)
c. Not autruches. (not good refutation, since the in-

tersection is not obvious)



	
  

D.5. Generics NPs and sentences

Generic element: ideal, properties derived by reasoning, can ac-
cept exceptions.

• Domain cannot be complicated.
A person sitting at the table with the uncle of the bride had a
white shirt. (cannot mean all of them).

• Refutation:
The refutation of a sentence involving a generic can only be
refuted by another rule: Proof: a proof for each individual.

• (18) a. Birds fly.
b. Not this wound bird. (not a refutation, generic

readings admit exceptions)
c. Not autruches. (perfect)



	
  

D.6. Proof rules with generics — introduction

Usual rule when a property has been established for an x which
does not enjoy any particular property (i.e. is not free in any hy-
pothesis), one can conclude that the property holds for all individ-
uals:

no free occurrence of x
in any Hi

H1, ... ,Hn ` P(x) ∀i
H1, ... ,Hn ` ∀x . P(x)

Can be formulated with a generic element:

no free occurrence of x
in any Hi

H1, ... ,Hn ` P(x) ∀i
H1, ... ,Hn ` P(τxP(x))

τxP(x) enjoys the property P( ) when every individual does.



	
  

D.7. Proof rules with generics — elimination

The ∀ elimination rule says that when a property has been estab-
lished for all individuals it can be inferred for any particular terms
or individual:

H1, ... ,Hn ` ∀x . P(x)
∀e

H1, ... ,Hn ` P(a)

This can be formulated with a generic individual using τ that is a
subnector i.e. an operator that builds a term (of type individual)
from a formula (Curry’s terminology).

H1, ... ,Hn ` P(τxP(x)) ∀e
H1, ... ,Hn ` P(a)

If τxP(x) enjoys the property P( ) then any individual does.

τxDrink(x) is sober: he drinks iff every one does.



	
  

D.8. Distinction chaque/tout

Christian Retoré / Alda Mari:

CHAQUE: known domain, no exception, contingent, descriptive/synthetic
statements: &x∈DP(x) (easily takes wide scope)

TOUT: vague domain, admits exceptions, général, prescriptive/analytic
statements: P(τxD(x))

QUELQUES/CERTAINS Audrey BEDEL Existential quantification
in French: what difference between quelque and un certain? Cog-
Master internship, 2017.

This raises a general question in semantics that goes beyond
quantification: how to interpret logical formulas differently
than in set theoretic models?



	
  

D.9. Russell’s iota

As opposed to the generic dog τxdog(x) there is ”This dog”, ”The
dog that is sleeping on the sofa,...” the unique individual satisfying
P : a term ιxP(x).
Russell introduced ι for definite descriptions. It is the ancestor of
Hilbert’s ε.
A technical problem with ι is that the negation of there exists a
unique individual such that P is that there are no such individual
or at least two.
As observed by von Heusinger, it should be observed that there
is little difference between the logical form of definite descriptions
and indefinite noun phrase...
The uniqueness is not always observed,

(19) Recueilli très jeune par les moines de l’abbaye de Re-
ichenau, sur l’ile du lac de Constance, en Allemagne,
qui le prennent en charge totalement; Hermann étudie et
devient l’un des savants les plus érudits du XIème siècle.



	
  

D.10. Hilbert’s epsilon

F (εxF (x))≡ ∃x . F (x)

A term (of type individual) εxF (x) associated with F (x): as soon
as an entity enjoys F ( ) the term εxF (x) enjoys F ( ).

The operator ε binds the free occurrences of x in F .

εxDrink(x) is a soak: he drinks iff someone drinks.



	
  

D.11. Syntax of epsilon in first order logic

Terms and formulae are defined by mutual recursion:

• Any constant in L is a term.

• Any variable in L is a term.

• f (t1, ... , tp) is a term provided each ti is a term and f is a
function symbol of L of arity p

• εxA is a term if A is a formula and x a variable — any free
occurrence of x in A is bound by εx

• τxA is a term if A is a formula and x a variable — any free
occurrence of x in A is bound by τx

• s = t is a formula whenever s and t are terms.

• R(t1, ... , tn) is a formula provided each ti is a term and R is a
relation symbol of L of arity n

• A&B , A∨B , A⇒ B , ¬A when A and B are formulae.



	
  

D.12. Rules for ε

Hilbert’s work: fine! (Grundlagen der Mathematik, with P. Bernays)
Introduction of the universal quantifier
Rule 1: From P(x) with x generic infer:
P(τx .P(x))

Introduction of the existential quantifier:
Rule 2: From P(t) infer P(εxP(x))≡ ∃x P(x)

A classical (as opposed to intuitionistic) observation:

P(εxP(x))≡ ∃xP(x)≡ ¬∀x¬P(x)≡ ¬¬P(τx¬P(x))

P(τxP(x))≡ ∀xP(x)≡ ¬∃x¬P(x)≡ ¬¬P(εx¬P(x))

Hence: τxP(x) = ε¬P(x) and εxP(x) = τ¬P(x)
One is enough, usually people chose ε (e.g. Bourbaki in their set
theory book).



	
  

D.13. Relation to first order logic

The quantifier free epsilon calculus is a strict conservative exten-
sion of first order logic.

• Strict: there are formulae not equivalent to any formula of first
order logic, e.g. P(εxQ(x)) with P ,Q unary predicate sym-
bols.

• Conservative: regarding first order formula the epsilon calcu-
lus derive the same formulae.



	
  

D.14. A false (but nevertheless useful) intuition

Although ∃x .(S(x)∧P(x)) and S(εxP(x)) are related, they are not
equivalent for any P and S .

S(εxP(x)) 6` 6a ∃x .(S(x)∧P(x))

Indeed, let S(x) be (x = x) and let P(x) be (x 6= x) i.e. ¬S(x).

Then

S(εxP(x)) ≡ S(εx .¬S(x)) ≡ S(τx .S(x)) ≡ ∀x .S(x) ≡ ∀x .(x = x)

which is clearly true.

But ∃x .(S(x)&P(x)) ≡ ∃x .(S(x)&¬S(x)) ≡ ∃x .(x = x & x 6= x)
which is clearly false.

The argument works with any formula of one variable that is uni-
versally true like here S(x)≡ (x = x).



	
  

D.15. Main results

ε-elimination (1st & 2nd ε-theorems), yielding the first correct proof
of Herbrand theorem.

First epsilon theorem When inferring a formula C without the ε

symbol nor quantifiers from formulae Γ not involving the ε

symbol nor quantifiers the derivation can be done within quan-
tifier free predicate calculus.

Second epsilon theorem When inferring a formula C without the
ε symbol from formulae Γ not involving the ε symbol, the
derivation can be done within usual predicate calculus.

Epsilon was introduced by Hilbert firstly for arithmetic, in order to
establish arithmetic consistency by elementary means (this was
before Gödel’s incompletess theorem), using epsilon substitu-
tion method.
Little else is known (non standard formulae, full cut-elimination,
models), erroneous results cf. Zentralblatt.



	
  

D.16. Admittedly slightly unpleasant

Heavy notation:

∀x∃yP(x ,y) is
∃yP(τxP(x ,y),y) is
P(τxP(x ,εyP(τxP(x ,y),y)),εyP(τxP(x ,y),y))



	
  

D.17. “Loose” use of ε

Some A are B . (E sentences of Aristotle)

B(εx . A(x))

Not equivalent to an ordinary formula, in particular not equivalent
to the standard: ∃x . A&B(x) but

B(εx . A(x))∧A(εx . A(x)) ` ∃x . B&A(x)

Indeed:

B(εx . A(x))∧A(εx . A(x))
` B(εx . B&A(x))∧A(εx . B&A(x))
` B&A(εx . (B&A(x))

On the other hand, one has:

∃x .A(x)&∀y(A(y)⇒ B(y)) ` B(εx .A(x))

because ε-terms are usual terms.



	
  

D.18. Intuitive interpretation

Kind of Henkin witnesses but actually there is no good interpreta-
tion that would entail completeness.

Here is a pleasant intituitive interpretation rule due to von Heusinger:
both “a” and “the” are interpreted by the an epsilon term, but the
“a” always refers to a new individual in the class, while “the” refers
to the most salient one.

(20) A student entered the lecture hall. He sat down. A student
left the lecture hall.

(21) A student arrived lately. The professor looked upset. The
student left.



	
  

D.19. Categorical model

[Sorry for giving little details, this construction is ”heavy” category
theory]

Very recently Fabio Pasquali proposed a categorical model: an
epsilon logic/language can be interpreted in a Boolean hyper doc-
trine with a specific property (corresponding to the Axiom of Choice).

Formulae, terms and proofs are all interpreted by arrows. The ∃xF
arrow correspond to the ε-term arrow.

Such an hyper doctrine can be constructed from any elementary
Topos enjoying the Axiom of choice.

It is important to have a many sorted logic defined with types for
his construction.



	
  

D.20. Epsilon/tau A E I O formulae

• All students passed.

AP,Q = ∀x .(P(x)⇒ Q(x))

• No student passed.

EP,Q = ∀x .(P(x)⇒¬Q(x))

• Some student passed.

IP,Q = ∃x .(P(x)∧Q(x))

• Not all student passed. (original phrasing)
Some students did not pass. (different focus, but less am-
biguous)

OP,Q = ∃x .(P(x)∧¬Q(x))



	
  

D.21. Epsilon E I A O formulae

Consider the epsilon versions of I and A:

IS ,P := S(εxP(x))

AS ,P := S(τxP(x))

Hence we have no choice for the E and O:

ES ,P := ¬IS ,P = ¬S(εxP(x))
OS ,P := ¬AS ,P = ¬S(τxP(x))

As we have seen earlier IS ,P ≡ S(εxP(x)) is not always equivalent
to ∃x .P(x)&S(x)



	
  

D.22. Hilbertian square of opposition

Let S (S ,P) be the square obtained with the following figures:
AS ,P , IS ,P , ES ,P and OS ,P .

In the Hilbert’s ε-calculus, for every formulas S(x) and P(x) (one
free variable), either S (S ,P) or S (S ,¬P) is a square of opposition
provided S(τxP(x)) ` S(εxP(x)) or S(τx¬P(x)) ` S(εx¬P(x)).

S(τxP(x))ee

%%

oo //

��

¬S(εxP(x))

��
S(εP)

yy

99

oo // ¬S(τP)

S(τx¬P(x))ff

&&

oo //

��

¬S(εx¬P(x))

��
S(εx¬P(x))

xx

88

oo // ¬S(τx¬P(x))



	
  

D.23. Typed Hilbert operators

If single sorted logic, Frege / Montague style: ε : (e→ t)→ e if
many sorted: e1, ...,en as base types, possibly subtyping inclusions
between base types. With types variables (α ,β , ....), quantification
over type variables: Πα .T [α].

ε∗ : Πα . α or ε : Πα . (α → t)→ α ???

Either type/formula entails the other: ε∗ = ε{Λα .α}(λxΠα.α . x{t}) :
Λα . α and ε = ε∗{Λα . (α → t)→ α}

ε is more general because types can be mirrored as predicates,
but not the converse.

There is no problem of consistency with such constants whose
type in unprovable (like fix point Y ).



	
  

D.24. Intuitive interpretation and logic:
some perspectives

Cohabitation of types and formulae of first/higher order logic:

Typing (∼ presupposition) is irrefutable sleeps(x : cat)
Type to Formula:

type cat mirrored as a predicate ĉat : e→ t
Formula to Type?

Formula with a single free variable ∼ type?
cat(x)∧belong(x , john)∧ sleeps(x) ∼ type?
At least it is not a natural class.



	
  

D.25. Computing the proper semantics reading

A cat. catanimal→t (ε{animal}catanimal→t) : animal

Presupposition F (εxF (x)) is added: cat(ε{animal}catanimal→t)

For applying ε to a type say cat,
any type has a predicative counterpart cat (type) [̂cat] : e→ t.
(domains can be restrained / extended)



	
  

D.26. Avoiding the infelicities
of standard Montague semantics

εxF (x) : individual.

1. Can be interpreted as an individual without the main predi-
cate:
it is a term.

2. Follows syntactical structure:
it is a term, the semantics of an NP.

3. Asymmetry subject/predicate:
P(εQ) 6≡ Q(εP).



	
  

D.27. E-type pronouns

ε solves the so-called E-type pronouns interpretation (Gareth Evans)
where the semantic of the pronoun is the copy of the semantic of
its antecedent:

(22) A man came in. He sat dow.
(23) ”He” = ”A man” = (εx M(x)).



	
  

D.28. Difference with choice functions

Choice functions, Skolem symbols:

• One per formula: given one formula one enrich the formal
language with a new function symbol and usually, there are
no function symbols, when interpreting natural language: as
a dictionary, the logical lexicon should be finite.

• No specific deduction system.

• The symmetry problem is still there: it does not go beyond
classical logic and the E sentences are still improperly sym-
metric.

• choice function are not syntactically defined they have to be
added one by one in the FOL language.



	
  

D.29. Universal quantification

Observe that our setting allow two ways to do so (as for the ep-
silon):

if the noun is a type, the operator should apply to a type and yields
an object of this type: Πα . α

when it is a property the type is Πα . (α → t)→ α



	
  

D.30. Scope ambiguity with ε ,τ

Ongoing work by William Babonnaud MPRI CS master internship,
Paris.

(24) Every student has a number (exam sit / social category).
(25) Every Parisian/French enjoys leaving in a beautiful town.
(26) A corridor lead to the bedrooms.
(27) A guard stands in front of the museum doors.

With esplion/tau:

(28) a. The children ate a pizza
b. ate(τx . children(x),εx . pizza(x))

Underspecification: ambiguous relation to ∀child∃pizza ate(child ,pizza)
and ∃pizza∀child ate(child ,pizza)



	
  

D.31. Subnectors and generalised quantifiers

Formally (in the logical syntax) nothing prevent to introduce sub-
nectors for complex quantifiers like 2/3 or few or many etc.



	
  

E Conclusion



	
  

E.1. Some interesting topics that were left out

Interaction of scope phenomena:

Negation (Certains enfants n’ont pas peur des chiens.)
Pronouns (as in donkey sentences).
Belief verbs and de re / de dicto readings (James Bond

believes that some department member is a spy.)



	
  

E.2. Some logical questions

We focused on the computational analysis of sentences with quan-
tifiers, what about the proper wording of quantified statements e.g.
in maths (which makes an extensive use of universal quantifiers).

Quantification over individual concepts / quantifying over individu-
als. (in case you do not believe that Tullius is Cicero)

Quantifying in type theory.

Models and proof systems for quantified logic.

Argumentation (proofs/refutations) and quantification (ludics, dia-
logical logic)


